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On Strongly Stable Approximations

F. ARANDIGA and V. CASELLES !

ABSTRACT. In this paper we prove that the convergence of (T — T, )T¥
to zero in operator norm (plus some technical conditions) is a sufficient condi-
tion for T}, to be a strongly stable approximation to T', thus extending some
previous results existing in the literature.

1. INTRODUCTION

Let T be a bounded linear operator on a complex Banach space
X and A be an isolated nonzero eigenvalue of T with finite algebraic
multiplicity. Let T;, be a sequence of bounded linear operators on X.
In this paper we give sufficient conditions under which T, is a strongly
stable approximation of 7" at A. This work is motivated by recent results
of M. Ahues [1], R. Bouldin [4] and M. Thambar Nair [10]. Our effort is
directed to establish a minimal set of assumptions to guarantee that 7,
is a strongly stable approximation of 7" and A in the spirit of the above
mentioned works.

1 Partially supported by D.G.I.C.Y.T. project PS90-0271.
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2. PRELIMINARIES AND STATEMENT OF THE MAIN
RESULT

In the sequel let X be a complex Banach space and let £(X) be
the space of bounded linear operators on X. The spectrum of 7', i.e.
the set of z € C such that 2] — T is not invertible in £(X) will be
denoted by o(T). If z € p(T) := C ~ o(T), the resolvent set, R(2,T) :=
(21 = T)™1 € L(X).

A € o(T) is a Riesz point of o(T) if A is a pole of the resolvent
R(z,T) with a residuum P = 31 f.. R(z,T)dz of finite rank (T is a curve
on the complex plane around A containing A as the only singularity of
R(z,T)). The Riesz points of o(T') are the isolated eigenvalues of T with
finite algebraic multiplicity. If A € o(T') is not a Riesz point of o(T"), we
write A € 0s5(T).

Let us explain an ultrapower construction introduced by S. Berbe-
rian which is used in spectral theory ([9] V.1) Let us fix an ultrafilter &
on N containing the Frechet filter. The ultrapower of X with respect to
U, denoted by Xy, or simply by X is defined by £°(X)/Cy(X) where

€2(X) 1= {(en)u : @n € X, sup [lanll < +o0}
n

and
Cu= {(2n) € £2(X) : lim|lzal| = 0).

Operators on X can be lifted to operators on X by Tz = Tz )u,
e X, T e L(X) in such a way that o(T) = o(T), ([9], Theorem
V.1.4). The approximate point spectrum of T is converted into the
point spectrum of T ([9], Theorem. V.1.4). Now, we recall the following
result from [6].

Theorem 2.1. Let T € L(X). Let 0,,0(T) the exterior boundary
of a(T') (= the boundary of the unbounded connected component of p(T)).

Then 0w0(T)N 0ess(T) = Ouoo(T)N{z € C: dim Ker(z—T) is
infinite }.

This result means that the eigenspace associated to a Riesz point on
the exterior boundary of o(T’) is contained in X and cannot be enlarged
by going to X.



On Strongly Stable Approximations 209
The following definitions are taken from [7].

Definition 2.1. LetT, T, € L(X) n =1,2,.... The stable con-
vergence of T, to T, denoted by T, > T, means that:

1.Tpz - Tz in X forallz € X

2. 3M >0, AN € N such thatVn > N, T;1 € L(X) and ||T; || <
M.

Definition 2.2. Let T,T, € L(X) n = 1,2,.... Let A be a Riesz
point of o(T) of algebraic multiplicity m. We say that T, is strongly
stable convergent to T at A and denote it by T, — T at A if there
ezists a closed Jordan curve T C p(T) around A such that A is the only
spectral point of T inside I' and such that

. To—2-T-2z forallzeT

2. dim P,X = m for n large enough, where P, is the spectral
projection associated with o(T,) N A (A denotes the set of points z € C
inside T').

Here one should mention that if T, — z — T — z, Vz € T, then for
some N = N(T') € N and n > N, o(T,) N A is an spectral set of o(T},)
and we may define P, = 5% [ R(z,T)dz ([7] p. 231,232).

The strong stability of T;, at A is a sufficient condition for the conver-
gence of the eigenvalues of T), inside I with preservation of the algebraic
multiplicities ([7] Theorem 6.7).

Let us recall the results of M. Ahues [1], R. Bouldin [4] and M.
Thambar Nair [10] mentioned in the introduction.

Let T,T,, € £(X) and let us suppose that

() Thz — Tz forall z € X.
(1) |(T = Tw)Tn|| — 0 as n —> +o0.

In [1], Ahues proved that if T € £(X) is a .compact operator sat-
isfying (I) and (II) and A # 0 is an eigenvalue of T, then T, 33 T at
A
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Then R. Bouldin [4] eliminated the compacness of T' supposing that
A # 0 is a Riesz point of ¢(T) and adding the assumption

(IID) ||T(T — T)|| — 0 si n —> +oo.

Later, M. Thambar Nair [10] proved that if T and T, € L£(X)
satisfy (I), (II), A # 0 is a Riesz point of o(T) and one of the following
assumptions

(IV) (T - Tn)T|| — 0

(V) ”Tn(T - Tn)” —0

(VI) 3N € N such that Vo > N T, is compact

(VII) 3N € N such that Vo > N T — T, is compact holds, then
T, =5 T at A

Our purpose is to prove the following result.
Theorem 2.2. Let T,T, € L(X), n =1,2,... be such that:

1. The — Tz forallz € X

2. |(T — Tn)TE|| — 0 if n — 400, for some k € N
and let A € 0,0(T), A # 0, be a Riesz point of o(T). Then,
T, =5 T at A

Thus, the assumption that A € 0.,0(T) (which we believe of no
harm in practice), permits us to economize the set of assumptions in the
previous results.

An interesting consequence of Theorem 2.2 is:
Theorem 2.3. Let T,T, € L(X), n =1,2,... be such that:

1. Tpx — Tx forallz € X
2. |(T — T,)T¥|| — 0 as n — +00, for some k € N

and let A € 0,,0(T), A # 0, be a Riesz point of o(T) of algebraic
multiplicity m and indez v < m. Then, for some circle I' of radius
T > 0 around A, there are exactly m eigenvalues of T, inside I' (counted
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according to their multiplicities) and zf on={2€0(T):|z-Al <}
then
max |z = Al” £ C ||Tn — T|x(T,5

where X (T, \) is the spectral subspace of X associated to A and ||.|| x(r,»
denotes the operator norm restricted to X (T, )).

Now, we go directly into the proof of Theorem 2.2.

3. PROOF OF THE MAIN RESULT

First of all we recall the following result proved by M. Thamban
Nair [10]. We include its proof here for the sake of completeness.

Proposition 3.1. Let T,T, € L(X), n = 1,2,... and let A # 0
be a Riesz point of o(T). Let T be a closed Jordan curve around A
separating A from o(T) ~ {A}. Suppose that:

1. Toe — Tz forallz € X

2. |(T = Tn)T¥|| — 0 as n — +00, for some k € N
8 Th—2—>T-2z VzeT.

Then T, = T at A.

Proof. Let

=3 / R(z,T)dz
and for some N = N(T')and all » > N,

1
Pn = %AR(Z,Tn)dZ.

The result will follow if we prove that || (P — P,)P || — 0 and
|| (P"Pn)Pn ” — 0.

Since

R(2,T) - R(z,T,) = R(z,T,)(T — T»)R(2,T) =
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= R(z, T)(T - Tn)R(z7 Tﬂv)’
then o

1 .

(P - Pn)P = %LR(Z,Tn)(T - Tn)R(Z,T)PdZ
1

(P = Po)Po= 5= /r R(z, T)T — T,)R(z,T,)Padz.

Since T, — 2 — T —zV¥z €T, then for some N = N(T)e N

sup ||R(z,Tn)ll < +o0 (1)
SN
([7], Cor. 5.2). It follows that for some M > 0, ||(P — P,)P|| <
M||(T — T»)P||. Now since Toz — Tz for all z € X and P is a
projection of finite rank, ||(T—T,)P|| — 0. Hence ||(P - P,)P|| — 0.

In the same way, ||(P — Pp)Py|| < M||(T - T,)P,|| for some M > 0.
Now

(T~ To)Pa = 5 /]F (T — Ta)R(2,Ts)dz

and using T R(2,T,,) = zR(2,Tn) — I,
(T = T,)P, = L/(T—T NTaR(z,To) + DNE
n - 27['1: T n n r+n z .

Since A # 0, we may suppose without loss of generality that 0 is not
inside T'. Then [ %2 =0 and

1 dz
(T-Tn)P, = 3 /F(T - Tn)TnR(z,Tn)7.
Proceeding inductively,

1 k dz
(T~ Ta)Pa = o /r (T - TTER(: T) 2.
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Using assumption (2) and (1) it follows that ||(T —T,)P,|| — 0. Hence
||(P — P,)P,|| — 0. The proof follows in a standard way: it is easy to
see that the gap between X, = P,X and Xo = PX ([8],p. 197 for the
definition of gap), denoted by y(X,,Xo) does not exceed

maz{||(P — Pn)PI|,[|[(P — Pn)Pull}.

From ||(P, — P)P||,||(Pn — P)Pyn|} — 0 it follows that y(X,, Xo) < 1
for n large enough. According to ([8], p. 200 Cor. 2.6) this implies that
dimX, = dimX, and the proposition is proved (see [4], p. 8).

Lemma 3.1. Let T,T,,, n =1,2,... and A be as in Theorem 2.2.
Let Ay, € 8oo0(Ty) be such that \, — M. Then, there erists ng € N
such that \,, is a Riesz point of o(T,), Vn > ng.

Proof. Let F, = Ker(A, — fn) Suppose that dim F,, = +oo for
all n € I, I C N infinite. Without loss of generality I = N. Let

2 (2(F,)
F= Cu(F,)

= {(Bu)u: Bw € Fn Vnb.

Then dim F = 00 ([5], Theorem 3.1). Let v Pe F b= (Vn)u # 0 and
%, € F,. Hence Tyd, = Andn. Since HT"+l TT’°|| — 0 it follows
that R

AT = (AR5 ), = (T4, )y = AFT%.

But A # 0, hence 79 = A3. Thus  C Ker(A — 7). Then

dim Ker(A — T) = +o0o. By Theorem 2.1, A cannot be a Riesz point of
o(T). This contradiction proves that for some ng € N and all n > no
dim Ker(A— Tn) < 400. Again by Theorem 2.1 Vn > ng, A, is a Riesz
point of o(T7,).

Lemma 3.2. Let T,T,, n = 1,2,... and A be as Theorem 2.2.
Then, there exist ng € N, p* > 0 such that for all n > ng, o(Tp) N
B(\, p*) consists of a finite number of Riesz points of o(T,), which do
not accumulate on dB(A, p*).
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Proof. Since A € 8,,0(T) is a Riesz point of o(T), there exists
a curve vy : [0,400] — C such that y(0) = A, y(4+00) = oo and
¥(]0,+00[) C p(T). For each § > 0 let

Vs:= {z€C: dist(2,7(]0,+00[)) < 6}.

Notice that for some 6 > 0, Vs, N o(T) = {A}. Write V = Vj,. Let
p > 0 and let V3, := B(A,p)NV and V3, be the complement of V3, in
V. Then V = Vj, U V;,. Without loss of generality, we suppose that
0 ¢ V. The proof proceeds in a series of claims.

Claim 1. Vp > 0, p < &, 3n} € N such that Vn > n}, o(T,) N
Va2, = 0.

Otherwise, there exists p > 0, p < 6o such that for each n €
N 3n' > n and a point A, € o(Ty) N V,,. Since Ty is uniformly
bounded, {A,/} is a bounded sequence. Call {),} again as {A,}. With-
out loss of generality we suppose that A\, — u € V, p- Now it is easy
to check that u € o(T). In fact we can take A\, € 0x0(T,). Hence
TZn = AnZy for some Z, € X, |[Zn|| = 1. Then

Metlg = THz, = TTFz, = MT,2,.

Thus T,,Z, = AnZn. Hence f(in)u = u(Z,)u. Therefore p € G’(T) =
o(T), a contradiction since V3, N o(T) = .

Claim 2. 3p €]0, po[, Ine € N such that Vn > ng, o(T,) N B(\,p)
contains only a finite number of points.

Otherwise: Vp €]0,p0[, Yn € N, 3n' > n such that o(Tx/ )N B(A,p)
contains an infinite number of points. Using claim 1, we construct se-
quences p;,n;, such that p;41 < pi, pi — 0, n; < Bi41, 7y — +00
such that

- 0(Ty,) N B(A, pi) contains an infinite number of points and
- 0(To) N Vap, = 0 for all o > n;

Notice that this implies that the approximated point spectrum of
in B(XA,pi) (= Ao(Ty;) N B(A,p;)) contains an infinite number of
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points. Let A, € Ao(Ty,) N B(A,pi) be an accumulation point. Then,
dim Ker(An, — Tn,) = 0o (Theorem 2.1 above). Let
F,, = Ker(A,, — Ty,). As usual we prove that

£2(Fx,)

- —Q.
CalF) € Ker(A-T)

F

It

Hence N
dim Ker(X—T) = oo,

a contradiction. Thus, claim 2 is proved.

Claim 3. 3p* > 0(p* < p), Ing € N, ng > ng such that Vo >
ng, 0(Tn) N B(A,p*) contains only a finite number of Riesz points of
o(Ty).

Otherwise: Vp* > 0(p* < p), Vng > no exists n’ > nj such that
o(Tw) N B(A, p*) contains points which are not Riesz points of o(Ty).
Inductively and using claims 1 and 2 above we construct sequences
Pr. L 0, ni T 400, Ap; € 0o0(Ty;) N B(A, py,.) where Ay, is not a Riesz
point of o(T,,). This contradicts Lemma 3.1.

Finally, let A, € o(T) N B(A,p*), An — p. Without loss of
generality p* is such that o(T) N B(\,p*) = {A\}. Now, it is easy to
prove that g = A. The lemma is proved.

Remark. To prove Theorem 2.2 the full strength of Lemma 3.2
above is not needed. In spite of it, we consider it interesting in itself to
be included here.

Finally let us state without proof the well known lemma:

Lemma 3.3. ([3] Proposition 2.1) Let T € L(X) be such that for
"~ some constant M > 0

lI(z = T)z|| > M||z|| VzeX,VzeK
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where K is compact subset of C. Let T,, € L(X) be such that for some
k€N, ||(T - T.)TF|| — 0. Then, IM; > 0 and ny € N such that

I(z = Tn)all 2 Ma|lz|]] Ve € X, Vz€ K, Vn 2 no.

Proof of Theorem 2.2. Being I' = dB(),p*), with p* as in
Lemma 3.2, let us prove that T,,—z — T—z, ¥z € I. Then, Proposition
3.1 will do the rest. The only thing to be checked is that for any z €
[, there exists M(z) > 0, no(z) € N such that R(z,T,) exists and
[|R(2,Tn)|| £ M(z), Vn > no(z). But this is inmediate in view of
Lemmas 3.2 and 3.3 above.
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