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Shape Theory of Maps

Zvonko CERIN

ABSTRACT. We shall describe a modification of homotopy theory of maps
which we call shape theory of maps. This is accomplished by constructing the
shape category of maps HM?®. The category HM? is built using multi-valued
functions. Its objects are maps of topological spaces while it’s morphisms are
homotopy classes of collections of pairs of multi-valued functions which we
call multi-binets. Various authors have previously given other descriptions of
shape categories of maps. Our description is intrinsic in the sense that we
do not use any outside objects. It is a version of the author’s extension to
arbitrary topological spaces of Sanjurjo’s approach to shape theory via small
multi-valued functions adapted to maps.

1. INTRODUCTION

It is quite often in topology that a concept that was introduced
for spaces is later also considered for maps. An example relevant to this
paper is provided by the classical homotopy category H on the one hand
and the homotopy category of maps H® from E. H. Spanier’s book on
algebraic topology [10] on the other. The objects of H are topological
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spaces and morphisms are homotopy classes of maps between them while
the objects of H® are maps of topological spaces and morphisms are
homotopy classes of map pairs between them. In this way we can do
homotopy theory of maps and talk about contractible maps, homotopy
type of maps, and other notions from homotopy theory transferring them
from spaces to maps.

The classical homotopy theory has been modified by the introduc-
tion of shape theory. The modification was invented by K. Borsuk [3]
with the desire to handle more successfully spaces with bad local prop-
erties. The new improved homotopy theory that he named shape theory
agrees with the old on spaces with nice local properties, for example
on the absolute neighbourhood retracts. The key idea in Borsuk’s ap-
proach was to replace homotopy classes of maps with homotopy classes
of sequences of maps that he calls fundamental sequences.

The aim of this paper is to define shape theory for maps of topologi-
cal spaces. In other words, we shall describe a shape category of maps
H M?® whose objects are maps of topological spaces and whose morphisms
will be homotopy classes of pairs of collections of multi-valued functions
that we call multi-binets. Therefore, our approach can be regarded as
a version for maps of the author’s description [4] of the shape category
Sh which is an extension of Sanjurjo’s method [9] from compact metric
spaces to arbitrary topological spaces.

Our construction extends shape theory from spaces to maps be-
cause the full subcategory of HM® with maps of topological spaces into
a single-element space as objects is naturally isomorphic to the shape
category Sh [8].

The following features of our description of shape category of maps
deserve to be emphasized. It is intrinsic in the sense that we do not use
any outside objects (like ANR’s, embeddings, resolutions, and expan-
sions). It is simple and geometric because it is modelled on the original
Borsuk’s description of shape theory of compact metric spaces [3]. The
only difficult part is in defining the composition of morphisms.

There are already two previous attempts to define shape theory of
maps in the same generality as ours. In [6], David Edwards and Patricia
McAuley use both Cech and Vietoris constructions to approximate a
map f: X — Y by a tower of maps between CW-complexes. Each map
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gives in this way an object of a suitable pro-category. The study of the
shape properties of a map is thus reduced to the study of this associated
pro-object. This approach is useful because one can apply homotopy
invariant functors (like homology, cohomology, and homotopy groups
functors) to get various pro-groups which reflect the geometry of the
map.

The second attempt is similar and is due to V.H. Baladze. In [2],
he exhibits an outline without any proofs of a shape theory of maps
of arbitrary topological spaces following the inverse limit approach to
shape theory based on the method of ANR-resolutions, i.e., resolutions
of spaces consisting of absolute neighbourhood retracts. In this way a
greater flexibility is achieved because we are no longer forced to use Cech
and Vietoris constructions that are plagued by certain inconveniences.
However, it is extremely complicated to find an ANR(Mpqps)-expansion
for a map, which is a prerequisite for a study of shape properties of the
map by this method. Both [6] and [2] belong to the so called outer
shape theory in which shape of spaces and maps is investigated with the
help of some outside objects like expansions into absolute neighbourhood
retracts.

The natural questions of relationship of our shape theory of maps
with those mentioned above are deferred to another paper. As an illus-
tration of our method, we shall discuss the problem of identifying maps
on which shape theory of maps and homotopy theory of maps coincide.
Some interesting classes of maps which we call internally movable, inter-
nally calm, and calm provide an unexpected solution to this question.
We also give some applications of our approach to identify equivalences
in the shape category of maps and maps with trivial shape.

Here is a brief outline of our organization. The principal goal of the
paper is to describe with all details the category HM 5. Homotopy theory
of maps which we shall be improving is recalled first. Since our method
relies on the idea of approximating a map by a generalized sequence (net
over a cofinite directed set) of multi-valued functions with smaller and
smaller images of points, we present facts on normal covers 1] which
we use as a mean of measuring size of sets and from which our sets of
indices for these nets are build. Connection between indexing sets of our
nets provide increasing functions which are normally constructed by a
well-known simple Lemma 1 (see [8, p. 9]).
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Then we define multi-valued functions and multi-valued o-functions
(i.e. a multi-valued function of size less than a normal cover o of the
codomain). Our multi-valued functions must satisfy only the condition
that they associate a non-empty subset of the codomain to every point
of the domain.

The next step is to define all of these notions for maps. This is
done by considering pairs and replacing exact commutativity with an
approximate form of it up to a normal cover in the codomain. Since all
concepts dealing with maps usually involve pairs we take the convention
that they include prefix “bi” in their names. Thus maps themselves
are also called bispaces and we define notions of bimap, multi-valued
bifunction, normal bicover, and others. The multi-valued o-functions
for maps (or multi-valued o-bifunctions) lead naturally to the relation of
o-bihomotopy. The important approximate transitivity of this relation
is established in Lemma 2. In the first reading one can skip it’s tedious
proof with many cases provided one is familiar with Dold’s powerful
lemma (see [5, p. 358]) on which our argument depends and which is
used later over and over again.

After these preliminaries, we follow closely Borsuk’s method from
[3]. The role of fundamental sequences play multi-binets, i.e., multi-nets
for maps. We define the relation of bihomotopy for multi-binets and take
as objects of our category HM® maps and as morphisms bihomotopy
classes of multi-binets. In order to prove that this is indeed a category
we must describe how one composes morphisms and one must prove that
this composition is associative. This is done in Claims 1, 2, and 3 and
Theorem 1. The details are quite easy once the method of proof for
relations (4) and (5) is understood. It would be unreal to expect that
in the complete generality which we consider here one can get the shape
category of maps without any effort.

The rest of the paper presents some applications of our approach to
shape theory of maps. They are included with intention to convince the
reader that the new method will be useful for some kind of problems.
We intend to undertake further study of the category HM®. This paper
is only the beginning and it gives basic facts about this approach to
shape theory for maps.
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2. HOMOTOPY THEORY OF MAPS

Since shape theory is just a modification of homotopy theory, we
begin by recalling some notions from homotopy theory of maps.

We follow the convention that a map is a short name for a con-
tinuous single-valued function. In order to get closer analogies in our
constructions, we shall also use bispace as another name for a map.
More formally, a bispace is a triple (f, F', F) consisting of topological
spaces F' and F and a continuous single-valued function f: F' — F.
Since we shall scrupulously follow the notation that a map is denoted by
a small letter, it’s domain and codomain with the same capital letter,
and all domains have in addition a prime, we shall drop F’ and F from
our notation and use f to denote a bispace (f, F’, F). However, more
important for our exposition will be the fact that a presence of a pre-
fix “bi” and either a superscript or a subscript “b” indicates something
referring to maps. Thus, z,X°®, and bispace X are all notations for the
map (z,X’',X). With these convention enforced consistently we shall
see that most results from [4] carry over to maps. In all statements and
proofs in {4] we must only put bi and b at proper places to get shape
theory for maps.

Following [10, p. 414], we now consider the category S°® whose
objects are bispaces (i.e., maps f : F' — F between topological spaces)
and whose morphisms will be called bimaps. Let F and G be bispaces.
By a bimap from F into G we mean a pair (a’,a) of maps a’ : F' — G’
and a : F — G such that goa’ = e o f. In other words we require that
the following diagram commutes.

a
F'— G
fl lg
F — G
a

Just as with bispaces, we shall also simplify our notation for bimaps.
Thus “.. bimap a: F — G...” means that we have a bimap (d’,a)
between bispaces F and G. The composition of bimaps (a',a) and (b',b)
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is a bimap (b’ 0 @', bo a) and the identity bimap 1x on a bispace X is
a bimap (1x/,1x), where 1x is the identity map on the space X.

The definition of bihomotopy involves the bicylinder F x I of a
bispace F. Let I denote the unit closed segment and let I denote also
the bispace (17,I,I), where 1; : I — I is the identity map. The
bicylinder is a special case of the biproduct defined for bispaces F' and
G to be the bispace (f x g, F' x G', F x G).

Let p and ¢ be bimaps between bispaces X and Y. We shall say
that p and g are bihomotopic and -write p ~; ¢ provided there is a bimap
m: X xI — Y called bihomotopy such that m'(a’,0) = p'(a’) and
m/(a',1) = ¢'(a’) for every @’ € X' and m(a,0) = p(a) and m(a,1) =
g(a) for every a € X. The relation of bihomotopy is an equivalence
relation and we denote the bihomotopy class of a bimap p by [p]s. Since
the bihomotopy relation ~ is also compatible with the composition of
bimaps, one can define the composition of bihomotopy classes of bimaps
by composing representatives, i.e., [p]s o [q]ls = [p o g]s. In this way
one obtains the bihomotopy category H®, whose objects are topological
bispaces and whose morphisms are bihomotopy classes of bimaps. There
is a bihomotopy functor H® from S® to H® which keeps the objects fixed
and takes a bimap p into it’s bihomotopy class [p]s.

3. NORMAL COVERS AND MULTI-VALUED FUNCTIONS

In this section we shall introduce notions and results on normal
covers and multi-valued functions that are required for our theory.

Let Cov(Y) denote the collection of all normal covers of a topo-
logical space Y [1]. With respect to the refinement relation > the set
Cov(Y) is a directed set. Two normal covers ¢ and 7 of Y are equiv-
alent provided o > 7 and 7 > ¢. In order to simplify our notation we
denote a normal cover and it’s equivalence class by the same symbol.
Consequently, Cov(Y) also stands for the associated quotient set.

If o is a normal cover of a space Y, let o be the collection of all
normal covers of Y which refine ¢ while o* denotes the set of all normal
covers T of Y such that the star st(7) of T refines ¢. Similarly, for a
natural number n, o*" denotes the set of all normal covers 7 of Y such
that the n-th star st”(r) of 7 refines o.
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Let Inc(Y) denote the collection of all finite subsets ¢ of Cov(Y')
which have a unique (with respect to the refinement relation) maxi-
mal element which we denote by [c]. The notation Inc¢(Y') comes from
“indices of covers”. The set Inc(Y) will be used as indexing set for
multi-nets into Y. We consider Inc(Y) ordered by the inclusion rela-
tion and regard Cov(Y) as a subset of single-element subsets of Cov(Y').
Notice that Inc(Y') is a cofinite directed set.

We shall repeatedly use the following lemma (see [8, p. 9]). Let us
agree that an increasing function f.: P — P of a partially ordered set
(P, <) into itself is a function which satisfies z < f(z) for every z € P
and ¢ < y in P implies f(z) < f(y). In the case when the domain
and the codomain of a function f are different, the first requirement is
dropped.

Lemma 1. Let {fi,..., fn} be functions from a cofinite directed set
(M, <) into a directed set (L,<). Then there is an increasing function
g: M — L such that g(z) > fi(z),..., fa(z) for everyz € M.

Let X and Y be topological spaces. By a multi-valued function
F: X —» Y we mean a rule which associates a non-empty subset F(z)
of Y to every point z of X.

For our approach to shape theory the following notion of size for
multi-valued functions will play the most important role.

Let F: X — Y be a multi-valued function and let & € Cov(X)
and o € Cov(Y). We shall say that F is a multi-valued (o, 0)-function
provided for every A € a there is an S4 € o with F(4) C §4. On
the other hand, F is a multi-valued o-function provided there is an a €
Cov(X) such that F is a multi-valued (e, o)-function.

Also important will be the following concept of closeness for two
multi-valued functions.

Let F,G : X — Y be multi-valued functions, let ¢ € Cov(Y),
and let a € Cov(X). We shall say that F' and G are (a,0)-close and

we write F (e0) G provided for every A in a there is an S4 € o with
F(A)UG(A) C Sa.
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4. NORMAL BICOVERS AND MULTI-VALUED BIFUNC-
TIONS

In this section we shall define versions for maps of some notions
from the previous section.

By a normal bicover of a bispace X we mean a pair (¢’,0), where
o' is a normal cover of the space X’ and o is a normal cover of the
space X such that o' refines the cover z=1(0). We shall again make a
simplification of our notation by dropping o' so that normal bicovers
are denoted by small Greek letters which name a normal cover of the
codomain while the part in the domain space has the prime.

Let Cov®(Y) denote the collection of all normal bicovers of a bispace
Y. We order Cov’(Y) by the refinement relation > defined by o > 7
if and only if ¢ > 7 and ¢’ > 7' for normal bicovers o and 7 of Y.
With respect to the relation > the set Cov®(Y) is a directed set. Two
normal bicovers o and 7 of a bispace Y are equivalent provided o > 7
and 7 > 0. In order to simplify our notation we denote a normal bicover
and it’s equivalence class by the same symbol. Consequently, Cov*(Y)
also stands for the associated quotient set.

If o is a normal bicover of a bispace Y, let o be the collection of
all normal bicovers of Y which refine o while o* denotes the set of all
normal bicovers 7 of Y such that the star st(7) of T refines 0. Here,
we define the star st(o) of a normal bicover (¢',0) as a normal bicover
(st(a’), st(o)). Similarly, for a natural number n,0*" denotes the set of
all normal bicovers 7 of Y such that the n-th star st”(7) of 7 refines o.

Let Y be a bispace. Let Inc®(Y) denote the collection of all finite
subsets ¢ of Cov®(Y') which have a unique (with respect to the refinement
relation) maximal element which we denote by [c]. We consider Inc’(Y)
ordered by the inclusion relation and regard Cov®(Y') as a subset a single-
element subsets of Cov®(Y). Notice that Inc®(Y) is a cofinite directed
set.

For our approach to shape theory of maps the following class of
multi-valued bifunctions will play the most important role.

Let X and Y be bispaces. By a multi-valued bifunction from X into
Y we mean a pair (A’, A) of multi-valued functions A’ : X' — Y’ and
A: X — Y. We shall drop A’ and use A to denote the multi-valued
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bifunction (A’; A). Of course, we shall utilize the functional notation
A: X — Y to indicate that A is a multi-valued bifunction between
bispaces X and Y. The multi-valued bifunctions A and B are composed
by the rule BoA = (B'0 A’, Bo A) and multiplied by the rule Ax B =
(A’ x B', Ax B).

Let X and Y be bispaces. Let a and 3 be normal bicovers of X and
Y. By a multi-valued (o, B)-bifunction from X into Y we mean a multi-
valued bifunction A : X — Y such that A’ is a multi-valued (o', 8')-
function, A is a multi-valued (a, 8)-function and the compositions yo A’
and Aoz are (o', )-close.

On the other hand, A is a multi-valued B-bifunction provided there
is a normal bicover & € Cov®(X) such that A is a multi-valued (o, 8)-
bifunction.

5. THE RELATION OF ¢-BIHOMOTOPY

Now we a ready to introduce an important notion of o-bihomotopy
for multi-valued bifunctions of bispaces. We shall also prove in Lemma
2 a useful technical result.

Let F and G be multi-valued bifunctions between bispaces X and
Y and let o be a normal bicover of Y. We shall say that F and G
are o-bthomotopic and write F < G provided there is a multi-valued
o-bifunction H from the bicylinder X X I into Y .such that F'(a’) =
H'(a',0) and G'(a") = H'(a',1) for every ¢’ € X' and F(a) = H(a,0)
and G(a) = H(a,1) for every a € X. We shall say that H is a o-
bihomotopy that joins F and G or that it realizes the relation (or o-

bihomotopy) F ~ G.

The following lemma is crucial because it provides an adequate
substitute for the transitivity of the relation of o-bihomotopy.

Lemma 2. Let F,G, and H be multi-valued bifunctions between
bispaces X and Y. Let o be a normal bicover of Y and let T € o*. If

FébG andG’zth, thenFe?bH.

Proof. By assumption there are normal bicovers a and 8 of the
bicylinder X x I, a multi-valued (a,7)-bifunction K : X xI — Y,
and a multi-valued (8, 7)-bifunction L : X X I — Y so that F'(a') =
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K'(d',0), G'(a') = K'(a',1) = L'(a’,0), and H'(a") = L'(a’,1), for
every a' € X', and F(a) = K(a,0), G(a) = K(a,1), G(a) = L(a,0),
and L(a,1) = H(a) for every a € X. Let a normal bicover vy of X x I
be a common refinement of a and 8. Observe first that K and L are
both multi-valued (7, 7)-bifunctions. Define a multi-valued bifunction
M: X xI—Y by the rule

K'(a',2t), deX,0<t<1/2
M'(d,t) =

L'(a,2t—1), d €X' 1/2<t<1,

and

K (a,2t), a€X,0<t<1/2
M(a,t) =
L(a,2t—1), a€ X, 1/2<t<1,

Since F'(a') = M'(a’,0) and H'(a") = M'(d',1) for every o’ € X',
and F(a) = M(a,0) and H(a) = M(a,1) for every a € X, it remains to
see that M is a multi-valued o-bifunction.

By [5, p 358), there are normal covers ¢’ and § of X' and X and
functions 7' : &' — {2,3,4,...} and r: § — {2, 3 4,...} such that the
set D' x D is contained in a member Cps ; of v’ for every D' € §' and
every i = 1,...,7'D' — 1, where D} = [r'D"r’D'] (i=1,...,7D'-1)
and the set D X D; is contained in a member Cp ; of v for every D € §
and every 1 =1,...,7D — 1, where D; —[TD,TD](z_l .,rD—1).

We can assume that §' refines z71(6). Then for every D' € &
there is a D(D') € & such that D’ is a subset of z7}(D(D')). Let
sD' = (r'D")(rD(D")) for every D' € §' and let
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and similarly

o) i=0

Ej =} (gpa3a), i=1,...,4sD' -3,

)

(1-5%:,1], i=4sD' -2.

The collections
e ={D'XE!|D'€é, i=0,...,4sD' - 2}

and
e={DxE;|De€é,i=0,1,...,4rD -2}

are normal covers of X' x I and X x I. Moreover, we claim that the
pair (¢’,€) is a normal bicover of the bicylinder X x I.

Indeed, let T = D' x E; be a member of ¢'. Since the set R =
D x E, where D = D(D') and E = Ej, is a member of ¢ for every
j = 0,1,...47E — 2, the preimage (z X 1;)"(R) is a set z~}(D) X E,
and D' C z~1(D), it suffices to show that there exists an index j such
that E! C E;.

When ¢ = 0, then we can take j = 0 because

5= [0.5:57) = [0 mm5y) € 0 3p) = B

For a similar reason, when ¢ = 4sD’ — 2, then we can take j = 4rD — 2.
Finally, when i€ {1 .,4sD' — 3}, the required inclusion will hold

provided 55 > 75 a.nd f% < £5. Thus, the index j must satisfy
conditions L,’% -2<j<L 7 But if we write 1 = »'D'm + n, for

integers m and n with 0 < n < r’D’ then these conditions become
j>m-—2+4 242 ,D, and j < m+ ,D,. It is clear that j = m always
satisfies them. Another possibility is j = m — 1 in some situations.
Therefore, E! C E,, and our claim has been verified.
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In order to prove that M is a multi-valued o-bifunction, we shall
show that it is a multi-valued (£, 0)-bifunction. In other words, we shall
prove that

(1) M' is a multi-valued (¢',0')-function,
(2) M is a multi-valued (¢, o)-function, and
(3) the compositions y o (M') and M o (z X 1) are (¢',0)-close.

Add (1). The argument for (1) is similar to the argument for (2)
given below. Of course, the case (2) is notationally simpler because there
are no primes.

Add (2). Let E = D x E; be a member of . We must find an
SE € o such that M(F) C Sg.

Case I (: = 2k for 0 < k < rD —1). Then E; = Ejy is below 1/2 so
that we get M(E) = K(D x 2E;)= K(D x D) C K(Cpx) CT C SEg,
where the open set T is a member of 7 which we obtain with respect to
Cp,r from the fact that K is a multi-valued (v, 7)-function and Sg is a
member of o which contains T'.

Case II (i = 2k for rD < k < 2rD — 1). Then E; = E; is above
1/2 so that we get M(E) = L(D x (2E; — 1)) C L(D X Dx-rp) C
L(Cpk-rp) C T C Sg, where the open set T is a member of 7 which
we obtain with respect to Cp x—rp from the fact that L is a multi-valued
(v, 7)-function, and Sg is a member of o which contains the set 7'

Case III (i = 2k+1 for 0 < k < 7D —2). Then E; = Ejj4 is below
1/2 so that we get

M(E)= K(D x 2E;) C K(D X (Dg U Dgy1))
C K(Cp,k) U K(CD,k.H) CThuT, C Sg,

where the sets 77 and T, are members of 7 which we obtain with respect
to Cp,x and Cp k+1 from the fact that K is a (7, 7)-function, and Sg is a

member of ¢ which contains the union T3 UT;. Such an Sg exists because
D x {k/rD} C CpxNCp k41 so that § # K(D x {k/rD}) C Ty N T5.

Case IV (¢ = 2k + 1 for rD < k < 2rD — 1). This case is analogous
to the case III. This time E; is above 1/2 and we must use L instead of
K.
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Case V (i =2k +1and k = 7D — 1). Then E; = E~' U Et, where

E- = (2251 1] and E* = [L, 2ZB41) 50 that we get

M(E)=K(D x2E~)U L(D x (2E+ -1))c K(Cp,rp-1)UL(Cp,)
CTyuT,,

where T; and T; are members of 7 which we obtain with respect to
Cp,rp-1 and Cp, from the fact that K and L are multi-valued (v,7)-
functions. :

Observe that K(D x {1}) = G(D) C Ty and L(D x {0}) = G(D) C
T,. We conclude that T3 N T, # 0 so that there is a member Sg of o
which contains both T; and T5. It follows that M(E) C Sg.

Add (3). Let E' = D' x E] be a member of ¢/. We must find a
member Sg of o such that both M o (z x 1;)(E') and yo (M')(E") are
contained in the set Sgr.

Once again we shall distinguish five cases considered above.

Case I (i = 2k for 0 < k < r'D' —1). Let A’ be a member of o
which contains the set Cp, . Since K o(z x 1;) and yo(K') are (o, 7)-
close, there is a member 7' of 7 which contains both K o (z x 17)(4’)
and y o (K')(A'). Since 7 is a star-refinement of o, there is an Sg € o
with ' C Sg. Our choices imply

yo(M')(E")Cyo(K')Cpix) Cyo(K')A)
and

Mo (z x 17)(E") C M(z(D') x E}) = K(z(D') x 2E})
C Ko(z x17) (D' x D) C Ko (z x 15)(A")

because E' C Cpi, C A'. It follows that M o (z x 17)(E’) and y o
(M")(E') are both subsets of Sgr.

Case II (1 = 2k for r'D' < k < 2r'D' — 1). This is a similar to the
previous case. We have to deal with L instead of with K.

Case III (i =2k + 1 for 0 < k < ' D’ — 2). The set yo (M')(E') is
now a subset of the union of sets y o (K')(Cp, ;) and y o (K')(Cps g41)-
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Let A} and Aj be members of o' which contain Cp, , and Cpy iy,
respectlvely Smce Ko(z x 1) and yo (K') are (o, T) close, there are
members Ty and Ty of 7 such that T} contains K o (z X 1;5)(A}) and
y o (K')(A}) while T, contains K o (z x 17)(Aj}) and yo (K")(AL). The
sets T} and T both contain the set y o (K’ )(D’ X { 7 D" }) It follows
that some member Sg' of o contains their union. This is the required
open set.

Case IV. This is similar to the previous case.

Case V. The set y o (M')(E') is a subset of the union of sets y o
(K")(Chr pipi_y) and yo (L')(Cpy ;). Let A} be a member of o and let
B}, be a member of 8’ such that Al contains C’D, 'pr—y and Bj contains
Cp - Since Ko(zx1y) is (@, 7)-close to yo(K') and Lo(zx 1) is (8',7)-
close to yo(L'), there are members T; and T of 7 such that 7 contains
Ko(z x 11)(A}) and yo (K')(A}) while T, contains Lo(z x 17)(B;) and
yo (L')(B}). But, the sets T3 and T; both contain the non-empty set

yo (K') (D' x {1}) =y o (G')(D') = yo (L)(D' x {0}),

so that some member Sg of o contains their union. It follows that
Mo (z x 11)(E') and y o (M')(E') are both subsets of Sgr. ®

Since we shall be using [5, p. 358] quite often, for a space Y and a
normal cover a of the product Y X I, we let D(Y,a) denote all normal
covers 3 of Y such that some stacked normal cover over [ refines a.

6. MULTI-BINETS

The following two definitions correspond to Borsuk’s definitions of
fundamental sequence and homotopy for fundamental sequences [3].

Let X and Y be bispaces. By a multi-binet from X into Y we shall
mean a collection ¢ = {F. | ¢ € Inc®(Y)} of multi-valued bifunctions
F,: X — Y such that for every ¢ € Cov®(Y) there is a ¢ € Inc®(Y)
with Fjy '_gb F, for every d > ¢. We use functional notation ¢ : X - Y
to indicate that ¢ is a multi-binet from X into Y. Let M®(X,Y) denote
all multi-binets ¢ : X — Y from X into Y.

Multi-binets ¢ = {F.} and ¥ = {G.} between bispaces X and Y
are said to be bihomotopic and we write ¢ ~, 1 provided for every

o € Cov®(Y) there is a ¢ € Inc®(Y) such that Fy ~y G for every d > c.
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It follows from Lemma 2 that the relation of bihomotopy is an
equivalence relation on the set M®(X,Y). The bihomotopy class of a
multi-binet ¢ is denoted by [¢], and the set of all bihomotopy classes
by HMY(X,Y).

7. COMPOSITION OF BIHOMOTOPY CLASSES OF
MULTI-BINETS

Our principal goal now is to define a composition for bihomotopy
classes of multi-binets and to establish it’s associativity. This is the
only tricky part in setting up the category HM®. Our idea is to as-
sociate to every multi-binet ¢ : X — Y two increasing functions
¢ : Inc®(Y) - Incb(Y) and ¢* : Incb(Y) — Inc®(X). The first
function associates to an index ¢ € Inc’(Y) of the family ¢ = {F.} a
much larger index ¢(c) in Inc’(Y) such that Fy and F, are joined by
a multi-valued (¢(c,d, €),[c])-bihomotopy for a suitable normal bicover
¢(c,d,e) of the bicylinder X x I whenever d,e > ¢(c). The second
function associates to a ¢ € Inc®(Y) an element ¢*(c) of Inc®(X) such
that the normal bicover [¢*(c)] refines some normal bicover of X which
" we get from the normal bicover ¢(c,¢(c),¢(c)) by [5, p. 358]. This
is a rough description of these functions and now we proceed with the
details.

Let X and Y be bispaces. Let ¢ = {Fc}cemet(yy: X — Y bea
multi-binet. Let ¢ : Inc®(Y) — Incb(Y) be an increasing function such

that for every ¢ € Inc®(Y) the relation d,e > ¢(c) implies the relation
Fy g]b F,, where [c] denotes the unique maximal element of c.
Let C, = {(c,d,€)| ¢ € Inc’(Y),d,e > ¢(c)}. Then C, is a subset
of
Inc®(Y) x Inc®(Y) x Inc’(Y)

that becomes a cofinite directed set when we define that (¢,d,e) >
(c',d',e') if and only if ¢ > ¢/, d > d, and e > ¢ for (¢,d,e) and
(c,d',e')in C,.

We shall use the same notation ¢ for an increasing function ¢ :

C, — Cov®(X x I) such that Fy and F, are joined by a multi-valued
(¢(c,d,e),[c])-bihomotopy whenever (c,d,e) € C,,.

Let  : C, — Inc’(X) be an increasing function such that the
normal cover [(@(c,d,e))’] belongs to the set D(X,(¢(c,d,e))’) and the
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normal cover [@(c,d,e)] belongs to the set D(X,¢(c,d,e)) for every
(c,d,e) € Cy,.

Claim 1. There is an increasing function ¢* : Inc’(Y) — Inc®(X)
such that

(1) ¢*(c) 2 @(c, ¢(c), p(c)) for every c € Inc*(Y), and

(2) ¢* is cofinal in @, i.e., for every (c,d,e) € C, there is an
m € Inc®(Y) with ¢*(m) > ¢(c,d,e).

Proof. Let D = {@(c,d,e) | (c,d,e) € Cy}.

If Inc®(Y) is a finite set, then D is a finite collection of elements
of Inc®(X). Let a € Inc®(X) be greater than all members of D. Let
¢*: Inc®(Y) — Inc®(X) be a constant function into a.

If Inc®(Y) is an infinite set, then the cardinality of D does not ex-
ceed the cardinality of Inc(Y). Hence, there is a surjection g : I neb(Y)
— D. Let ¢*: Incb(Y) — Inc?(X) be an increasing function such that

¢*(c) > g(c), @(e,p(c),p(c)) for every c € Inc®(Y). =

The above discussion shows that every multi-binet ¢ : X — Y
determines two increasing functions ¢ : Inc®(Y) — Inc®(Y) and ¢* :
Inc®(Y) — Inc’(X). With the help of these functions we shall define
the composition of bihomotopy classes of multi-binets as follows.

Let X,Y, and Z be bispaces and let ¢ = {F.} : X — Y and
Y = {G,} : Y — Z be multi-binets. Let x = {H,}, where H, =
G y(s) © Fo(yr(s)) for every s € Inct(Z). Observe that each H, is a
multi-valued bifunction because the composition of two multi-valued
bifunctions is a multi-valued bifunction.

Claim 2. The collection x is a multi-binet from X into Z.

Proof. Let 0 € Cov®(Z). We must find a u € Inc®(Z) such that
H, éb H, for every v > u. (3)

Let 7 € 0*? and £ € 7*. Let u = {£} € Inc®(Z).
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Consider an index v > u. We shall find an index e € Inc(Y) so

that .
Hu ad ) Gq OFe, (4)
GyoF, =, GpoF,, (5)
and s
GpoFe ~y Hy, (6)

where p = ¥(u), ¢ = ¥(v), a = ¢¥*(u), b = ¢¥*(v), ¢ = ¢(a), and
= (b). Repeated use of Lemma 2 will give (3) from the relations
(4)-(6)-

Add (4). Since (v,q,9) € C,, we see that there is a multi-valued
(a,€)-bihomotopy K : Y x I — Z such that a = ¥(v,y,y), Ky =
G,, K1 =G, Ky = G,, and K, = G,. Let s = 9(v,q,q) and 7 = [s].
Observe that 7' € D(Y’',a') and 7 € D(Y,a). We claim that G, is a
multi-valued (7,§)-bifunction from Y into Z. In other words, we must
show that

(a) Gy is a multi-valued (7', £’)-function,
(b) G, is a multi-valued (7,§)-function,
(c) the compositions z 0 G, and G o y are (7', £)-close.

Add (a). Let P’ be a member of n'. Then there is a t > 0 such
that the product P’ x [0,t) lies in a member A’ of a’. Since K’ is an
(o/,&')-function, there is a T' € €' such that K'(A") C T'. It follows
that G (P') = Ky(P') = K'(P'x{0}) C K'(A") C T' which proves that
Gy is a (n',¢')-function.

Add (b). The proof of (b) is analogous to the proof for (a) given
above.

Add (c). Since the compositions K o(yXx 17) and zo(K') are (o, §)-
close so that their restrictions K o (y X 11)|y'x {0} and z o (K')|y' (0}
on Y’ x {0} will be (&|y'x0},&)-close. But, if we identify the space Y’
with Y’ x {0} in Y’ x I we see that the normal cover 7' refines o' |y,
and that the restrictions above are y o G, and z 0 Gy. Hence, z 0 G} and
yo G, are (7', £)-close.

Once we know that G4 is a multi-valued (7, §£)-bifunction, we see
that it suffices to take e > d because then F; and F, are joined by
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a multi-valued (¢, [b])-bihomotopy L : X x I — Y, for some normal
bicover ¢ of X x I, so that G, o L is a multi-valued (¢, 7)-bihomotopy
which realizes the relation (4).

Indeed, by construction, the normal bicover [b] refines = (i.e., [b)'
refines ©' and [b] refines 7) so that G}, o L' is a multi-valued (¢',¢')-
function and G40 L is a multi-valued (¢, £)-function. On the other hand,
since the compositions y o (L') and L o (z X 1;) are (¢',[b])-close, the
function G, is a multi-valued (7, £)-bifunction, and the normal cover [b]
refines 7, it follows that G4 0y o (L') and G40 Lo (z x 1y) are (¢',§)-
close. But, the compositions G, 0y and z o Gy, are (7',{)-close, L' is a
multi-valued (¢’,[b])’)-bifunction, and the normal cover [b]' refines 7' so
that Ggoyo (L') and z0 G} o (L') are (&', £)-close. Since the cover st(¢)
refines the cover 7, we conclude that the compositions z o0 G} o (L') and
Gqo Lo(z x 11) are (€', 7)-close.

Add (5). Since (u,p,q) € Cy, it follows that G and G, are joined
~ by a multi-valued (e, £)-bihomotopy K : Y x I — Z, where a denotes
the normal bicover ¥(u,p,q) of Y x I. Choose normal covers ' of Y’
and B of Y and functions r’ : 8’ — {2,3,4,...}and r: 8 — {2,3,4,...}
such that sets B’ X [i3-, £ | and B x [i5, 2], where B' € 8', B €
B,i=1,...,7”B'"—1,and j = 1,...,7B — 1 are contained in a member
Al ; of @' and in a member Ap ; of a, respectively. We can assume
that B refines y~1(8). It follows that a pair (4’, ) is a normal bicover
of the bispace Y. Let k = {8} and e = ¢(k). Since (k,e,e) € C,, the
function F, is a multi-valued (=, 3)-bifunction from X into Y for some
normal bicover 7 of X. It follows that for every P' € =, every P € m,
and every B’ € (' there is a B}, from ' and a [B'], a Bp/, and a Bp
in B such that B’ C y~1([B']), F{(P') C B}, Fe(P) C Bp, and Bp
contains both y o F!(P') and F, o z(P').

For every P' € n' and every P € «, let s'P' = r'Bp,7Bpir[Bpi],

{02 (25 1)

U{(;;F;,zs—j‘-;) ‘ i=1,...,s'P’_3}’
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v ={[0.5,) (1)

T 1+2y\ .

U{(E,-T—E;) | 1= 1,...,TBP—3}.
Put o ={P'xN'|P'e€n', Nevp}landp={PxN|Per, N€
vp}. Observe that o' and g are normal covers of X’ x I and X x I,
respectively. Let w be a normal bicover of X X I such that the normal
cover w' refines o’ and the normal cover w refines . We claim that
the composition H = K o (F. X 1) is a multi-valued (w, 7)-bihomotopy
which joins G, o F, and G, o F,. Thus, we must show that

and

(a) H' is a multi-valued (w’, 7')-function,
(b) H is a multj-valued (w,7)-function, and
(c) the compositions zo H' and H o (z x 11) are (o', 7')-close.

Add (a). Let S’ be a member of w'. Pick a member R’ = P' X N'
of o' which contains §’, where P’ € n’ and N' € vp,. Then

- H'(S"YC H'(R') = K'(F)(P')x N')C K(Bp x N') C K'(4] ;,,j),'

where j is such that N’ lies is the interior of the segment [;,—11;1—, ;‘,%:2—] .
p! p!

Such an index can surely be found because the lenght of N’ is less than

—g—. Since K' is a multi-valued (e',£')-homotopy, we obtain that the
p!

last set in the chain of inclusions above is a subset of a member of £'.
Hence, H' is a multi-valued (', 7')-function.

Add (b). The proof of (b) is analogous to the proof of (a).

Add (c). Let S’ be a member of w'. Choose sets P',N’, and R’
as above. Observe that the sets y o Fj(P') and Fe o z(P’) both lie in_
a member Bp: of B. Since the length of the segment N' is less than

_rl;p: , the product Bp: x N’ lies in a member Ap,, ; of @, for some

j€{1,...,7Bp: — 1}. This implies that some member T; of { contains
sets A= K(yoF)(P')x N') and B = K(Feoz(P')x N') because K is a
multi-valued (o, &)-function. Notice that B = Ko(F,x 1 )o(zx1)(R’).
On the other hand, the inclusions F!(P') C Bb and By C y~}([Bp:])
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imply that yo FJ(P')x N' C [Bp/] x N' and therefore that A is a subset
of the set D = K([Bpi] X N'). Moreover, since the length of N’ is
less than ;{EI,P—,I, the product L = [Bp,] X N’ lies in a member A[B 1,k
of a for some k € {1,...,7[Bp] — 1}. Hence, some member T of &
contains the set K(L). The inclusion y(Bp ) C [B%:/] now gives that
J = Ko(yx1;)(Bp x N') is a subset of K(L). Once again, since
the length of N' is less than ﬁ,p—,, the set Bp, X N' lies in a member

E'= Ay, ., of o for some m € {1,...,7'Bp,}. We conclude that J is

a subset of K o (y x 17)(E’). Now we use the assumption that z o (K')
and K o(yx 1) are (o/,£)-close to find a member T3 of £ which contains
the sets K o (y X 17)(E') and z o (K')(E'). It remains to observe that
the inclusion F.(P') C Bp, implies

zo(K")o(Fex 11)(R")=zo (K')(F(P')x N') C
z0(K')(Bp: x N') C z o0 (K')(E").

Finally, it follows that the star of T with respect to £, and therefore
also some member of 7, contains sets z o (K') o (F! x 17)(S") and K o
(Fe X 11)0 (:17 X 1[)(5').

Add (6). The proof of (6) is analogous to the proof of (4). m

We now define the composition of bihomotopy classes of multi-
binets by the rule [{G,}] o [{Fc}] = [{Gy(s) © Foo(u=(s)) }]-

Claim 3. The composition of bihomotopy classes of multi-binets is
well-defined.

Proof. Let x = {K.} and A = {L,} be multi-binets bihomotopic to
@ and 9, respectively, and let 4 = {M,}, where M, = = Ly(s) © Kx(r=(s))
for every s € Inc®(Z). We must show that multi-binets x and p are
bihomotopic. In other words, that for every o € Cov®(Z) there is an
s € Inc’(Z) such that

H; <, M, for every t > s. (7



Shape Theory of Maps 141

Let 0 € Cov®(Z). Let 7 € 0** and £ € 7*. Let s = {¢} € Inc®(2).
In order to prove (7), we shall argue that for every t > s we can find
indices e € Inc®(Y) and u € Inc®(Z) such that

H;~ Gpo Fe, (8)
G,oF, ~, GuoF., (9)
GuoF.~y LyoF,, (10)
LyoF,~y L,oK,, (11)
LyoK.~y Lyo K., (12)

Lyo K, ~y M, (13)

where we put p = ¥(t), a = ¥*(t), b = ¢(a), ¢ = A(t), ¢ = A*(%), and
d = k(c). From the relations (8)-(13) with the help of Lemma 2 we shall
get (7).

We shall now describe how big e and u must be chosen for relations
(8), (9), (10), and (11) to hold separately. The relations (12) and (13) are
analogous to relations (9) and (8), respectively. We leave to the reader
the task of making a cumulative choice for e and u which accomplishes
our goal. It is important to notice that u is selected first while e is
selected only once u is already known.

Add (8). We know from the proof of Claim 2 that G, is a multi-
valued (7,&)-bifunction from the bispace Y into the bispace Z, where
7 = [s] and s = 9¥(t,p, p). Since a > s by the property (1) of Claim 1, it
suffices to take e > b.

Add (9). f v > p, then Gp and G, are joined by a multi-valued
(e, €)-bihomotopy K : Y xI — Z, where & = $(u,m,m) and m = ¢(u).
Choose normal covers 8’ of Y’ and 3 of Y and functions ' : ' —
{2,3,4,...}and r: B — {2,3,4,...} such that the sets B’ x [:,;131,, :,LBl,
and B x [%,{i‘}], where B' € '/, Be 3,1 =1,...,7/B' -1, and
j = 1,...,7rB — 1, are contained in a member A, ; of @’ and in a
member Ap ; of o, respectively. We can assume that 3’ refines y~1(8)
so that the pair (4’,8) is a normal bicover of Y. Let £k = {f} and

e > (k). Just as in the proof of (5) we can see that K o (Fe X 1y) is
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a multi-valued 7-bihomotopy joining the left and the right side of the
relation (9).

Add (10). Since multi-binets 3 and A are bihomotopic, there is a
u € Inc’(Z), a normal bicover a of Y x I, and a multi-valued (e, £)-
bihomotopy S : Y X I — Z joining G, and L,. Choose a normal
bicover # and an index e as above. Then S o (F, x 11) is a multi-valued
T-bihomotopy joining compositions which appear in (10).

Add (11). Let v > g. Then L, is a multi-valued (a,&)-bifunction
from Y into Z, where @ = [s], s = A(u,w,w), and w = A(u). Since
multi-binets ¢ and k are bihomotopic, there is an index e € Inc®(Y) so
that F, and K. are joined by a multi-valued a-bihomotopy T« X X I —
Y. The composition L, oT realizes the relation (11). ®

Theorem 1. The composition of bihomotopy classes of multi-binets
is associative.

Proof. Let ¢ = {F.}, ¥ = {G,}, and x = {H,} be multi-binets
from X into Y, from Y into Z, and from Z into W, respectively. Let u =
{M,}, v ={Np},k = {Kp},and A = {L,}, where M, = Gy(5)0Fi(y»(s))
for every s € Inc®(Z) and Np = Hy()0G y(x(p))s Kp = Hy(p)Mu(x* ()5
and L, = N,(p) 0 Fyue(p)), for every p € Inc®(W). We must show that

multi-binets x and A are bihomotopic, i.e., that for every normal bicover
7 € Cov®(W) there is an index p € Inc® (W) such that

K, <y L, for every q > p. (14)

Let 7 € Cov®(W). Let p € 7**, £ € o*,and n€ £*. Let p= {n} €
Inc®(W). In order to prove (14), we shall show that for every ¢ > p we
can find indices e € Inc®(Y) and s € Inc®(Z) such that

K,y HpoGpoF., (15)

HpoGpoF, S, HyoGyoF, (16)
HpoGyoF, S, HyoG,oF,, (17)
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HyoGsoFy Sy NjoFe, (18)

and .
NioF, =y Ly, (19)

where m = x(q), n = ¥(u(x*(q))), k¥ = x(v(q)), and I = v(q). Repeated
use of Lemma 2 will give (14) from the relations (15)-(19).

The method of proof is similar to the proof of Claim 3. We shall
only describe for each of the relations (15)-(19) how large the indices u
and e must be in order that this multi-valued p-bihomotopy holds. An
easy exercise of putting together all these selections is once again left to
the reader. Since relations (18) and (19) are analagous with relations
(16) and (15), respectively, it suffices to consider only relations (15)-(17).

Add (15). Observe that H,, is a multi-valued (8,7)-bifunction,
where 0 = [a], a = x(g,m,m). Let i = x*(q), j = p(i), h=9(j), d =
¥(j,n,n), ¢ = ¥*(j), and w = [d]. Then G, is a multi-valued (w, [5])-
bifunction from Y into Z. Since j > ¢ and 7 > a by the property (1)
from Claim 1, we obtain that [j] refines 8. Let b = ¢(c). If e > b, then
F, and F} are joined by a multi-valued [¢]-bihomotopy P. But, ¢ > d so
that [c] refines w. Hence, H,, 0 G, 0 P is a multi-valued g-bihomotopy
between Kq and Hyp, 0 Gy 0 Fe.

Add (16). As above, Hy, is a multi-valued (8, n)-bifunction from Z
into W. If we take s > n, then (j,n,s) € Cy so that G, and G, are
joined by a multi-valued (c,[j])-bihomotopy Q : 'Y x I — Z, where
a = ¥(j,n,s). But, since ¢ > a, we see that [n] reﬁnes 6. Choose normal

covers B of Y’ and 8 of Y and functions r' : - {2,3,4,...} and
r: B —{2,3,4,...,} such that sets B’ x [17;, T,B,] a.nd B x [’ Bl, =1,

whereB’eﬂ',Beﬂ,z—l ,o'/B'—1,and j = 1,...,7B — 1,
are contained in a member Aj, ; of o' and in a member AB,j of a,
respectively. We can assume that B’ refines y~!(8) so that the pair
(', B) is a normal bicover for the bispace Y. Let g = {8} and e > ¢(g).
Just as in the proofs of (5) and (9), we can see that Hpy 0 Q o (Fe X 11)
realizes the relation (16).

Add (17). Since v(r) > . for every r € Inc®(W), we get k > m so
that (¢,m,k) € Cy and H,, and Hy are joined by a multi-valued (a,n)-
bihomotopy T : Z x I — W, where o = x(q,m,k). Let v = x*(k) and
let s > ¥(v). Then G is a multi-valued ([t], [v])-bifunction from Y into
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Z, where t = (s, %(s),%(s)). Let u = 9*(t) and take e > @(u). The
composition T o ((G, o Fe) X 1j) realizes the relation (17). m

8. THE SHAPE CATEGORY OF MAPS HM?®

For a topological bispace X, let iX = {I,} : X — X be the identity
multi-binet defined by I, = 1x for every a € Inc®(X). It is easy to show
that for every multi-binet ¢ : X — Y, the following relations hold:

[els o [i* ] =[]y = [¥ s © [¢)s-

We can summarize the above with the following theorem which is
the main result of this paper.

Theorem 2. The topological bispaces as objects together with the
bihomotopy classes of multi-binets as morphisms and the composition of
bihomotopy classes form the category HM?®.

There are some natural functors into the category HM?®. First of all,
there is a functor S®: §* — HM? from the category S° of bispaces and
bimaps which leaves the objects unchanged and associates to a bimap
f: X — Y between bispaces X and Y the bihomotopy class [¢], of
the multi-binet ¢ = {F.} : X — Y generated by the bimap f, where
F. = f for every ¢ € Inc®(Y). Then, there is an analogous functor
S : H® —» HM?® from the category H® of bispaces and bihomotopy
classes of bimaps. Finally, there is a functor M® : HM — HM? from the
author’s shape category [4] of spaces and homotopy classes of multi-nets
which associates to a topological space X’ a bispace z : X' — X, where
X is a fixed single-element space, and which associates to a homotopy
class [¢'] of a multi-net ¢’ : X' — Y’ between topological spaces X'
and Y’ the bihomotopy class [¢], of the multi-binet ¢ : X — Y whose
domains part is the multi-net ¢'. The functor M® is a full embedding.
Since in [4] the author proved that the category HM is isomorphic to
the shape category Sh, we get the following corollary.

Corollary 1. Topological spaces X and Y have the same shape
if and only if the maps of X and Y into a single-element space are
equivalent in the category HM®.
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9. SPECIAL MULTI-BINETS

In this section we shall be looking for conditions under which a
given bihomotopy class of multi-binets has a representative of a special
kind. As a corollary of these results we identify a class of bispaces on
which bishape theory and bihomotopy theory coincide.

A bispace X is internally movable provided for every o € Cov®(X)
there is a 7 € Cov®(X) such that every multi-valued 7-bifunction into
X is o-bihomotopic to a bimap.

A bispace X is internally calm provided there is a 0 € Cov®(X)
such that bimaps into X which are o-bihomotopic are bihomotopic.

A bispace X is calm provided there is a 0 € Cov®(X) such that
for every 7 in Cov®(X) there is a g in Cov®(X) with the property that
multi-valued p-bifunctions into X which are o-bihomotopic are also 7-
bihomotopic.

A multi-binet ¢ = {F;}.¢nes(y) from a bispace X into a bispace
Y is regular provided each bifunction F. is a bimap. It is called simple
when there is a bimap f such that f = F, for every c € I ncb(Y).

Theorem 3. If a bispace Y is internally movable, then every multi-
binet ¢ from a bispace X into Y is bihomotopic to a regular multi-binet.

Proof. SinceY is internally movable, for every ¢ € Inc?(Y') there is
a x(c) € [c]* such that every multi-valued x(c)-bifunction into Y is [c]-
bihomotopic to a bimap. Let 0. € x(c)*. Let A: Inc®(Y) — Incb(Y) be
an increasing function such that A(c) > ¢({o.}) for every ¢ € Inc®(Y).
Then F)() is a multi-valued x(c)-bifunction so that we can select a

bimap g.: X — Y with g, [:c]b F(c), for every ¢ € Incb(Y).

In order to verify that ¢ = {g.}.crnes(y) is @ multi-binet from X

into Y, let a 0 € Cov®(Y) be given. Let pu € 0* and put ¢ = {u}. For

every d > ¢ we have g4 ';Ifb Fya) 3‘_\(;? Fye ,_\‘fb g.. Hence, g4 éb g. for

every d > c.

It remains to check that multi-binets ¢ and 1 are bihomotopic. Let
a normal bicover ¢ € Cov®(Y) be given. Let u € o*. Choose an index

co € Inc®(Y) such that Fy =, F, for all d,e > co. Let ¢ > co, {1}
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For every d > ¢, we get gq z#b F)(4) by construction, while F(g) §b Fy
because A(d) > d > cp. Hence, gq ':Zb F, for every d > c. [ ]

Theorem 4. If a bispace Y is both internally movable and calm,
then every multi-binet ¢ into Y is bihomotopic to a simple multi-binet.

Proof. Since Y is calm, there is a normal bicover 7 € Cov*(Y)
such that for every 0 € Cov®(Y) there is a 7 € Cov®(Y) with the
property that y-bihomotopic multi-valued 7-bifunctions into Y are in
fact o-bihomotopic. '

Let 6 € v*. Since the bispace Y is also internally movable, there is
an 7 € 6t such that multi-valued 7-bifunctions into Y are §-bihomotopic
to bimaps. Let ¢ = ¢({n}). Then F, is a multi-valued 7-bifunction so
that it is §-bihomotopic to a bimap g. Let 1 denote the simple multi-
binet determined by the bimap g.

In order to check that ¢ and 4 are bihomotopic, let a normal bicover
o of Y be given. Choose a 7 € Cov®(Y) as above. Since ¢ is a multi-
binet, there is an index d > ¢ such that F, is a multi-valued 7-bifunction

]
for every e > d. Thus, for every e > d we get F, znb F, ~, g. Hence,
Y o
F,~,gsothat Fo~y,g. ®

Theorem 5. Let Y be a internally calm bispace and let ¢ = {f}
and 1 = {g} be simple multi-binets into Y. If p and v are bithomotopic,
then the bimaps f and g are bihomotopic.

Proof. Since the bispace Y is internally calm, there is a ¢ €
Cov®(Y) such that o-bihomotopic bimaps into Y are in fact bihomo-
topic. But, the assumption that the multi-binets ¢ and 4 are bihomo-

topic gives f 2 g. Hence, the bimaps f and g are bihomotopic. ™

The last three theorems imply that the functor S is an isomorphism
of categories when we restrict to bispaces that have the above properties.

Let A denote the collection of all bispaces that are at the same time
internally movable, internally calm, and calm.

Let H% be the full subcategory of H® with objects precisely the
members of the collection A. The category 'HMj" is defined similarly.
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Let TP : HY — H M}, be the restriction of the functor S} to the category
.

Theorem 6. The functor T} is an isomorphism of categories.

Proof. We shall construct a functor Kf : HMY% — HY which
satisfies the relations T} o K} = Id and K} o TP = Id. The functor K}
leaves the objects unchanged and on morphisms it is defined as follows.
Let C be a bihomotopy class of multi-binets between two members X
and Y of A. Let ¢ be a representative of C and let g: X — Y be a
bimap such that the simple multi-binet 1 determined by g is bihomotopic
to . The functor K? associates to C the bihomotopy class of the bimap
g. It follows from the above results that this definition is correct and
that K ,'; has the required properties. W

Corollary 2. On bispaces which are at the same time internally
movable, calm, and internally calm, the bthomotopy theory and the bi-
shape theory coincide.

10. CHARACTERIZATION OF BISHAPE EQUIVALENCES

‘In this section we shall use classes of internally movable and inter-
nally calm bispaces to obtain an analogue for bimaps of G. Kozlowski’s
characterization of shape equivalences in terms of induced functions of
homotopy classes.

* For bispaces X and Y, let [X,Y], denote the set of all bihomotopy
classes of bimaps from X into Y. Every bimap f: X — Y induces for
every bispace Z a set function fg 1 [Y,Z]y — [X,Z], defined by the
rule f#([a]s) = [a o f]s, for every bimap a: Y — Z.

Recall that a morphism ¢ of the bishape category HM? is bishape
left invertible provided there is another bishape morphism % with the
composition 1 o ¢ equal to the identity morphism. The bishape right
invertible morphisms (or shortly bishape dominations) are defined simi-
larly. A bishape morphism is a bishape equivalence iff it is both bishape
left invertible and bishape right invertible. When applied to bimaps this
notions mean that the bishape morphism determined by this bimap has
them.
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The following four theorems are similar to the characterization of
shape equivalences from [7]. We get information on conditions which
imply that functions f;ﬁ induced by a bimap f: X — Y and a bispace
Z are surjections and injections and we get an information on what kind
of bispaces Z one can use.

Theorem 7. If a bimap f : X — Y between topological bispaces
is bishape left invertible, then for every bispace Z which is at the same
time internally movable and internally calm the induced function fg is
a surjection. '

Proof. Let h: X — Z be a bimap. The assumption about the
bispace Z imply the existence of normal bicovers o € Cov®(Z), T € o*,
and pz € 7t such that o-bihomotopic bimaps into Z are bihomotopic and
every multi-valued p-bifunction into Z is 7-bihomotopic to a bimap. Let
0 = h~1(u). Observe that g is a normal bicover of X. Since f is bishape
left invertible, there is a multi-binet ¢ : ¥ — X with ¥ o f bihomotopic
to the identity multi-binet on X. In particular, there is an index a > {p}

in Inc®(X) such that Gpo f 2, 1x, where p = ¥(a). Let d = ¥*(a).

The bifunction G, is a multi-valued ([d], o)-bifunction so that there
is a bimap k : Y — Z which is 7-bihomotopic to the composition hoG)p.
It follows that ko f and h are o-bihomotopic and therefore bihomotopic.
In other words, f& ([k],) = [h],. ™

Theorem 8. If a bimap f : X — Y between topological bispaces
is bishape right invertible, then for every internally calm bispace Z the
induced function f}# s an injection.

Proof. Let h,k: Y — Z be bimaps and assume that f’;([h]b) =
f}*([k]b), i.e., that ho f and k o f are joined by a bihomotopy m :
X xY — Z. Since Z is internally calm, there is a ¢ € Cov®(Z) such
that o-bihomotopic bimaps into Z are bihomotopic. Let u € o*. Let
o be a common refinement of A~1(u) and k~1(u). Let m € p*. Since

- f is a bishape domination, there is a multi-binet ¢ : Y — X with
the composition f o 1) bihomotopic to the identity multi-binet on Y.
Hence, there is a multi-valued 7-bihomotopic joining 1y and f o Gy,
where A = f~1(r), n = {A}, and p = ¥(n).
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Let a € Cov®(X) be such that o' € D(X',(m')"1(¢')) and a €
D(X,m~(p)). Pick an index ¢ > p such that G, is a multi-valued

a-bifunction. Then G, :Ab Gp so that
foG, =y foG, = 1y.

It follows that ho foG, =, h and similarly ko foG, =} k. On the other
hand m o (G4 x 1) is a multi-valued u-bihomotopy joining ko fo G,

and ko f o G,. Hence, h <, k and therefore h ~p k., ®

In order to formulate a partial converse to theorem 7 and for some
other results below we shall need the following notion.

Let P be a class of bispaces. By a P-ezposition of a bispace X we
mean a family {X,}aernes(x) of members of P, a family {p} | a,b €
Inc®(X), a < b} of bimaps p¢ : X, — X, a family {p® | a € Inc®(X)}
of bimaps p® : X — X,, and afamily {J, | a € Inc®(X)} of multi-valued
[a]-bifunctions such that

(1) The relation @ < b in Inc®(X) implies p® =} p§ o p,
(2) For every a € Inc’(X), we have J, o p® '[;]b 1x, and
(3) The relation a < b in Inc®(X) implies J, .[';.llb Ja o pf.

Theorem 9. Let P be a class a bispaces. If a bispace X has a
P-ezposition and a bimap f: X — Y is such that the induced function
fg is a bijection for every Z € P, then f is bishape left invertible.

Proof. By assumption the bispace X has a P-exposition formed by
bispaces X, from P, bimaps pj and p®, and multi-valued [a]-bifunctions
Jo. We shall define a multi-binet ¢ : Y — X such that ¥ o f is
bihomotopic to the identity multi-binet on X.

Let a € Inc®(X). Since the function f}: is a surjection, there
isamap 7 : Y — X, with p® ~, r%0 f. Put G, = J, o 7* and
Y= {Ga}aGI'nc"(X)'
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In order to verify that % is a multi-binet, let a normal bicover o €
Cov®(X) be given. Let r € o* and put a = {r}. For every b > a, we
have

r*ofoyp® oy piop’ ey ppor’of.

Since f}%“ is also an injection, we obtain r® =} pj o rb. It follows that
Gg=J,or* '_3.-(, Jaopgorb sz Jyor® =G,

and therefore G, ~, Gb.

We shall now check that ¥ o f is bihomotopic to %, i.e., that for
every o € Cov®(X) there is an a € Inc®(X) such that Gy o f ~y 1x
for every b > a.

Let o € Cov®(X) and 7 € o*. Put a = {r}. For every b > a, we
get P(b) > ¥(a) > a so that Gy, ) G y(a)- Hence,

G¢(b) o f éb Gw(a) o f = J‘([)(a.) o Tw(a) o f ’_“fb J,p(a) 0p¢(a) '21’-[, 1x.

Thus, G,p(b) of 'gb 1x. n

Theorem 10. Let P and R be classes of bispaces such that each
member of R is both internally movable and internally calm. If a bispace
X has a P-exposition, a bispace Y has an R-ezposition, and a bimap
f: X =Y is such that the function f}ge is a bijection for every Z € P
and an injection for every Z € R, then f is a bishape equivalence.

Proof. First we shall show that for every 0 € Cov®(Y) there is
a1 € Cov®(Y) such that the relation U o f ~y V o f for multi-valued
r-bifunctions U,V : Y — Y implies the relation U <, V.

Let a 0 € Cov’(Y) be given. Let 1 € o* and £ € p*. Put ¢ = {£}.

By assumption the bispace Y has an R-exposition formed by bispaces
Y, from R, bimaps ¢% and ¢%, and multi-valued [d]-bifunctions Kg4.

Since the bispace Y, is internally calm, there is a normal bicover
a of Y, such that a-bihomotopic bimaps into Y, are bihomotopic. Let
B € o* be such that K, : Y, — Y is a multi-valued (5, £)-bifunction.
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Since Y, is also internally movable, there is a normal bicover vy € g%
of Y, with the property that every multi-valued y-bifunction into Y, is
B-bihomotopic to a bimap. Let 7 = (¢°)~!(y).

Let U,V : Y — Y be multi-valued 7-bifunctions and assume that
Uof ~, Vo f. Then ¢°o U and ¢° o V are multi-valued -bifunctions
so that there are bimaps a and b from Y into Y, with a :["b g°oU and

b zeb g° o V. Our choices imply the following chain of relations:

aof'zﬂbq°oUof§bq°oVof§bbof.

It follows that a o f ~} bo f and therefore a ~;, b because f;}t is an
injection. Now, we have

UﬁﬂbKchCOUﬁﬂbKcoaé‘chObé‘choqCOV;bV.

Hence, U zab V.

Now we are ready to prove the theorem. Let 1 be a multi-binet
constructed in the proof of Theorem 9. We shall show that f o ¢ is
bihomotopic to ¥, i.e., that for every o € Cov®(Y) there is an index

a€ Incb(Y) such that f o Gy(e+(b)) éb 1y for every b > a. Since we can
take ¢*(b) = {f~1([b])}, we must prove that f o G ~y 1y for every
b> a, where A(b) = »({f~'([b])})-

Let a 0 € Cov®(Y) be given. Choose a normal bicover 7 of Y with
the property described above. Let ¢ € 7* and put a = {p}. For every

b> a, foGjyp) and ly are multi-valued 7-bifunctions of Y into itself
and

fOGA(b)0f= fOJ)‘(b) OTA(b) Of";bfo.])‘(b) OpA(b) ’;gb f: ].yOf.

It follows that f o G éb ly. B
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11. APPROXIMATE CONTRACTIBILITY OF MAPS AND
TRIVIAL BISHAPE

As an illustration of the new insight offered in shape theory of
maps by approach via multi-binets we will characterize bispaces of trivial
bishape as approximately contractible bispaces.

Let us agree that a bispace T is trivial provided both the codomain
and the domain of T are single-element spaces. A bispace X has trivial
bishape provided it is equivalent in the bishape category HM® to a trivial
bispace. :

As we shall see shortly, bispaces of trivial bishape coincide with
approximately contractible bispaces which we define next. A bispace X
is called approzimately contractible provided for every normal bicover o
of X there is a normal bicover 7 of X such that every two multi-valued
7-bifunctions into X are o-bihomotopic.

Theorem 11. A bispace X is approzimately contractible if and
only if X has trivial bishape.

Proof. (=). Let T be a trivial bispace and let c: X — T be the
obvious bimap. Let a € X and a’ € 27!(a). Define a bimapg: T — X
by g(T) = aand ¢'(T') = a'. Let v: X - Tand ¥: T — X be
simple multi-binets determined by bimaps ¢ and g, respectively. Then
yo 1 = i, In order to see that X and T are bishape equivalent, it
remains to check that 1oy =~ iX, i.e., that goc <, 1x for every normal
bicover o of X.

Let a o € Cov®(X) be given. Since X is approximately contractible,
there is a 7 € Cov®(X) such that multi-valued 7-bifunctions into X are
o-bihomotopic. But, g o ¢ and 1x are both multi-valued 7-bifunctions

of X into itself. Hence, goc <, 1x.

(<=). It suffices to observe that every trivial bispace T is approx-
imately contractible and that approximate contractibility is preserved
under bishape dominations and bishape equivalence. W

Let us call a bimap f: X — Y constant provided both f'(X') and
f(X) are single points (i.e., maps f’ and f are constant). The following
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notion is a version of path-connectedness for maps. A bispace X is path-
connected provided every two constant bimaps into X are bihomotopic.

Theorem 12. If a bispace X has trivial bishape, then every two
bimaps from X into a path-connected bispace which is both internally
movable and internally calm are bihomotopic.

Proof. Let Z be a path-connected bispace which is both internally
movable and internally calm. Let a,b: X — Z be bimaps. Let T
be a trivial bispace. Since X has trivial bishape, the obvious bimap
¢: X — T is a bishape equivalence. It follows from Theorem 7 that
there are bimaps f,g: T — Z witha ~}, focand b ~, goc. But, fand g
are constant bimaps into Z so that f ~, g because Z is path- connected
Hence,a~pb. N

Theorem 13. Let P be a class of path-connected bispaces. If a
bispace X has a P-ezposition and every two bimaps of X into a member
of P are bihomotopic, then X has trivial bishape.

Proof. Let ¢ : X — T be the obvious bimap from X into a trivial
bispace T'. We shall show that ¢ is bishape left invertible. Then X
will be bishape dominated by the approximately contractible bispace T
and will therefore have trivial bishape by Theorem 11. According to
Theorem 9, we must in fact check that the induced function cg is a
bijection for every Z € P.

In order to see that cﬁ is a surjection for every Z € P, let Z be

from P and let f: X — Z be a bimap. Let g: T — Z be a constant
bimap. Then f and g o ¢ are two blmaps of X 1nto Z. By assumption,
they are bihomotopic so that [f]y = cz([g]b) and cb is onto.

Finally, in order to see that c‘g is an injection for every Z € P,

let Z be from P and let f,g : T — Z be bimaps and assume that
c’;([f]b) = cﬁ([g]b), i.e., that foc =} goc. But, the bimaps f and g are
constant bimaps into Z. Since Z is path-connected, we obtain f ~; g
so that cﬁ is indeed one-to-one. ®
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