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Abstract

We study geodesic completeness for left-invariant Lorentz met-
rics on solvable Lie groups.

1 Introduction

In {4], we have shown (among other things) that a generic left-invariant
Lorentz metric on Si(2, R) is non-complete.

The nilpotent case has, as well, been studied in [5]. It was shown
that every left-invariant pseudo-riemannian metric on a 2-step nilpotent
Lie group is complete. However, an example of a 3-step nilpotent Lie
group with a non-complete left-invariant Lorentz metric is given.

In this paper we study completeness for the left-invariant Lorentz
metricx on some solvable Lie groups. First, after J. Milnor [6] and K.
Nomizu [7] we consider a special class F of solvable Lie groups. A
non commutative Lie group G belong to F if its Lie algebra G has the
property that for any elements z,y in G the bracket product [z,y] is a
linear combination of = and y.

For such a group we show that every left-invariant Lorentz metric is
non-complete. This case is a generalization of the well-known example of
the Lorentz half-plane (i.e the affine group A(1, R) with its left-invariant
Lorentz metric).
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Also, we investigate the completeness of left-invariant Lorentz met-
rics on the unimodular 3-dimensional Lie group E(2) (resp. E(1,1)) of
rigid motions of Euclidean (resp. Minkowski) 2-space. We prove that all
left-invariant Lorentz metrics on E(2) are complete, while such a metric
on E(1,1) is complete if and only if it realizes a Lorentzian submersion
on Minkowski 2-space. '

2 Preliminaries

2.1 Geodesics of left-invariant pseudo-metrics.

Let G be a Lie group, and G its Lie algebra. It is well known that
the data of a left-invariant pseudo-riemannian metric on G is equivalent
to that of a non-degenerate quadratic form on G. Furthermore, every
Cl-curve t ~— c(t) of G gives rise (up to a left translation) to the curve
L 3,é(t) on G.

Lemma 2.1 The curves of G associated to geodesic are solutions of the
equation
% = adyzx (%)

where ad?, stands for the adjoint of ad; relative to the inner product on

G.
Proof. It is an immediate consequence of the formula (see [2])
. 1
VX, Y €G VxY = §{[X, Y] - ad%Y — ady X}

where V is the Levi-Civita connesion associated to the metric.
[ |

The general study of (x) may be very complicated. If G is semi-
simple, it takes the more remarkable form

¢(z) = [¢(z), z],

where ¢ stands for the endomorphism on G which is associated to the
metric via the Killing form (see [4] for some consequences).
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2.2 General fact

Now, the groups we study here satisfy the following property: There
erists a codimension one commutative ideal (so that the Lie algebra is
2-step solvable).

Denote by E this ideal. Consider a left-invariant Lorentz metric on
G, and let its associate inner product on G be (-, ).

If (-,-)|g is nondegenerate, let eg ¢ E such that

(e, E)=0 and G=Rey® E.
Now, it is easy to check that
adzoeo =0 and Vy€E ad,y€kE.

Thus equation (x) takes the form
{ io = —{eoal®) _ _ (Szz)

{ea,e0) {eo,€0)
& = zo(ad;,x)

where S = 3(ade, + adg) and Lc—é)*é(t) =xpeo+z,z € E.

3 A remarkable class of solvable Lie groups

In this section, F denotes a special class of solvable Lie groups. A non
commutative Lie group G belongs to F if its Lie algebra G has the
property that for any elements z,y in G the bracket product [z,y] is a
linear combination of = and .

It is shown in [6] that this is equivalent to the existence of a codi-
mension one commutative ideal E and an element eg ¢ E such that

Ve €E [eg,z]=z.

The simplest example of such groups is given by

a 0 - b
0 .

wherea >0, b1,---,bp_1€R
: a bp
0 --- 0 1

The main result of this section is the following.
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Theorem 3.1 If G belongs F, then every left-invariant Lorentz metric
on G 18 geodesically incomplete.

Proof. We shall continue to denote by (.,-) the Lorentzian in-

ner product given by the metric, and to further simplify notations
(Lc_(%) LE(t), Lc‘(%) R:(3) vwill be denoted by (¢, ¢).

e First, we assume that (-,-) g is nondegenerate. Then, with the same
notations as in 2.2, we have S = I'r. Hence, equation () is now

. z,x

T0 = = Teq,e0)
T= zox

Next, (z,x,) = (¢, &) — z{eo, eo), thus

_ (&9

{e0,e0)

:i:oza:g

Therefore, for a null geodesic (that is (¢, ¢) = 0) we have zo — oo as
t — b with b < oo, and the metric is non-complete.

e We assume now that (-,-) g is degenerate, which means, in geometric
terms that the subspace E is tangent to the null cone. Thus, E contains
a null vector b and a (n — 2)-dimensional subspace E1 such that

E=Rb® E; orthogonal sum, (b, by =(b,E1)=0

and (-, -)|g is positive-definite.
On the other hand, since the orthogonal complement Ef‘ of E; is
Lorentzian, we can find a vector ¢ such that

(c,c)=0 and (bc)=-1.

Therefore, as in 2.2, we may replace ¢ by the vector eg, and so we
obtain the following orthogonal decomposition

G = Span {b, éo} @ E;.
An easy computation shows that, for all z; € E;, we have

adg z1 = x1, adg e = ep
ady x1 = (z1,71)b, adjeq = —b



On completeness of left-invariant. . . 341

the other terms being zero. So that, equations (*) are now

T = z3
¥ =(¢¢)
I1 = Zox1

where Lc_é)*é(t) = zpeg + yb + z1, and z; belongs to E;.
Consequently, all geodesic (unless zg = 0) are incomplete.

Remark 3.1 According to [7], if a Lie group G is of type F, then it
admits left-invariant Lorentz metrics with positive constant sectional
curvatures.

Clearly, such a group is not unimodular, and therefore has no com-
pact quotients. On the other hand, Calabi and Marcus have shown (cf.
[1]) that any complete Lorentz manifold of positive constant curvature is
not compact. So it is reasonable to conjecture that there is no compact,
complete or not, Lorentz manifold of positive constant curvature. -

4 Unimodular 3-dimensinal Lie groups

It is well known (see for instance [3]) that simply-connected unimodular
Lie groups of dimension 3 are classified as follows.

1) So(3) = S3.

2) SI(2,R).

3) 5@), R) (the universal covering of the group E(2) of rigid motion
of Euclidian 2-space).

4) E (ﬁ) (the universal covefing of the group E(1, 1) of rigid motions
of Minkowski 2-space).

5) H3 (the Heisenberg group).
6) R3.

In order to finish with dimension 3, we study here the cases 3) and
4). In these cases the Lie algebra has a codimension one commutative
ideal. Our study still relies on the properties of some ade, ;(e0 ¢ E). Of
course now ade, # Id.
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4.1 The case of E(2)

We look here E(2) as the semi-direct product O(2) o« R? is the group’
of orthogonal transformations of Euclidean 2-space.
“Our result in this subsection is the following.

Theorem 4.1 All leﬁ-invaﬁant Lorentz metrics on E(2) are geodesi-
cally complete.

Proof. Let E = [£(2),£(2)] where £(2) is the Lie algebra of E(2). We
denote by (-,-) the inner product over £(2) associated to the metric on
E(2). v
Case 1. The subspace E is non-degenerate, that is (-,-)|g is non-
degenerate.

As in 2.2, we may choose eg ¢ E such that

(e0, E) =0 and £(2) = Rep® E.

In terms of the infinitesimal representation of O(2) in the vector
space R? ~ E we can find a basis {e1, ez} of E for which both (-,-)|g
and the usual positive-definite inner product on R? are diagonal. Thus,
ade, is antisymmetric with respect to the basis. That is {eg, e1,e2} is
an orthogonal basis of £(2) satisfying '

[eo, 1] = —e2, -[eo, e2] = €1 and [e1,e2] = 0. (1)
We put the inner product (-,-) under the form
{eo, eo)wg + Alw% + /\ng

where w; is the dual form of e;, and A1 A2 # 0. Then, we get easily

Aley = | .

Consequently, equation () are

A=A
e&eo
T1 = — Rz
. _ A

T2 = 53T071

o= x1T2
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where Lc_é)*é(t) = zpeg + z1€1 + xo€2.

When A; = X\g, we show by easy trigonometric computation that
the metric is complete. Otherwise (i.e when A; # Ag) we have the two
first-integrals

(€0, eo)a:g + Alx% + )\22:% = e
)\%:c% + )\%x% = m

So, z¢, z1 and z9 are bounded, and hence the metric is complete.

Case 2. Suppose now that (~,'); g 18 degenerate. Then we can find a
vector b such that

Ve € E (bb)=(bz)=0.

Let {eo,e1,e2} be a basis of type (1). Then, by an appropriate
rotation of axis eg, which is in fact and automorphism of £(2), we can
take b = e;. This implies that eg is space-like (i.e {(e2,e2) > 0) since a
null vector is never orthogonal to a time-like one. Then, by considering
the automorphis

1 0 0
1

0 (e2,e2) 0

0 0 1

we can suppose that {eg,e2) = 1.
On the other hand, we have necessarilly (eg, e1) # 0 since the metric
is non-degenerate. Hence, up to an automorphism of type

T > -
o_r-ac

0
01,
1

we can assume that (eo,eo) = (eo,e2) =0,
Now, the metric only depends on the value {eg, e1).In fact, by replac-
ing eg by —eo/{eg, e1), we may assume that {eg, ejez} satisfies

{eo, €0) = {(eo, e2) = {e1,€1) = (e1,e2) =0, and (e2,e2) = —(eg,€e1) = 1,

(it does not change completeness properties).
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An easy calculation shows that

adgeg = —e, ad;e; =0 ad; e2 = eg
adg eg = ad;1e1 =0, adiex=—e;
adg.e0 = —ey, ad‘ ,e1=ad; eo =0

Therefore, equations () are given by

To = ToZ9
&1 = —(xo + z1)x2
T9 = —a:g

where zg, 1,9 are the componets of L (t) *c(t) with respect to.eg, ejeq.
Obviously, we get

T3 —2zozr1=e, THHTE=m

Hence, zg, z1, and z2 are bounded along every bounded interval, and
the metric is complete.

4.2 The case of E(1,1)

As before, E(1, 1) will be considered as the semi-direct product O(1,1)
R?2, where O(1,1) is now the group of orthogonal transformations of
Minkowski 2-space. However, the present case is more delicate because
we are going to compare two indefinite inner products on R2: the first
is the inner product (-,-) g associated to the metric, and the second is
the usual Lorentz inner product on R? given by

(z,y) = z1y1 — z2y2 where =z = (z1,z2),¥ = (y1,¥2).

Also, we will consider the submersion 7 : E (1,1) — R? given by the
projection upon the second factor.
We shall now prove the following:

Theorerh 4.2 A left-invariant Lorentz metric on E(1,1) is complete if
and-only if it realizes a Lorentz submersion from E(1, 1) into (R2, (-,-)).
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Proof. Let E = [8(1, 1),€(1,1)], where £(1,1) is the Lie algebra of
E(1,1).
e Suppose that (-, )| g is non-degenerate.

Then, according to 2.2, we may choose eg ¢ E such that

£(1,1)=Reg® E and (eg, E)=0.

Therefore, (-, -)|g is determined by a (-, -)-self-adjoint isomorphism ¢
such that ‘
Vz,y € E, (z,y)=(¢(z),y)
Case 1. ¢ is diagonizable over R.
Since it is (-, -)-self-adjoint, ¢ is diagonizable in an (-, -)-orthonormal
basis {e1, ez}, let A1, Ag its eigenvalues. In this basis, ade, is now sym-
metric, that is

[eo,e1] = e2, [eo,e2) =e1 and [e1,eg] = 0. 2)
An easy computation shows that

* 0 -3
adeo=(_& Oxf).
A

2

The equation (*) are now

. (e

T = eo),\eo :1:'1:1:2

&1 = —2zox2 3)
. A

T2 = —52T0T1

where zg,z1,x2 are respectively components of L;(i) ,&(t) with respect
to eg,e1,e2.
On the other hand, we have the two first-integrals

{eo, eo)x% + /\1:1:1 — )\22:2 = e
1$1 A2$2 = m.

If A\; = Ao, it is straightforward to verify that the metric is complete.
Suppose now A1 # Ao. Then, according to the above expressions, the
first equation of (3) is given by

o= :t\/(’\2 — ’\1)2 (azd +b) (czd + d)

(60’60)
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where
_ _{eo,e0)M1 o {eq, e0) A2
A2 (A1 = A2)’ A1 (A1 — o)

the values of b and d have little importance. Now, obviously

ac = (___(eo, eo) )2 >0
’ A1 — A9 )

Thus, there exist ‘solutions for which zg — oo when t — b, where
b < oo and t is an affine parameter. Consequently, the metric is non-
complete.

Case 2. ¢ is non-diagonizable.
We choose a basis { X1, Xo} for which

¢=(3 z) where a # 0.

Lemma 4.3 We have (X1,X1) = 0 and (X1, X2) # 0.

Proof. The first equality is the consequence of (¢(Xi),X2) =
(X1,4(X2)), as for as to the inequality, it follows from the fact that (-,-)
is nondegenerate or, equivalently, from the fact that in a Lorentzian
2-space if z is a null vector then z1 = Rxz.

Replacing X9 by X2+ tX;, where t = --8%-’%% we may assume that
(X2, X2) = 0. Then, by putting

X1+ Xo X1— X

€1 = —_—
' V2T (X1, X2) | V2T (X1, X9) |

we may assume that {e;, e} is an (., )-orthonormal basis. Thus, ade, is
symmetric with respect to this basis, and

_(0+D -3
‘”"( : (A—%))'

Q

. a ' a
(elv 81) = 5 + A, (327 82) = 5 - A <611 32) - —§

and eg=

Hence
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We easily obtain
ad;0e1 = —;el - (; + 1) ez and ad;oez = (; — 1) e1+ -;-62

Thus, equations (*) are given by

&1 = —$xoz1 + (§ — 1) zoz2 (4)
&g = — (% + 1) zoz1 + §zoz2
Furthermore, we have the first-integrals
Corcohad+ 3 (@l —ah) = m
{eo, e0)xd + &+ A) z3 + (- A) z3 — azyzy =

(3]

Substituting these two formulas into the first equation of (4), we see

that
. e—2m

+ =
%" {eo, o)

So that, at the level e = m = 0, such a geodesic is never complete.

Tog=2<x

Case 3. ¢ admits complez eigenvalues. »
Let A, A be the eigenvalues of ¢, and set A = a + iB. If v,v are the
eigenvectors associates to X, A, we get

(v,v) = (v,5) and (v,9)=0.
Taking v = e1 + ieg, we get
(e1,€1) + (e2,e2) =0 and (e1,e2) =0.

In other words, we may assume (up to an automorphism of £(1, 1)) that
{e1,e2} is an (:,-)-orthonormal basis with (eg, e2) = —1.
With respect to this basis, we have

Y
On the other hand, ade, is syrhmetric and we get easily

(e1,€1) = a, (e2,e2) = —a and (e1, e2) = B.
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Taking
2a8 B2 — a?
Y and b= 2
we obtain

ad;oe'lv = ae; + beg and adzoez = be; — aeg
Now, equations (x) are given by
. —B(a+a3)
0= eojeom2

z1 = zo(azxy + bx2) (5)
zg = zo(bzy — ax2)

We have the two first-integrals

(eo, eo)z'g +a (1:% - :c%) +28z1z9 =
b(eo, eo)z% +28z1290 = m -

[

Suppose that a # 0, and choose the level e = m = 0, we obtain

<80: 30) 2
ﬂ Q-

Substituting this formula into the first equation of (5), we get

$1+ 2—:t

o= :}:zg.

Thus, zg tends to oo when ¢ — b, where b < co. Hence, the metric
is non-complete The case where o = 0 is elementary.

o Assume now that (--)ig is degenerate. Then, we can find a vector b
such that

Vee B (bd)= (bz)=0.
Let {e}, €]} be a basis of E such that

(3'1’¢I1) = (6,2, e'z) =0 and (e'l,elg) = —1.

Then
[80’ eﬂ = eI’l’-[eO’ 3’2] = _8,2 and [3'11 3’2] =0

There are two cases which we may consider:
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Case 1. b is colinear to €] or eh.

Assume for example b.= e}, then (e5, e5) > 0 (since e
contain time-like vectors).

By an appropriate automorphism of £(1,1)) (which is an isometry
for the metric) we may assume that (ej,e5) = 1.

The first equation of (*) is then given by

L could not

o= 1:(2).

Thus, the metric is incomplete.

Case 2. b is not colinear to €}, neither to eb.

By an appropriate hyperbolic rotation (which is an automorphism
of £(1,1)), we may assume that b = e}. Next, with similar approach as
for the case of E(2) the first equation of (x) gives

T = :t:cg

so that, the metric is incomplete, and the conclusion follows.
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