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A Note on Unlinking Numbers
of Montesinos Links

K. MOTEGI

ABSTRACT. Let K (resp. L) be a Montesinos knot (resp. link) with
at least four branches. Then we show that the unknotting number (resp.
unlinking number) of K (resp. L) is greater than 1.

1. INTRODUCTION

The unknotting number (resp. unlinking number) of a knot K (resp.
link L) in §3, w(K) (resp. u(L)) is the minimum number of crossing
changes needed to create the unknot (resp. unlink). The minimum
being taken over all possible sets of changes in all possible presentations
of K (resp. L).

These numbers are very intuitive invariant and not easy to calcu-
late. In [14], Scharlemann proved that unknotting number one knots are
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prime. An alternative proof was given by Zhang [18). The analogous
result for links (i.e., unlinking number one links are prime) was proved
by Eudave-Muiioz [3] and Gordon-Luecke [4] in different methods. For
two bridge knots, Kanenobu-Murakami [6] determined two bridge knots
with unknotting number one. Later Kohn [7] determined two bridge
links with unlinking number one. Recently Menasco [9] determined the
unknotting (resp. unlinking) number of torus knots (resp. torus links).
A survey of methods of calculation of unknoting numbers is given by
Nakanishi [13].

In this paper, we study unknotting numbers (resp. unlinking num-
bers) of Montesinos knots (resp. Montesinos links).

Let M(e;(a1,5),...,{(ar,B;)) be a Montesinos knot or link with
r branches (see Figure 1), where a box stands for a so-called
“rational tangle” of type (ai, 8;) ([11], [12], [19] and [2]).
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Figure 1

In the following we assume that a; > 1. (If for some ¢,a; = 1, then
the knot or link would have a simpler form.)
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Montesinos knot with r < 3 can have unknotting number one. For
example 830 = M(1;(2,1),(3,1),(3,2)) has unknotting number one (see
Figure 2).

\ .
crossing change

820 = M(l; (2, 1)’ (3a 1)’ (3,2))
Figure 2
On the other hand if r > 4, we prove the following.
Theorem 1.1. Let K = M(e;(a1,51),...(ar,Br)) be @ Montesinos
knot with r > 4. Then u(K) > 2.

The two components Montesinos link L = M(0; (3,1), (3,-1),
(5,2)) illustrated by Figure 3 has u(L) = 1.

If r > 4, we have:

Theorem 1.2. Let L = M(e;(a1,b1),...,(ar,Br)) be a Mon-
tesinos link with r > 4. Then u(L) > 2.
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The present pronfs of Theorems 1.1 and 1.2 follow the same philos-
ophy of [6], [7], [18] and [4], except for the case where L has more than
two components (Proposition 4.6).

2o~

N
crossing change

L = M(0;(3,1),(3,-1),(5,2))
Figure 3

2. PRELIMINARIES

Let k be a knot in the interior of an orientable 3-manifold M. Let
N(k) be a tubular neighborhood of k in M. For the isotopy class (slope)
a of an essential simple closed curve on dN(k), M(k;a) denotes the
manifold obtained from M by a-surgery on k, i.e., the result of attaching
a solid torus V to M-intN(k) by identifying 3V with N (k) so that a
bounds a disk in V. If a and § are two slopes on dN(k), then A(e, )
denotes their minimal geometric intersection number.

If K (resp. L) is a knot (resp. link) in $3, we use Mg (resp. ML)
to denote the two-fold branched covering of §3 branched over the knot
K (resp. the link L).
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Lemma 2.1 ([11], [8] and [7]). (1) Let K be a knot in S with
u(K) =1, then Mg is homeomorphic to S3(k;~) for some knot k C §°
and v with A(y,p) = 2, where p is a meridian slope of k.

(2) Let L be a two components link in §3 with u(L) = 1, then My,
is homeomorphic to §? x S*(k;v) for some knot k C §% x S' and v with
A(y,p), where p is a meridian slope of k.

Lemma 2.2 ([11], [12], [19], [2]). The two-fold branched cover-
ing of S branched over a Montesinos knot or link M(e;(a1,p1), ---,
(ar,Br)) is a Seifert fibred manifold with the 2-sphere $* as base, ob-
struction invariant e and r exceptional fibres of types (o, (3;).

Lemma 2.3 ([1], [10]). Let k be a non-hyperbolic knot in S3. If
53(k;7) is a Seifert fibred manifold over S? with at least four ezceptional
fibres, then A(vy,p) = 1.

Remark. In [10] it is also proved that if there are two such surgery
slopes 71, and 7y, then A(y1,72) < 1.

A 3-manifold M is a cable on a manifold M, if M = CUr M; where
C is a cable space [5], M C 9C and T' = dCNAM, is an incompressible
torus in M;.

Lemma 2.4 ([1, Theorems 0.5 and 0.6]). Let M be a closed
orientable 3-manifold and k a knot in M. Assume that M-intN (k)
is irreducible and is neither a Seifert fibred manifold nor a cable on a
(boundary-irreducible) Seifert fibred manifold. If M(k;y1) is a Seifert
fibred manifold over S? with at least four ezceptional fibres and M (k;~v;)
has a cyclic fundamental group, then A(y1,72) < 1.

In particular the above lemma implies,

Corollary 2.5 ([1]). Let k be a hyperbolic knot in S3. If S3(k;~v)
is a Seifert fibred manifold over §* with at least four exceptional fibres,
then A(7y,u) = 1, where i is a meridian slope of k.

3. PROOF OF THEOREM 1.1

Let K = M(e;(o1,061),-...,(r,Br)) be a Montesinos knot with
r > 4. Assume for contradiction that K has unknotting number one.
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From Lemma 2.1 (1), we see that Mk (the two-fold branched covering of
$3 branched covering over K ) is homeomorphic to $3(k; ) for some knot
k(C $3) and v with A(y, ) = 2, where p is a meridian slope of k. Since
K is a Montesinos knot with 7(> 4) branches, Mg is a Seifert fibred
manifold over §2 with (> 4) exceptional fibres. Therefore Lemma 2.3
and Corollary 2.5 imply that A(y,u) = 1, a contradiction. Hence K
cannot have unknotting number one. =

4. PROOF OF THEOREM 1.2.

To prove Theorem 1.2, we divide into two cases : (1) the link L has
exactly two components, or (2) L has more than two componentes.

First we consider the case (1).

Proposition 4.1. Let L = M(e;(a1,f),...,(ar,B:)) be a two
components Montesinos link with r > 4. Then u(L) > 2.

We prepare some lemmas to prove this proposition.

Lemma 4.2. Let k be a knot in §* x §1. If §? x S'-intN(k) is
reducible, then k is a local knot, i.e., there exists a 3-ball B3 in §? x S*
such that B3 D k.

Proof. Let ¥ be an essential 2-sphere in $? x S'-intN(k). If £
separates 52 x S1-int N (k), then since §% X S! is prime it bounds a 3-ball
in §% x S! containing k. Thus k is a local knot.

If £ does not separate §% x §'~intN(k), then we take a simple loop
J in §? x S'-intN(k) meeting T transversely in a single point. The
boundary ¥’ of a tubular neighborhood of ¥ U J is a 2-sphere which
separates S x S into X; = N(X U J) and X; = §? x S-intN(2 U J).
Since §% x §! is prime and X is not a 3-ball, X3(D k) is a 3-ball. Hence
kis alocal knot in §2 x S1. =

Lemma 4.3 . Let k be a local knot in 52 x S1. If §2 x §(k;7) is
Seifert fibred, then S? x S(k;v) = §? x St. (In particular S* x S1(k;v)
is not a Seifert fibred manifold over S* with at least four ezceptional
fibres for auy slope v.)



A Note on Uhlinking Numbers of Montesinos Links 157

Proof. Since k is local, $% x S'(k;7v) has §% x §! as a connected
summand. A reducible Seifert fibred manifold is homeomorphic to §% x
St or P3#P3, P? is a real projective space and the result follows. m

In the following $% and $2 x S are not considered as lens spaces.

Lemma 4.4. Let k be a knot in §2 x 51 such that S* x S*-intN (k)
15 a Seifert fibred manifold or a cable on a Seifert fibred manifold. Then
5% x SY(k;v) cannot be a Seifert fibred manifold over S? with at least
four ezceptional fibres for any slope ~.

Proof. Suppose for contradiction that % x S*(k;v) admits a Seifert
fibration over $? with at least four exceptional fibres. Then the Seifert
fibration is unique {5, VL.17] (because S% x §1(k;7) is not the double of
a twisted I-bundle over the Klein bottle), and any incompressible torus
is isotopic to a vertical one (i.e., a union of fibres) ([16]).

Case 1. 5% x S1-intN(k) is Seifert fibred.

In this case from [7, Lemma 4] we see that k is a regular fibre in
some Seifert fibration of $% x S!. Since any Seifert fibration of S? x §1
has §2 as base with zero or two exceptional fibres, §% x §1-intN (k) is
Seifert fibred over the disk D? with zero or two exceptional fibres. If the
surgery slope v coincides with a regular fiber of §2 x $1-intN(k), then
the result S? x S'(k;v) is the 3-sphere S* or a connected sum of two
lens spaces, which cannot admit a Seifert fibration over $? with at least
four exceptional fibres. If 7 is not a regular fibre of $? x S'-intN(k),
then 2 x S'(k;v) admits a Seifert finration extending that of $% x S'-
intN (k). Hence the result $? x S1(k;v) is Seifert fibred over 2 with at
most three exceptional fibres. It follows that $2 x 51(k;v) cannot admit
a Seifert fibration over S? with at least four exceptional fibres.

Case 2. §% x S'-int N(k) is not Seifert fibred : §? x S'-intN (k) is
a cable on a (boundary-irreducible) Seifert fibred manifold.

Let C(C §? x S*-intN(k)) be the cable space and M;(C 52 x §1-
intN(k)) the Seifert fibred manifold. Let p be the slope of a meridian
of k in % x S! and 7 the slope of a regular fibre of the cable space C.
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Claim 4.5. A(t,p) = 1.

Proof of Claim 4.5. If 7 = pu(i.e., A(T,p) = 0), then C U N(k)
(C §2xS5') and hence $?x S has alens space summand, a contradiction.
If A(m,p) > 2, then the Seifert fibration of the cable space C' can be
extended to that of C U N(k), which is boundary-irreducible. Since M,
is also boundary-irreducible, $? x S contains an incompressible torus.
This is a contradiction. =

It follows that C U N(k) is a solid torus in $% x S?, whose core is the
exceptional fibre f of the cable spce C. Thus we can regard C U N(K)
as a tubular neighborhood N(f) of f in §% x $.

If the surgery slope 7 coincides with 7 (i.e., A(y,7) = 0), then
C U, V, where V denotes the filling solid torus, has a lens space sum-
mand. This implies that $2 x $(k;7v) has a lens space summand. Hence
it cannot be a Seifert fibred manifold over S? with at least four excep-
tional fibres. Now we consider the case where the surgery slope v does
not coincide with 7. In this case the Seifert fibration of C' can be ex-
tended to that of C Ur V. Suppose that A(y,7) = 1. Then C U,V
becomes a solid torus whose core is the exceptional fibre f in the cable
space C. Therefore §% x S(k;y) = §% x S'(f;4') for some slope 7'
on ON(f). Since the exterior §2 x S'-intN(f) = M; is Seifert fibred,
we can conclude that §? x §1(f;7’) cannot have a Seifert fibration over
S? with at least four exceptional fibres by Case 1. Let us assume that
A(y,7) > 2. In this case C U,V admits a Seifert fibration over D? with
just two exceptional fibres by extending the Seifert fibration of C. Since
both M; and C U, V are boundary-irreducible, $§? x S'(k;v) contains
the incompressible torus dM;, which can be assumed to be vertical by
isotoping the Seifert fibration. If C' U, V is not a twisted I-bundle over
the Klein bottle, then the Seifert fibration is unique up to isotopy ([5,
VI.18.Theorem]). Therefore the Seifert fibration of C U, V which ex-
tends that of C is isotopic to the Seifert fibration of C'U, V which is the
restriction of that of §2 x §1(k;7v). Hence §2 x §1-intN(k) = C U M,
is Seifert fibred, a contradiction. We assume that C' U, V is a twisted
I-bundle over the Klein bottle. Then it has just two Seifert fibrations
up to isotopy ([17]) : the extended Seifert fibration of the cable space C
or a Seifert fibration over Mdbius band with no exceptional fibre. In the
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first case the above argument implies that $2 x §'-intN (k) = CU M, is
Seifert fibred, a contradiction. In the latter case $2 x S'(k;v) is Seifert
fibred over a non-orientable surface, and hence cannot admit a desired
Seifert fibration. [ ] \

Proof of Proposition 4.1. Let L = M(e;(ay,5),...,(ar,B;)) be
a two components Montesinos link with r > 4. Assume for contradiction
that (L) = 1. From Lemma 2.1(2), we see that the two-fold branched
covering My, of §® branched over L is homeomorphic to 5% x S'(k;~) for
some knot k in $? x S! and vy with A(y,u) = 2, where x is a meridian
slope of k in §2 x §1. Since L is a Montesinos link with (> 4) branches,
M, is a Seifert fibred manifold over S? with r(> 4) exceptional fibres.
If $2 x §1-intN(k) is reducible, then by Lemma 4.2, k is a local knot
and $2 x S(k;v) cannot be a Seifert fibred manifold over §? with at
least four exceptional fibres by Lemma 4.3. So we may assume 2 x S1-
intN (k) is irreducible. Suppose that 2 x §'-intN(k) is Seifert fibred
manifold or a cable on a Seifert fibred manifold. In this special case,
by Lemma 4.4 S? x S(k;7) is not a desired Seifert fibred manifold. It
follows from Lemma 2.4 that we have A(y, ) < 1, this is a contradiction.
Therefore u(L) >2. m

As for the case (2) : the link L has more than two components, we
can prove the following proposition.

Proposition 4.8. Let L = M(e;(ay,p1),...,(arB,)) be a Mon-
tesinos link with more than two components. Then u(L) > 2.

Proof. In the following we use indices modulo 7. Let Ci1 and
Ci2 be parallel arcs in L connecting two rational tangles and

m (see Figure 4).
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K,

XX

Figure 4

Claim 4.7. For each ¢, two arcs C;; and C; are contained in the
same component of L.

Proof of Claim 4.7. If for some j,C;1 and Cj; are contained
in distinct components of L, then C;; and Cjy1x (K = 1 or 2) are
contained in the same component, and hence C; 3 and Cj4, 3k are also
contained in the same component. Thus C;;1; and Cj4, 2 are contained
in distinct components. Inductively we can observe that for each ¢, C; 1
and C; 2 are contained in distinct components. Hence L has exactly two
components, a contradiction. ®

By Claim 4.7, components of L are positioned as in Figure 4 , i.e.,
components K,...,K, of L appear in clockwise order.

Suppose for contradiction that L has unlinking number one. There
are two possibilities: a crossing change on the same component of L
converts L into the unlink or a crossing change on distinct components
of L converts L into the unlink.

Suppose that a crossing change on a component K; transforms L
into a trivial link. Then since the link type of K;;1 U K;42 is not
changed under the crossing change, the sublink L' = K41 U K42 is
trivial. Next we consider the case where a crossing change on distinct
components K; and K; (¢ # j) converts L into a trivial link. Then
we can take a component K;«(= K;_; or Kj;1) so that K;» # K;.
Since the crossing change does not change the link type of K;U K-, the
sublink L' = K; U K- is a trivial link.
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Figure 5

In any case each component of L' intersects a rational tangle
for some t (1 < t < r). Therefore L' has a connected summand L" given
by Figure 5.

Since a; > 1, the factor link L is non-trivial (see [15]). Hence L' is
also non-trivial, a contradiction. This completes the proof of Proposition
4.6. [ |

Theorem 1.2 follows from Propositions 4.1 and 4.6.
5. EXAMPLES

Example 5.1. Let K be a Montesinos knot M(0; (4,3), (3,2),
(5,2), (5,—4)) (see Figure 6). Then by changing the indicated crossings
in Figure 6, we obtain a trivial knot. Thus u(K) < 2. On the other
hand Theorem 1.1 implies that u(K) > 2 and hence u(K) = 2
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2

K= M(O; (43 3)’ (3’ 2)’ (5’ 2)(5v _4))
Figure 6

Example 5.2. Let L be a Montesinos link M(0; (5,-2), (5,2),
(5,-2), (5,2)) with two components K; and K, (see Figure 7). If we
change crossings at {p1,p2} or {q1,¢:}, We obtain a trivial link. Thus
u(L) < 2. Hence we see that u(L) = 2 by Theorem 1.2.

We note that the crossing change at p; (¢ = 1,2) is a crossing change
on K; and the crossing change at ¢; (¢ = 1,2) is a crossing change on
Kl and Kg.
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L= M(O; (5v _2)7 (Sa 2)’ (5’ _2)’ (51 2))
Figure 7
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