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On Singular Cut-and-Pastes in the 3-Space
with Applications to Link Theory

Fujitsugu HOSOKAWA and Shin’ichi SUZUKI

ABSTRACT. In the study of surfaces in 3-manifolds, the so-called “cut-
and-paste” of surfaces is frequently used. In this paper, we generalize this
method, in a sense, to singular-surfaces, and as an application, we prove that
two collections of singular-disks in the 3-space R3? which span the same trivial
link are link-homotopic in the upper-half 4-space R3 [0,00) keeping the link
fixed.

Throughout the paper, we work in the piecewise linear category, consist-
ing of simplicial complexes and piecewise linear maps.

1. SINGULAR LOOPS IN A 2-CELL

We denote by X and °X, respectively, the boundary and the inte-
rior of a manifold X. For a subcomplex P in a complex M, by N(P; M)
we denote a regular neighborhood of P in <M, that is, we construct the
second derived of M and take the closed star of P, see [H], [RS].
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We shall say that a submanifold X of a manifold Y is proper iff
XNnaYy =0X.

By R", D™ and S™~! we shall denote the Euclidean n-space, the
standard n-cell and the standard (n — 1)-sphere 8 D™, respectively.

1.1. Definition. (1) Let f : D' - M andg: S' — M be
non-degenerate continuous maps into a manifold M. Then, the images
f(D') = A and g(S') = J will be called a singular-arc (or simply an
arc) and a singular-loop (or simply a loop), respectively. In particular,
A and J will be called a simple arc and a simple loop, respectively, if f
and g are embeddings. The boundary of an arc f(D') = A is the image
F(ODY) of the boundary 8D*, and we denote it by 6*A.

(2) An arc A in a manifold M is said to be proper iff ANOF = §*A.
A loop J in a manifold M is said to be proper iff J C °F.

(3) Let B = ByU---UB, be a finite union of proper arcs and proper
loops in a 2-manifold F2. A point p in B is said to be a singular-point
of multiplicity k, iff the number of the preimages of p is k with k > 2.

We shall say that B is normal, iff

(i) B has only a finite number of singular-points of multiplicity 2,
and

(i) at every singular point of B, B crosses transversally.

1.2. Lemma. Let J; = J1;U-- 'UJlm(l) and Jp = JyU-- 'Usz(zg
be finite unions of proper loops in a simply connected 2-manifold F
such that Jy N J2 = 0. Then, there ezists j € {1,---,m(1)} or k €
{1,---,m(2)} so that J,; is contractible in F? — J, or Jyy is contractible
in F2 — 7,.

Proof. We may assume that 73 U J; is polygonal and normal.

Let R = {Ry,---,R,} be the set of regions of F? — °N(J;; F?). It
will be noticed that Ry U---UR, D J>.

If there exist a loop, say Jak, of J2, and a simply connected region,
say Ry, of R with Jox C Ry, then Jyy is contractible in Ry, C F? — 7,
and so the proof is complete.
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So, we may assume that there exist some non-simply connected
regions, say @Q1,---,Q,, of R,sothat Q;U---UQ, D Jp. Let C1U---U
Cs = Q1 U ---UBQ, be the disjoint union of simple loops on F?, and
let Ay, be the 2-cell on F? with A, = Cp(h = 1,---,3). We choose
an innermost 2-cell, say 41, in {Ay,---,A,}, i.e. there is no other Ay
in A;. Since A; is not belong to R and C; = 0A; is the one of the
boundary curves 8@ U - -- U 8Q,, it holds that Ay N J; # 0, and since
A\; does not contain any Q1,--,Q, and Jo C @1 U ---U @, it holds
that A; N J; = 0. Now, any Jy; of Jy with Jy; N A; # 0 is contractible
in /A1 C F? — 7,, and so the proof is complete. ®

In the same way as that Lemma 1.2. we have the following:

1.3. Theorem. Let J; = J; U---U J,-mg) be a finite union of
proper loops in a simply connected 2-manifold F* fori=1,---,u, such
that J; N Jn = O for i # h. Then, there exist j € {1,--,pu} and
ke {l,---,m(5)} so that J;y is contractible in F* — |J J..

i#

Proof. We prove this by induction on the number p of the classes
J;. The case of u = 1 is trivial, and the case p = 2 is Lemma 1.2. So,
we assume that g > 3 and Theorem is true for 4 — 1. We may assume
that every J; is polygonal and normal.

Let R = {Ry, -+, R,} be the set of regions of F? — °N(Jy; F?). It
will be noted that Ry U---UR, D b U---UJ,.

If there exist a loop, say Jjk, of J; and a simply connected region,
say Ry, of R with J;x C Rp, then J/ = JiN Ry (i = 2,---,u) is a
finite union of loops in the simply connected region R, satisfying the
conditions of Theorem. By induction hypothesis, we have a loop, say
Jik, of J] C Jj so that Jjy is contractible in R — ¢U J! c F? - 9 Ti,

i#1,j i#j
and so the proof is complete.

So, we may assume that there exist some non-simply connected
regions, say Q1,---,@q of R, so that Q1 U---UQq D JoU---U Jp.
Now, the proof of this case, which is omitted here, is the same as that
of Lemma 1.2. W

In general, we have the following:
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1.4. Theorem. Let A; = AjU---U Ai"g‘) be a finite union of
proper arcs in a simply connected 2-manifold F* for i = 1,---,pu, and
let J; = Jn U+ U Jim(i) be a finite union of proper loops in F?, such
that (A;UT;)N(ARUTR) = 0 fori # h. Then, there ezist j € {1,---,u}
and k € {1,---,m(j)} so that J;x is contractible in F? — |J (A U J;).

t#j

Proof. We may assume that every A; UJ; is polygonal and normal.

Since every region of F> —°N(A;; F?) is simply connected, the proof
of Theorem is similar to that of Theorem 1.3, and so it is omitted here.
[ ]

2. SINGULAR SPHERES IN A 3-CELL

In this section, we will discuss singular 2-spheres in a 3-cell and
prove similar theorems to those in the previous section.

First let us explain several well-known facts to be used in the sequel.

If a compact 3-manifold M is embeddable in the 3-sphere $3, then
there is a 1-complex G in $2 such that the exterior $* — °N(G; §°) is
homeomorphic to M by Fox [F].

A 1-complex G in S is said to be split, iff there exists a 2-sphere
S C §% — G, such that both components of $3 — § contain points of G.
If a 1-complex G C $? is not split, then the exterior §2 — °N(G; §3) is
aspherical, i.e. the second homotopy group m2(S? — °N(G; §°)) = {0},
by Papakyriakopoulos [P]. In particular, if G C §3 is a connected 1-
complex, then §° — °N(G; §3) is aspherical.

We will call a compact 3-manifold M an aspherical region, iff M is
embeddable in S and aspherical.

It holds the following;:
2.1. Proposition. (i) If a compact 3-manifold M is embeddable
in §° and OM is connected, then M is an aspherical region.

(2) Let M be an aspherical region with connected boundary OM
and let ' C °M be a closed connected 2-manifold. Then, there erists an
aspherical region R in M withOR=F. ®

The following corresponds to Definition 1.1.
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2.2. Definition. (1) Let f : F? — M be a non-degenerate
continuous map of a compact 2-manifold F? into a manifold M. Then,
the image f(F?) = F will be called a singular-surface. In particular,
singular-surfaces f(D?) = D and g(S%) = S will be called a singular-
disk and singular-sphere, respectively.

The boundary of a singular-surface f(F?) = F is the image f(8F?),
and we denote it by 0*F.

(2) A singular-surface F in a manifold M is said to be proper iff
FNoM = 0*F. '

(3) Let F be a proper singular-surface in a 3-manifold M. A point p
in F is a singular-point of multiplicity k, iff the number of the preimages
of pisk withk > 2.

We shall say that F is normal, iff

(i) F has only singular-points of multiplicity 2 and 3,

(ii) the set of singular-points of multiplicity 2 is a finite number of
polygonal curves, that is, singular-arcs and singular-loops, which will be
called double-lines,

(iii) the set of singular-points of multiplicity 3 consists of a finite
number of points which are intersection points of the double-lines, which
will be called triple-points, and

(iv) at every singular-point of multiplicity 2, F crosses transversally.

In fact, every singular-point p of F' has one of the neighborhood
described in Figure 1, and it is well known that every singular-surface
may be e-approximated by such a normal one. '
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regular point double point triple point branch point

Figure 1

2.3. Lemma. Let Sl = S]]U' . 'Uslm(l) and82 = 521U' "USzm(z)
be finite unions of proper singular-spheres in an aspherical region M
with connected boundary OM such that S NS; = 0. Then, there erists
Jj€A{l,---,m(1)} or k € {1,---,m(2)} so that Sy; is contractible in
M — 8; or Sy is contractible in M — S;.

Proof. We may assume that &; U S; is normal. The proof of this
Lemma is similar to that of Lemma 1.2.

Let R = {Ry, -, R.} be the set of regions of M — °N(S1; M). It
will be noted that Ry U---UR, D S,.

If there exist a singular-sphere, say S;x, of S; and an aspherical
region, say Ry, of R with Sax C Rp, then S2x is contractible in R, C
M - &1, and we are finished.

So, we may assume that there exist some spherical regions, say
Q1,"+,Qq, in R,so0 that Q1 U---UQy D S2. Let HU---UF; =
0Q1U- - -U3Q be the disjoint union of closed connected 2-manifolds, and
let M}, be the aspherical region in M with My = Fj for h = 1,---,s,
see Proposition 2.1 (2). We choose an innermost region, say M, in
these aspherical regions, that is, there are no other M} in M;. Then,
by the same way as the proof of Lemma 1.2, it is easily checked that
MiNnS # @ and M; N S; = 0. Now, any Slj of & with S]j nM, # )
is contractible in My; C M — 83, and completing the proof. =
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The following theorems correspond to Theorems 1.3 and 1.4, re-
spectively.

2.4. Theorem. LetS; = Si;U- - -USim(q) be a finite union of proper
singular-spheres in an aspherical region M with connected boundary OM
fori=1,---,p, such that S§; NS, = O for i # h. Then, there exist j €
{1,---,u} and k € {1,---,m(j)} so that S;i is contractible in M~ |J S;.

i#£j

Proof. The proof is similar to that of Lemma 2.3, and is word for
word that of Theorem 1.3. B

2.5. Theorem. Let M be an aspherical region with connected
boundary OM. Let D; = Dy uU---U D,-n(,-) and S; = S uU---U S,‘m(,‘)
be finite unions of proper singular-disks and proper singular-spheres in
M, respectively, for i = 1,---, p, such that (D; US;)N(DrUS:) = 0 for
t # h. Then, there exist j € {1,---,p} and k € {1,---,m(j)}, so that
Sk is contractible in M — |J (D; U S;).

i#j

Proof. We may assume that every D; U S; is normal. Since every

region R of M — °N(D;; M) is an aspherical region, the proof of this

Theorem is similar to that of Theorem 2.4, and is word for word that of
Theorem 1.4. [ |

3. SINGULAR CUT-AND-PASTES

3.1. Definition. Let M3 be a 3-manifold, and let E* be a compact
2-manifold in °M3. Let f: F? — M3 be a non-degenerate continuous
map of a compact 2-manifold F? into M3 such that

(i) f(F?) = F is a normal singular-surface,
(ii) F intersects with E? transversally, and
(#ii) no triple-point and no branch point of F lie on E2.

Then, the intersection F N E? consists of a finite number of arcs
and loops. Let J be a loop in F N E?, and let J* be the preimage of
J in F? : J* is a simple loop. We suppose that J* is 2-sided on F?,
and let F' be the 2-manifold obtained from F? by attaching a 2-handle
along J*. In fact, we define F'? as follows: We take a homeomorphism
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h? . 8D? x D' — N(J*;F?) with h*(dD? x 0) = J*, and let F™* =
(F? —°N(J*; F*)) U h*(D? x 8D?).

Now, we suppose that J is contractible on E2. Then, we have a
non-degenerate continuous map, say g, of D? into E* C M3 such that
g(8D?*) = J. Using the product structure N(E?; M3) = E? x D!, we
define a non-degenerate continuous map f': F'* » M3 as follows:

f'|F"? — k*(D? x 8D") = f|F? — h*(0D* x D),
f'(R*(D? x 8DY)) = g(D*) x D' c E* x D'.

We say that F' = f'(F') is obtained from F = f(F?) by a cut-
and-paste along J C E?, and we denote simply by FF — F'.

It will be noticed that F'NE? = FNE?—J and that F'? = D*11§?
(a disjoint union) provided that F? = D? and F'? = $? Il $? provided
that F2 = 2.

3.2. Theorem. Let O; = Oi1 U---U Oin(i)y be a trivial link in the
3-sphere S3 (or the 3-space R®) for i =1,---,p, such that O1U---UO,
is also a trivial link. Let D; = Diy U --- U Djy(;) be a finite union of
normal singular-disks in S® fori=1,---,u, such that 8*D;; = O;; for
t=1,---,uand j=1,---,n(i), and D; N Dy = O for i # h.

Let Df = Dy U---U Dy, ) be mutually disjoint 2-cells in $3 (or
R3) for i = 1,---,p, such that OD}; = Oyj fori = 1,---,p and j =

1,---,n(%), and D N Dy =0 for i # h.

We suppose that Dy U ---U D, intersects with Dy U---U D} trans-
versally, and any triple-point and any branch-point of Dy U---UD, do
not lie on DY U --- U Dj.

Then, there exists a finite sequence of cut-and-pastes
DyU---UD, ='D§0)U-'-UDL0) _,'Dgl)u...u’pf}) — e

_)Dgu)u...upstu)_)..._)Dgw)u...upgw)
along (D1 U---UD,)N(DfU---UD};)CDfU---UDj such that
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1) D™ =DMy...u Df:()‘) iy where D(”)
a singular-disk with B*DS;-‘) = 0;; and Sis is a singular-sphere, for

=1, ,p; J= 1,,11,('1.), u=1,---,w; s=1,---,m(i),

us§lu---ust

im(

2) DD =0 fori#h, u=1,-,w, and

(8) D{)ND;, = 0 for i # h, and D' ND? = (D{)U. - UDIND;
consists of a finite number of proper arcs in D}.

Proof. From our hypothesis, D;; N Dj, consists of proper loops in
r provided that ¢ # h, and D;; N D}, consists of proper loops and
proper arcs in D}, for every t,j,k. Therefore, by the induction on the
number n = n(1) + -+ + n(p) of 2-cells in D} U --- U D}, it suffices to
show that there exists a finite sequence of cut- and pa.stes of D,U---UD,
along proper loops (D, U---UD,)NDf; C Dj, so that ’D(u) u- UDE}‘)
satisfies the conditions (1) (2) and

(3) D N D}y = @ and D("’)nDh—D N D}, fori=2,.--,t and
j=2,---,n(1), and ’D(w) N D3, consists of a ﬁmte number of proper
arcs in D}, and D{*) 0 D;j =Dy N D}; for j = 2,---,n(1).

We consider Dy U---UD, and Df;. Let 4 = A;; U---U Ala(l)
be the collection of proper arcs in Dy N Df; on D}, and let A =0
be the collection of proper arcs in D; N D}, for i = 2,---,u. Let J; =
Ji1 U -+ U Jyp(q) be a collection of proper loops in D; N Dfl on Df, for
¢ = 1,---,u. Then, A; U J; satisfies the assumptions in Theorem 1.4,
and so there exists a loop J;i of some J; such that J. jk is contractible in
Di,— U (AiUT;). We have a non-degenerate continuous map g : D? —

i#]

D7, such that g(D?*)N(A;UJ;) = 0 for i # j. Using this g, we perform
the first cut-and-paste for D; C DyU---UD, = DgO)U- . -U'Df,o) and obtain
’Dgl) U---u ’Df,l). Let w be the number of loops in (D, U---UD,)N Dy;.
By the repetition of the procedure w times, we can get rid of all loops
in (D U---UD,)N D}y, and it is easily checked that 'Dg“) u---u ’Df‘")
satisfies the required conditions for « = 1,---,w, and we complete the
proof of Theorem. [ |

3.3. Remarks. (1) From the proof of Theorem 3.2, we know
that w is the number of loops in (D; U...UD,)N (D} U...uD})
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and w = m(1) + - -+ + m(p), which is the number of singular-spheres in
D(w) U e U D(w)
1 B

(2) Let D and D* be a normal singular-disk and a 2-cell, respect-
ively, in §3 (or R®) such that 8*D = 8D* = O (a trivial knot). Let
A be a proper arc of D N D* in D* and let a be a simple arc in O
with da = 0*A. Since AU a is contractible in D*, we can formulate a
cut-and-paste of D along AUa C D* as the same way as Definition 3.1
except for obvious modifications, so that D — D' = D U §7, where S
is a singular-sphere and D] is a singular-disk with 8*Dj = O.

Now, in the notation and assumptions of Theorem 3.2, we suppose
that D;; N D}, does not contain proper arcs on D}, for ¢ = 1,---,pu
and j # k. Then, we can remove proper arcs of 'Dsw) N D} by a finite
sequence of the modified cut-and-pastes.

4. APPLICATIONS TO LINK THEORY

A continuous image of the 3-cell D3 will be called a singular-ball.
The boundary of a singular-ball B is the image of D3, and we denote
it by 0*B.

We use here the same notation as that of Section 0 in [KSS].

The following is a generalization of Horibe-Yanagawa’s Lemma
[KSS, Lemma 1.6] in a sense.

4.1. Theorem. In the notation and assumptions of Theorem 3.2,
let T; = X U---UZin(i) be a finite union of singular-spheres in R30,1]
defined by ,

Eij = .D,'J'[O] U O,’j X [0, 1] U D:j[l]

fori=1,--- ;u and j = 1,---,n(i). Then, we can find a finite union of
singular-balls B; = Bj; U -+- U By, in R3[0,00) fori=1,---,u, such
that 8*B;; = X;; for every i and j, and BN B, = 0 for i # h.

Proof. The proof is similar to that of [KSS, Lemma 1.6]. We
shall construct the required singular-balls B, U---U B, by specifying the
cross-sections B;; N R3[t] for all ¢ and j.
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Under the notation of Theorem 3.2, we also use Theorem 3.2. Let
gu: D? > D}U---UD} (u=1,---,w) be a non-degenerate continuous
map such that we perform the u-th cut-and-paste

D{* D y...upE-V 5 DM y...u DM

in Theorem 3.2 along the loop ¢,(8D?) under g,. We extend g, to a
continuous map

g¥: R2(D* x D) > N(D{u---UD};R*) 2 (DjU---UD}) x D!

of the 3-cell h2(D? x D') naturally, and we denote the singular-ball
g¥(h*(D*x D')) by H,. We divide the interval [0,1} into the subintervals
[0, t1], [tl,tgl, Tty [tw-l,tw], [tw, 1], where ty = u/(w + 1), U= 1, e, W.
Let
(BiU---UB,)NR3t] = (D1U---UD,)[t]for0 <t < ¢4
(ByU---UB,)N Rt} = (D1 U---UD, U Hy)[t],
(ByU---UB,)NR3t) = (DM U---uDD)t] for ty < t < ta,

(ByU---UB,) N R[] = (DD U U DED)[t] for ty—1 < t < ta,
ByU---UB,)NRt] = (DI D u---uDD U Hy)[t],

H 1 [
ByU---UB,)NRt] = (DM U ---UDM)[t] for ty < t < tuy,

I B

.........

(B1U---UB,)N Rty] = (P ™V u---uDM Y U Hy)ltw),
(ByU---UB,)NR[t] = (D U-- - uDL[t] for t, < t < 1.

Thus, we constructed (B; U --- U B,) N R3[0,1] which consists of
n = n(1)+- -+ n(p) singular-balls with w = m(1) + - - - + m(u) singular-
balls removed.
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Let SE;") = DE;-")UD;-“J- be the singular-spherefori = 1,---,pand j =
m(i)+1,...,m(i)+n(i), and let & = D{IUD; = SIU-- US4y
which consists of m(i) + n(:) singular-spheres in R®. From Theorem
3.2(2) and (3), it is easy to see that S; N Sy = @ for ¢ # h, which is the
assumption of Theorem 2.4.

We divide the interval [1,2] into the n + w + 1 subintervals [1, ],
[317 32]7 Tt [3n+w—la 3n+w]7 [sn+w72]7 where s, =1+ 'v/(n +w+ 1), v=
1,---,n+w. From now on, we construct (ByU---UB,)N R3[1,2] so that
(B1U---UB,)N R*[0,2] forms the required singular-balls. By Theorem
2.4, there exist j € {1,---,u} and k € {1,---,m(j) + n(j)} so that
Sﬁ:') is contractible in R® — |J S;. Let gy : D® — R*— |J Si be a

i#£j i#]
continuous map such that g1(8D?) = S;-:'), and we denote g1(D3) by
E,. We set S§1) =S§; - Sg;f), and S,(l) = &; for 1 # j. Then, we define
(ByU---UB,)N R%1,s;) as follows:

(BLU---UBL)NRYNt]=(S1U---US,)t] for 1<t < s,
(BiU---UB,)NRs1] = (S1U---US, U Ey)[s1],
(ByU---UB)N R[] = (S U -+ uSM)t] for 51 < t < 5.

By Theorem 2.4. there exist j' € {1,---,p}and ¥' € {1,---,m(j")+
n(j')} so that S is contractible in R® — |J Sfl). Let g : D® —
i#]
RR-U S,(l) be a continuous map with g3(8D?%) = Sj &, and we denote
i#j .
9:(D?) by Ey. Weset S&) = 8% — 50), and 8 = 8{V for i # j'. We
define (By U ---U B,) N R3[sy,33) as follows:

(ByU---UB,)N RB3[s3] = (SM U---USY Ey)[sa),
(ByU---UB)N R[] = (8P U---USP)t] for sz < t < s3.

For R3[s3,84),*, R3[Sntw—1,3ntw), R3[Sntw,2), we repeat this
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process. It should be noticed that S"**~1 u... u S~ consists
of a single singular-sphere and S§"+w) u---u Sf‘n"'w) = (). Therefore,
(By U---UB,)N R3[sp4w] consists of a singular-ball Epyy[sntw], and
(BiU---UBL)NR[t] =0 for sp4y <t < 2.

Thus, we obtain a union of singular-balls B; = By U --- U Bjn(;) in
R3[0,00) for i = 1,---,u such that 8*B;; = X;;. From our construction,
it is easily checked that B; N B, = @ for ¢ # h, and this completes the
proof of Theorem 4.1. W

The relation of link-homotopy was introduced in classical link the-
ory by Milnor [M], and studied higher dimensional links by Massey- -
Rolfsen [MR] and Koschorke [K], etc. We record a corollary to Theorem
4.1 on link-homotopy.

4.2. Definition. Let Py,---,P, be polyhedra, and let P = P, II
.-+l P, be their disjoint union, and let X be a manifold. A continuous
map f: P — X is said to be a link-map, iff f(P;)N f(Pr) =0 fori# h.
Two link-maps fo and fi of P into X will be called link-homotopic, iff
there exists a homotopy {ni}ier : P — X such that no = fo, m = fi,
and n:(P;) N ny(Pr) =0 for i # h and each t € I = [0,1].

4.3. Theorem. Let O; = O;1U---UQO;yn(;) be a trivial link in the 3-
space R® = R®[0] C R3[0,00) (or S® C 8D*) fori=1,---,u, such that
O1U---UO,, is also a trivial link. Let P; = D}1I.- '].ID?n( ;) be the disjoint
union of n(t) 2-cells fori=1,---,u, and we set P = Py1I--- 11 P,. Let
f and e be non-degenerate link-maps of P into R® (or S3) such that
f(8D%) = 0;; = e(aD?j fori=1,---,pandj=1,---,n().

7/ —

Then, f and e are link-homotopic in R3[0,00) (or D*) keeping O; U
---U O, fized.

Proof. Let f(D%) = D;j and D; = Dy U---UD;p(y fori=1,---,p
and j = 1,---,n(i). Let g: P — R® be an embedding, and let g(D%) =
D}; and D} = D} U---UDj, ;. In this notation, it suffices to show that
f and g are link-homotopic in R3[0,0) keeping O U---U O,..

In the notation of Theorem 4.1, we have a finite union of singular-

balls B;U- - -UBy,, B; = Bj1U- - -UBin;) in R3[0,00) such that B;NB, = §
for i # h and 0*B;; = X;j. Let b;; : D*x I — R3[0,00) be a continuous
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map of the 3-cell D? x I such that b;;(D? x I) = B;;. We may assume
that b;;|D? x 0 = f|D% and b;;|D? x 1 = g| D} Then, associating with
these b;;, we have a link-homotopy {n:}ter : P — R3[0,00) defined by

m(D3;) = bij(D* x 1)

for every t € I. From the condition of the singular-balls By U---U B,
in Theorem 4.1, it is easily checked that this homotopy {7:}:er between
f and g satisfies our required condition, and completing the proof of
Theorem 4.3. =
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