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A Note on Nontrivial Periodic Solutions of
Dynamical Systems with Subquadratic
Potential

L. SANCHEZ*

ABSTRACT. We obtain non-constant periodic solutions for a class of
second-order autonomous dynamic systems whose potential is subquadratic
at infinity. We give a theorem on conjugate points for convex potentials.

1. INTRODUCTION

This paper is concerned with the existence of periodic solutions u(t)
of a conservative system of the form

W 4 YF(u) = ht) 1)
where F € C*(RN,R) (i = 1,2,3) is subquadratic at infinity and h(t)

is a continuous periodic vector-valued function. Our aim is to show how
the saddle-point theorem of Rabinowitz [11], together with results of
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Lazer and Solimini [9] that give supplementary information based on the
Morse index of critical points, can be used to obtain in a quite simple
way, not only the existence of a periodic solution of (1), but also some
basic facts about nontrivial solutions of the autonomous counterpart of
(1),

u" + yF(u) = 0. (2)

Since our hypotheses (see §2) imply that F has at least one critical
point in RV, the interesting question about (2) is whether there exist
nontrivial (i.e. non constant) solutions. We give a condition for this to
happen in theorem 2, which may be viewed as a generalization of the
well-known fact that, for the pendulum scalar equation

" + asinu =0,

nontrivial oscillations appear only with periods T > 27 / +/a.

The text is organized as follows. In section 2 we present an existence
result for (1) which will be used in the remaining sections and which lies
upon assumptions closely related to those introduced by Ahmad, Lazer
and Paul [1]. In section 3, we give a sufficient condition for the existence
of non-constant T-periodic solutions of (2). Finally in section 4, we give
a theorem on “conjugate points” for (2), in the convex case. We point
out that combining this result with the forementioned background of
critical point theory a simple proof of the existence of a solution, with a
given minimal period T, of (2), can be given. This last result has been
obtained for general subquadratic Hamiltonian systems by Clarke and
Ekeland [5] (see also Ekeland and Hofer [6]). A simple approach in the
case where the potential is even was given by Willem [15]. We use a
device similar to that of Salvatore [13,14]. Since for convex potentials
the Morse-Ekeland index is well-defined, these results may be worked
out by adapting the method described in [6], {7] or [10, chapt.7]. Our
approach is an alternative to this method; basically it differs from it in
the sense that we study the Morse index of a “direct” rather than of a
“dual” action functional.

Since many authors have studied the above mentioned problems it
would become lengthy to quote a complete bibliography. We therefore
confine ourselves to refer in addition to the work of Ambrosetti [2], Am-
brosetti and Mancini [3], Benci, Cappozi and Fortunato [4], Rabinowitz
[12], Girardi and Matzeu [8] and also to the book by Mawhin and Willem
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[10] for a survey. Their references provide a complement of information
in the existing research in this area.

The author is indebted to the referee for suggestions that con-
tributed to improve this paper.

2. EXISTENCE OF A PERIODIC SOLUTION

Suppose that FF € C'(RM,R) and h € C([0,T],R") satisfy the
following assumptions. Here | - | denotes the Euclidean norm of RV.
(A) F(u) = o (|uf*) as |u| > 00 ; .

(B) There exist 7,¢, R > 0 such that whenever v € SV-1, w € RV is
such that |w — v| < ¢, and p > R we have

VF(pw)-v2n.

(©) [T h(t)dt = 0.

Examples: (i) Let ¢ € C}(R,R) be even and set F(u) = ¢(|u).
Then F satisfies (A)-(B) if and only if lim ;|00 9(z)/2* = 0 and
liminf, 4 ¢'(z) > 0.

(ii) If A(u) is a positive definite quadratic form in RN, the function
F(u) = (1 + A(u))!/? satisfies (A)-(B).

(iii) Let @, € C'(R,R) be such that ¢', 4’ are bounded,

lim &f)=0, lim &2:1:):0,
|z]=c0 Z |z|—=00 X

. . f ’ . . !
hmz_lg_oogp (z) >0, llmjinfood) (z) >0,

lim sup ¢'(z) <0, lim sup ¥'(z)<0.
r— —00 T—r—00
Then F(z,y) = ¢(z)+ ¥(y) satisfies (A)-(B) in R?, and the same holds
for any perturbation of the form F(z,y)+ G(z,y) where G € C*(R%,R)
satisfies YG(u) — 0 as |u| — oo.
Assumptions (A), (B) are close to the following, which have been
introduced by Ahmad, Lazer and Paul [1] in studying Dirichlet problems:
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(A*) v F(u) is bounded in RV;
(B*) limy|—moo F(u) =

In this sense our first theorem is a variation on the results of [1] which,
as shown in [10,chap.4] still holds for the periodic boundary condition.

Theorem 1. Let F € C'(R",R) and h € C([0,T};RN) satisfy (A)-
(B)-(C), or (A*)-(B*)-(C). Then the system (1) has at least one solution
u(t) such that w(0) = u(T') and u'(0) = «'(T).

Proof. We need only consider the first set of assumptions, since
the proof in the other case is well known (cf. [10]). Throughout the
paper we shall make use of the functional

J(u) = /0 (I";P — F(u) + ht)- )

(where - denotes the scalar product of RV) which is well-defined in the
Hilbert space H: = {u € H(0,T;R"Y) : u(0) = u(T)}. Moreover
J € CY(H},R). We shall obtain a critical point of J by means of the
saddle-point theorem of Rabinowitz [11]. By well-known arguments,
such a critical point is a solution of class C? of (1) as in the statement of
the theorem. We now verify the hypotheses of the saddle-point theorem
with respect to the direct sum decomposition H} = RN @ H where RN
is identified with the subspace of constant functlons and H consists of

those u € H} such that fo u dt = 0. Namely, we must show that:

(i) J is bounded from below in H;
(ii) lim|c|__,°°J(c) =-0ifce€ RN;
(iii) J satisfies the Palais-Smale condition.
Proof of (i). This is a straightforward consequence of the fact that for

any € > 0 we can find C > 0 such that F(u) < €|u|? + C for all u € RV,
together with the Wirtinger inequality

472

T T .
T |u|?dt < / |u'|*dt, u € H,
0
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and the hypothesis (C).

Proof of (ii). It obviously suffices to show that F(c) — 400 as |¢| = oo
in RVN. Now if c € RV, |¢| > R, let d = Mc/|c| and write

l —
F(¢)- F(d) = |c—d| /0 VF(d+t(c-d))- lz—_—jldt.

Assumption (B) implies F(c) > 17|c —d| + K, where K = min{F(z) :
|z| = M}, and (ii) follows.

Proof of (iii). Let (u,) be a sequence in H} such that J(u,)is bounded
and J'(u,) — 0. Consider the decomposition u, = a, + w, where
a, € RN, w, € H. Given € > 0 there exists C; > 0 such that

Iwn|2 T 2
5 + hw, )dt < ¢ |un|“dt + Cy
0 0

T
< €Tlan|* + e/ |wa|?dt + C;.
0

Then if || || denotes a norm in H} and C; are constants independent on
n we obtain

lwa||? < €Calan|® + Cs. 3)

We claim that |ay| is bounded. If this is not the case, then along
some subsequence (still denoted a,) the preceeding inequality implies
|lwn||/lan] — 0. Now let z,(t) = wn(t)/|a,|- We obtain

Un(t) = |an|(vn + zn(1)) (4)

where v, = a,/|ayn| and z,(t) — 0 uniformly in [0, T]. We may suppose
that v, — v in $V-1. Since

T
(=" (tn), ) = /o VF(un(t)) - v dt,
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(B), (4) and Fatou’s lemma allow us to conclude that

lim ini;O(—J'(un),v) > Tn >0,

a contradiction which proves the claim. By virtue of (3), un(t) is
bounded in H}. By standard results, (u,) contains a convergent subse-
quence. The proof is complete. B

3. AUTONOMOUS SYSTEMS

We now turn to the autonomous system (2). We suppose that F is
C? and still satisfies (A)-(B). Theorem 1 is now a triviality since F' has
a minimum in R, and each critical point of F is a T-periodic solution
of (2) for any T > 0.

Let us introduce the following definition and notations. GivenT > 0
and a critical point @ of F, we say that @ is T'—admzissible if the spectrum
o(F"(4)) does not contain numbers of the form 4n’7?/T?(n € Z). f @ is

a T- admissible critical point of F', we accordingly number the eigenvalues
of F'(u) as

M(E) £ -+ S A(B) < 0 < A (B) £ -+ < An(2)

(so that k is the index of % as a critical point of F) and denote by
n = n(@) the greatest integer with the property 4nx2/T? < Agy1(R),
provided that k < N.

For the statement of the next theorem we also include the condition:

(C*) There exists R > 0 such that 7F(u) # 0 if |[u| > R.
Theorem 2. Let F € C*(RM,R) satisfy (A)-(B) or (A*)-(B*)-(C*)

and suppose that each critical point of F is T-admissible. If for each
such critical point % one of the following conditions is satisfied

(:) (N-k)+2n(N-k)>N
(i) (N — k) 4+ 2n(N — k) < N and An(2) < 4(n + 1)*22/T?

then (2) has a non-constant T-periodic solution.

Remark. (a) (i) always holds at a local minimum provided n =
n(#) > 1. (ii) always holds at a local maximum. In R? each critical
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point of index 1 satisfies (i) or (ii). If k = N, n is undefined but we take
2n(N - k) = 0.

(b) If F has only one critical point % (a minimum) the theorem asserts
that there exists a T-periodic non-constant solution provided that T >
27!'\/ /\1 (ﬁ)

Proof. Since each critical point of F is T-admissible, it is nonde-
generate; assumption (B) or assumption (C*) thus implies that the set
of critical points of F is finite. On the other hand the second derivative
of J at @ is the quadratic form

T
J"(@)(v) = / (102 = F*(@)v - v)dt, v € Hb.
0
Since the linear system
'+ F'(@)v =0

has no nontrivial T-periodic solution, J"(%) is nondegenerate. On the
other hand the Morse index of % as a critical point of J (that is the
index of J"(@)) is (see [10],chap.9) no smaller than (N — k) + 2n(N — k),
with equality if n = n(@) satisfies An(%) < 4(n + 1)2#%/T2. It follows
that if either (i) or (ii) holds, the Morse index of % is different from N.

Assume that (2) has no solution distinct from the critical points of
F. Then lemma 1.1 in [9] is applicable and it implies the existence of a
critical point of J with Morse index N, a contradiction. This ends the
proof. ®

Remark. Theorem 2 may be proved by using Morse inequalities
instead of explicit resource to lemma 1.1. in [9]. In fact, assume that the
set of critical points of J coincides with that of F,let ¢; < ... < ¢, be the
distinct critical values of J and choose a < ¢; such that a < inf{J(u) :
u € H}. Let D be a closed disk centered at the origin in RN such that
its boundary S is contained in J¢, and choose b > maz{c,, mazpJ}.
Then we have a commutative diagram of homomorphisms
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Hn(D,S) — Hn-1(S)
in] ) Lin
Hn(Jb,J®) — Hyn_1(J%)

where the homology groups are taken over the real numbers and the
vertical arrows are induced by inclusions. (H denotes reduced homol-
ogy.) The arguments in the proof of lemma 1.1. of [9] show that
jn # 0; since Oy is an isomorphism it follows that Hn(J® J%) # 0.
If my = my(Jb, J2) is the number of critical points of J with index N
it follows that my > dimHn(J%,J%) > 1, a contradiction with (i)-(ii).
Thus we see that the saddle-point theorem geometrical setting might
be replaced by the more general condition that for some regular value
a of J we have § C J° and that this inclusion induces a nontrivial
homomorphism jn in homology.

4. CONJUGATE POINTS. SOLUTIONS WITH GIVEN
MINIMAL PERIOD.

In this section we assume that F' is convex. More precisely we
introduce the following assumption
(D) F € C3(RN,R) and F"(@) is positive definite for each @ € RN.

In the sequel we shall use the following form of a theorem of Benci
and Fortunato. See Salvatore [13] for a more general statement and
proof.

Theorem 3. Let X be a Hilbert space, 8y a given positive number
and {as : |6] < 8o} a family of continuous, quadratic forms such that

(i) for each & there exist ms > 0 and a weakly sequentially continu-
ous quadratic form bs such that as + msd;s is a inner product equivalent
to the one given in X.

(it) there exists v > 0 such that

d
—|  as(z,z) < —v||z|)? Vz € Xp
dé |,
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where Xo = {u € X : aop(u,v) =0Vv e X}
(4ii) there exists M > 0 such that

las(z,y) — ao(z,y)| < Méllz]| |[y]l, Y=,y € X.

Then there exists 6; > 0 such that whenever —§; < £ <0< 7 < §; we
have

index of a, = index of ag + dim X,
indez of ag = index of ap. W

Now let 4(t) be a non constant solution of (3) with period T > 0.
The linear system

2"+ F"(u(t))z=0 (5)
has the nontrivial solution z = @'(t).

We say that a number S € (0,7] is conjugate to 0 with respect to % if
and only if (5) admits a nontrivial S-periodic solution. The multiplicity
of S as a point conjugate to 0 is, by definition, the dimension of the
subspace of S-periodic solutions to (5).

By performing the change of independent variable t = (§/T)r we
may reformulate the above definition as follows: § is conjugate to 0 with
respect to @ if and only if the system

@/ + Fas(rp =0, 3s()=5(37).  (6)

admits a nontrivial T-periodic solution v(7), the multiplicity of S as
a conjugate of 0 being the dimension of the subspace formed by such
solutions. Let us define a function m : (0,7] — Nj by setting m(S) =
index in H} of the quadratic form

Qs(v) = /OT [(T2/S2) [V = F"(@s)v- v)] dr.
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Let us remark that Q7 = J"(%), so that m(T) is the Morse index of @
as a critical point of J. The study of the function m will be based on
theorem 3. We proceed to show that the family {Qs+s}, where |8} is
small, satisfies the hypotheses of that theorem.

Lemma 1. Let F satisfy (D). Then given S € (0,7 there ezists
k > 0 such that, for any T -periodic solution v(T) of (5):

d

Tl < - 2
7 6=OQS+§(U) < —K||

Remark. Since the space of solutions of (6) is finite-dimensional
the choice of the norm for v is irrelevant.

Proof. We have

, T ?PF
Qs+6(v) / [ (S+6)3| vt - Eax ;02 ;0

( (S + J ))ﬁk(s; JT)U,'(T)UJ‘(T)] dr =

- [ - - s5eh D e
“Jo (S+06)3 S+46 + 6 T £~ 9z; ax,azk

(ﬁs+a<r))a's+5,k(r)v.-(r)w(r)] dr

so that

d Tr or? ,, 7 *PFr
dé 6=0Q5+5(v)‘/0 [" '5_3|'”[ -gg;““_—“‘aziazjaxk(us)us,kvevj]dr.

In order to compute the triple sum let us note that (6) implies

0*F
" . 2y — (W =
52 dr ('U )+ E dz. 3%31. A Ao (8s)Us,Viv; +2i2j dz.0; (@s)viv; =0
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and on account of (6) again the last summand equals —(27%/5%)v' - v",
whence

l|2 v - ‘U”),

OF l
Z 0z;0z 0z (2s)ts yviv; = 52 dr( v

‘)v

T 2T2 12 d 112 "
| asa= [ |- Zowr - Tordwr -0 on]ar

T? T
= —(/ —2J'|%dr - [T(Iv']2 —-v- v”)] +
S3\ Jo 0

T
+ / (W']* = v- v")dr)
0

-z ([v’(T)I’ ~o(T) -v"(T))

3
- -5 (w@r + Sras@nm u).

Therefore the lemma follows from the facts that F' is positive definite
and that the expression (|v'(T)|? + a|v(T)|?)!/?, where a > 0, is a norm
in the space of solutions of (6). =

Lemma 2. Let S € (0,T] and 6o > 0 be given, so that |6p| < S/2.
Then there exists M > 0 so that

1@s45(z,9) — @s(z,9)| < MI8] |zl llyll, =,y € HE, 18] < |bol-

Proof. We have

Qs+s(z,y) — Qs(z,y) =

T T2 ! ! T2 [ ! (-~ ¢ =
/0 S1as YTy = (F"(#s4s5) — F'(us))z - y|dr.
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There exists C > 0 so that

T? T?
(S+6)2 8%

Tl (T T
“5(5+0) \§+6° 5

< Clé|

if |6] < 8o. On the other hand, the (%, )-entry of the matrix
F"(’l'l,s...,s) - F"(ﬁs) is

) ()
8.’1:,-6:::,- u T az,-az,- u T -

T 2 823311 az (u(f))uk(g)

for some £ in the interval with end points (S/T)7 and ((S + 6)/T)r.
Then there exists C; > 0 such that (denoting by | | a norm in the space
of N x N matrices)

Cl T

|F"(#s45) — F'(@s)| < = 7~ 18l-

Hence
T Cr
@svaa) - Qs(ll <18 [ (Cle! -1+ Blle-ol)ar
<|8| M ||zl [lgll =
where M = max(C,C1).

Lemma 3. If § > 0 is sufficiently small we have m(S) = N

Proof. Since Qs is negative definite in the subspace R, it follows
that m(Qs) > N for all S € (0,T]. However, if b > 0 is such that
F"(g(r)) < b for all T € [0,T] it turns out that

T
Qs(v) 2 /o [(T?/8H)'|* - blv|?]dt.



A Note on Nontrivial Periodic Solutions of Dynamical .... 191

Now the quadratic form in the right-hand side is positive definite in )
whenever b < 472/52, as follows from the Wirtinger inequality. Thus
clearly m(S) = N for these valuesof §. ®

Following a pattern similar to that of Salvatore [13,14] in order to
study minimality for some wave equations, we can now establish:

Theorem 4. Let F € C3(RM,R) be such that F"(u) is positive
definite for all u € RN and @ = @(t) a non constant T-periodic solution
of (2). Then the Morse indez of i as a critical point of J is given by

m(Qr) =7+ N

where v is the count of conjugate points to 0 in (0,T) with respect to i,
each one taken as many times as its multiplicity.

Proof. According to Theorem 3 and Lemmas 1 and 2, the integer
valued function § — m(Qs) is increasing and left continuous; it has a
discontinuity at a point .S if and only if S is conjugate to 0 with respect
to i, its jump being given by the multiplicity of S as a conjugate point.
The theorem follows from these remarks together with Lemma 3. ®

We illustrate the use of this theorem on conjugate points by giving
a proof of a version for (2) of a theorem of Clarke and Ekeland [5] (see
also [6,2]), still using the theory of Lazer and Solimini [9].

When F" is positive definite, F' can have only one critical point.
We therefore suppose that the only critical point of F is the origin and
we let 0 < A\; < --- < AN be the eigenvalues of F"'(0).

Theorem 5. Assume that F satisfies (A),(B),(D). Then if T >
27 /v/A1, (2) has at least one solution with minimal period T

Proof. The hypothesis T > 27 /+/A; clearly implies that the Morse
index of 0 as a critical point of J is at least 3N. By Theorem 2.4 in [9]
we conclude that J has a (non constant) critical point #(t) with Morse
index < N. Suppose that the minimal period of @(t) is T/m, where
m € N. Then there exist at least m — 1 conjugate points to 0 in (0,7).
Theorem 4 implies N > m — 1 + N. Therefore m = 1 and the proof is
complete. ®H
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