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Exact controllability for the wave equation in
domains with variable boundary.

Manuel MILLA MIRANDA

Abstract

This paper is concerned with the problem of exact boundé.ry
controllability for the equation:

u' —Au=0inQ

where a is non cylindrical domain of B."“. The result is ob-
tained by transforming the problem in Q in a problem defined in
a cylindrical domain @ and the showing that these two problems
are equivalent. The result in Q was studied by the author in an
earlier paper applying the HUM of J. L. Lions.

1 Introduction

Let Q be an open bounded set of R™ with boundary I' of class c?,
which, without loss of generality, can be assumed containing the origin
of R™, and % : [0, 0o[—]0, 0o[ a continuously differentiable function. Let
us consider the subsets §; of R® given by

G={zeR"z=k(tly,yeN},0<t<T <00
whose boundaries are denoted by I';, and @ the non cylindrical domain

of R*+1, R
Q= J Qx{t} (1.1)

0<t<T
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with lateral boundary

£= | Tex {t}.

O<t<T

We have the following system:
" —Au=0 in é

u=v on % *
u(0) =0 u/'(0)=u! in

where " stands for &% and u(0),4/(0) denote, respectively, the func-
tions  — u(z,0), z — u/(z,0). Here v is the control variable, that is,
we act_on the system (*) through the lateral boundary 5. 4

The problem of exact controllability for system (*) states as follows:
given T > 0 large enough, is it possible, for every initial data {uo, ul}
in an appropriate space to a find a control v driving the system to rest
at time T, i.e., such that the solution u(z,t) of (*) satisfies

u(T) = 0, ¥/(T) = 0? (1.2)

In this paper we show that system (*) is exactly controllable. Our
approach consists first in transforming (*), by using k(t), in a system
defined in the cylindrical domain Q@ = Qx]0, T'[. This system will have
the following form:

w’ — % (aij(y, t)g,%.) + bi(y, t)% +di(y, t)% =0in Q
w=gonX=TIx|0,T| **)

w(0) = w° w'(0) = w! in Q.

(Here and in what follows the summation convention of repeated indices
is adopted). Then we show that the study of the exact controllability
problem for (*) reduces to the study of the controllability for system
(**). The second v will be expressed in function of a weak solution 6
of the wave equation in the non cylindrical domain (5 For that, an
appropriate change of variables is needed.

The exact controllability for system (**) was analised by the author
in [14). The Hilbert Uniqueness Method (HUM) of J. L. Lions [10}, [11]
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is used in this analysis. The application of this method can be also found
in C. Fabre and J. P. Puel [4], J. P. Puel [15], J. P.Puel and E. Zuazua
(16], E. Zuazua [19], [20], [21], V. Komornik [7] and L. A. Medeiros [13].

One can find non cylindrical domains (5 like those we have considered
in (*) in R. Dal Passo and M. Ughi [3] and in J. Limaco {8], both in the
parabolic case and when (2 is the unit ball of R”. Other models in non
cylindrical domains can be found in J. P. Zolesio [18].

The existence of solutions of the initial boundary value problem for
the nonlinear wave equation in general non cylindrical domains é was
studied among other author by J. L. Lions [9], L. A. Medeiros [12], when
Q is increasing and by C. Bardos and J. Cooper [2] when Q is time like.
A. Inoue [6] also analised this type of problems. The linear case was
treated by J. Sikorav [17] when Q is time like. He used tools of Differ-
ential Topology. The non cylindrical domain Q that we have considered
in (*) is time like but it is not necessarily increasing or decreasing. This
occurs because the derivative k’'(t) does not have sign condition. Q is
named time like when the unit normal vector 7 = (7, 7¢) to s, directed
towards the exterior of Q, satisfies | n; |<| 7 |. The exact internal con-
trollability problem for the wave equation in non cylindrical domains

was treated by C. Bardos and G. Cheng [1]. They did not use HUM.

The paper is organized as follows:
2. Main result
3. Summary of Results on the Cylinder
4. Spaces of the Non Cylindrical Domain

5. Proof of the Main Result

2 Main result
Let us introduce some notations (cf. J. L. Lions [11]). Let ¥° € R™ m(y)

the function y — y° and v(y) the unit normal vector at y € I, directed
towards the exterior of 2. We consider the sets

I'(y°) = {y € [;m(y) -v(y) 20}, Z(°) =TE%)x]0,T]
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and the corresponding sets in the (z,t)-coordinates,

o) = {z €Tz = kyy € TGO}, 0<t<T

2= U 6 x {t

0<t<T

In the definition of I'(y°), - denotes the scalar product in R?. We
represent by 1 = (nz,7¢) the unit normal vector to X, directed towards
the exterior of Q and by v* the vector 9,/ | 7 |. Let

R(y°) = sup | m(y) | M =sup |y |
yel ] yeN

and \; the first eigenvalue of the spectral problem —Ayp = Xy, ¢ €
H (D). '

We make the following assumptions:
The boundary T of Q is C? (H1)

and concerning the function k,

k € Wi (10, 00]) (H2)
0 < kg = inf k(t), sup k(t) =k1 <00 (H3)
t>0 >0 :
1
) |=r< = H4
sup K@) |=7 < 37 (H4)

00
31:/ | &' | dt < oo, lgz/oolk"ldt<oo (H5)
. 0 0

Hypothesis (H4) implies that the non cylindrical domain Q is time
like. The unit outer normal vector 5(z,t) to ¥ is given in Remark 4.1.

All the scalar function considered in the paper will be real-valued.
In Q, Q defined by (1.1), we have the following system:

v —Au=0 in Q

v on g(yo)
10 on fl\f)(yo)
u(0) = u%, 4/ (0) = u!

2.1)

U =
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In (3.9) we will give an explicit value for the minimal contfollability time
Ty depending on n, R(y°), A1, the function k and on the geometry of 2,
and in (5.20), an isomorphism

- L3(Qo) x H 1) — HE(S0) x L2(S), A1{ }= {90,01}

which allows to compute the control v for the initial data {uo', ul}.
Now we state the main result of the paper.

Theorem 2.1 We assume that the hypotheses (H1)-(H5) are satisfied.
Let T > Ty. Then for each initial data {u®,u'} belonging to L?(Qp) x

H™Y(0), there exists a control v € L%(0,T; L3 (T+(y")) such that the
solution u of system (2.1) satisfies the final condition (1.2). Moreover,
the control v has the form v = 86\dv* where 0 is the weak solution of
the problem

—A6=0 in (5
=0 on £
6(0) = 6%, 6'(0) = 6%,
with {00 01} Ay {u ul}
The next three section will be devoted to the proof of the above
theorem.
3 Summary of results on the cylinder

In this section we list the results on the cylinder Q@ that we will use in
Section 5. Its proofs can be found in [14].
We consider the operator '

Lw=w" — 8?; (atj(y’ t)-———) + b,(y, t) + di(y, t) (3.1)

where
aij(y, t) = (fsij - k'zyiyj) k2,

bi(y,t) = —2k'k Ly, diy, t) = [(1 - n)k? — k"k]k "2y,
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Then for 'z test function in Q, we have

T r T b 9z
Lw)zd dt:/ / "o —Vlay— | +
,/o ,/f‘l( w)zdy o Ja"¥ [z 8y \ " 8y;
+ a(b)'.a-(d)ddt /T/ L*zdydt
—\0;2) ~ — 4 = w z .
dyi dyi Y 0 Ja Y

We obtaih

8z 0z
—(biz) = bj— — 2nk'k 12 + (2% — 2k"K) K2y, —
ayi( ‘Z) '3% + ( ) yiayi

”2_ " K " 2 R-2, e
(2nk Onk k) 2y — ” (diz) = ["k — (1= n)k"2R v

+nk"k — n(l — n)E?|k 22
Thus L*z, the formal adjoint of L, has the form

L*2=2"— ;9%: ( i t) 5~ ) + bi(y, )—— + Pz (3.2)
where
Pz = —2nk'k 12+ [(n+1)k2— k”k]k“2y,§—+[n(n+ 1)k2 —nk"k)|R 2.
Let us consider the problem
L*2z=h in Q
z=0 on X (3.3)
2(0)=2%2/(0)=2' in @
with data
L e H}Q), elL?*R), heLl(0,T;L*R)). (3.4)

A function z : @ — R will be called a weak solution of Problem (3.3) if
z belongs to the class

z € L®(0,T; HY(Q)), 2’ € L™(0,T; L3 (R));
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satisfies the equation

T ‘. T T 8z
_ 1ol Radedl
A (', ¢)dt —l-‘/(; a(t,z,{)dt-{-/(; ,<b,ayi,§>dt

T T
+ [ pagia= [ e)ar

Ve € L3(0, T; H3 (), &' € L0, T; L2(R2)),£(0) = &(T) = 0

and the initial conditions
2(0) = 2°, 2'(0) = 2%

Here (-,-) denotes the inner product of L?(f), (-,-) the duality pairing
between F' and F, F being a generic space and F' it dual (these nota-
tions will be maintained throughout the paper) and

3z O
t,z2,€) = ii(y, t) ——dy.
0'( 2 5) /Qau(y )ayj By Yy

We observe that if z is a weak solution of Problem (3.3) then 2’ is
weakly continuous from [0, T'] with values in L2(Q2). Therefore the above
initial condition 2’(0) makes sense. The regularity of 2’ follows from
2 € L%(0,T; L%(f)) and 2" € L'(0, T; H~1(R)). The second condition
is obtained from the integral equation of the definition of weak solution.

Concerning to Problem (3.3) we have the following result:

Theorem 3.1 For each data 2°, 2%, h in the class (8.4), there ezists an
unique weak solution z of Problem (3.8). This solution has the regularity:

z € C([0, T); Hg () n C*((0, T); L*(®)

and

a_z 2 .2
> & 1%0,T; LA(T). (3.5)

From (8.5) it follows that 3‘% belongs to L2(0,T; L*(T)) where

0z ( t) 0z
2% i) 20
dup TG,



442 Manuel Milla Miranda

We obtain all the above results if instead of Problem (3.3) we consider
the backward problem:

L*2=h in Q@
2=0 on X (3.6)
2(T)=2%2(T)=2! in Q

Let us consider the i)roblem

Lw=0 in Q
w=g on I (3.7)
w(0) = w’,w'(0) = w'
with data
w’ e L3(), wle HY), geL%0,T;L%I)). (3.8)

We say that w € L>(0, T; L2(Q)) is a solution by transposition of Prob-
lem (3.7) if.

7 s )t = @ty — (2@, 000 o)\
A(w,h)dt—(wl,z(O)) »('w ,2'(0)) <k(0) ya-ayi, (0)>

T 8z
A G
0 ova L(T)

for every h € L1(0,T; L?()) where z is related to A by Problem (3.6)
with 20 = 2! = 0.
We have the following result:

Theorem 3.2 For each data w0, wl, g in the class (9.8), there exists an
unique solution by transposition w of Problem (8.7). This solution has
the regularity

w € ¢([0,T); L3(Q)) n ([0, T); H~1(R)).

We can change the initial data at time ¢ = 0 by final data at time
t = T in Problem (3.7) and obtain the same result above.
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In the sequel we introduce some constants in order to state the main
result of this section. By hypotheses (H3), (H4) of Section 2 one has
that there exists a positive constant ap such that

aij(y’ t)&‘t&} = a'Oé'igi’ V{yv t} €N x [0’ 00[, V§ € R".
With this and the notations of Section 2, we define:

-1
Co = 2 (1 + 7k M2+ 72M2 + naok}) (aok§) (&2 +t2) +

-1
+2 (\/*M + n) (o7 + 7+ k1) (ag” k30" (€1 + £2)
C1 = e, =

The minimal controllability time Ty is then defined by

To = [2a5 *R(y%) + K1 + Ko + K3]CoC; ! (3.9)

where

K1 = 27[(n — 1)M +2R(@%°) + 222 M R(y%)}/aokorl/?

K2 =261(n + 1)R()[rM + ag/*ko] /aok3
K3=flin(n+1)[7M + afl)/zko]/aokg,\im.
We consider the problem |
Lw=0 in @
g on Z(@°)
0 on X\XZ(y9)
w(0) = w®, w'(0) = w!

(3.10)

w =

We have the following exact controllability result:

Theorem 3.3 Let T > Ty, Tp given by (3.9). Then for every {wo, wl} €
L3(Q) x H™Y(Q) there exists a control g € L%(X(y°)) such that the so-
lution by transposition w of Problem (3.10) satisfies

w(T) =0, w'(T)=0.

Remark 3.1 We observe that if k() = 1 then K; = K2 = K3 =
0,C1 = C3 =1 and ag = 1. Therefore Ty = 2R(y0). Thus in this case
Ty coincides with the minimal controllability time obtained earlier by J.
L. Lions [11} and V. Komornik [7] for the wave equation u” — Au = 0.
Let ¢ be the weak solution of problem
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L*¢=0 in Q@
=0 on X (3.11)

0(0) = % ¢'(0) = in Q

with {¢° ¢} € H§(Q) x L%(R), and ¥ the solution by transposition of
the problem
Ly=0 in Q@

_ on Z(y°)
v= (;% on T\EG) (3.12)

$(T)=0,9'(T) =0

With these last two problems, we introduce the operator A,
HY x L2(Q) — H-Y(Q) x L3(Q)
(% 0"} = A% '} = {9'(0) - ZPu 2, —y(0)} (3.13)
The proof of Theorem 3.3 is reduced to prove that the operator
A is an isomorphism from H}(Q) x L*(Q) onto H}(N) x LA(Q).

This is dorie by showing, by multiplier techniques, that the following
observability inequality holds for T > Tp:

LEDRET I //

where ¢ is the solution of problem (3.11). We refer to [14] for the
technical details.

dl" dt

Remark 3.2 In system (3.12) we can consider 38;}’4 instead %”2 and to
obtain also the exact controllability for system (3.16). On the other side

if o(y,t) = k™(t)0(k(t)y,t), z = k(t)y, then

oy _0 8
m(y,t) = (6ij—k'2yeyj)k 2‘—,(y,t)l/i(y)= (3.14)

= (8 — K zim; ) k™ ———(x t)v} (z,t)
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and
00

5 (=, t)..
(For the calculations see (5.13)). We note that the second member of

(3.14) is not a known derivative of the function 6. For this reason we
consider %f instead 58% in (3.12).

Ay |
Ly, t) = k!
5, o t)

4 Spaces on the non cylindrical domain

Let u: é > R be a function such that
w(ot) =0 (rpt) €SLPOTWRAQ@). (@)
We then have u(t) € Wi™() a.e. t in ]0,T[ and

| u(®) lwmeay= k3 ™"@) | £¢) lwmaga -

Therefore,

Cs || €(t) lwpa@y <l w(®) lwmay< Call €(t) lwma)y - (42)
Here and in what follows C3, C4 will denote generic positive constants.
We denote by LP (0,T; W5"9(R)) (1 < p < 00,1 < g < 00,m a non-
negative integer) the space of (classes of) functions u : Q — R such that
there exists £ € LP (0, T; Wy "%(Q)) verifying (4.1), equipped with the
norm
T i/p
I« Il oo, wimacae))= ( L' | (?) "’V)V(:"ﬂ(nt) dt) ,1<p < o0
U || foo (0. - W™ = esssup || u(t m,q .
I 2 Il oo o, wima(e)) by I w(t) lwmaan)

By (4.2), the space X = LP (0,T; Wy "%(§;)) is a Banach space and the
linear application

LP(0;T; Wy (Q) — X, €~ UE=u (4.3)

is an isomorphism.
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We write C ([0, T];Wg"%(:)) to denote the closed subspace
of L (0,T;Wy"?()) constituted by functions u such that the corre-
sponding £ given by (4.1) belongs to C ([0, T]; W %()).

The dual space of X = L?(0,T; H}(Q)) (1 <p < oo, % + I—}r = 1)

will be identified with L? (0,7; H~1(:)). In what follows we char-
acterize the vectors of this space. In fact, we have by the proper-
ties of U defined in (4.3), that if S € X' then there exists a unique
R € L7 (0,T; H~1()) such that .

(Sv u) = (315)1 £= u-—lu

and
Cil|RILISISCslR.

Tho show that, it is sufficient to take R = U*S where U* is the adjoint
operator of U. On the other side, with R we define the operator P:

(P(t),@) = (R(),8), o € H(Q)
where 8(y) = k™(t)a(k(t)y). Then

Ca.[| R(t) la-1@)<| P(t) lg-1(2)< Ca || R(E) |H-1(n)
since
Cs || 8 laze) <l e o< Ca ll B e -

Thus, by identifying S with B and R with P, we obtain that
the space L? (0,T;H 1(f)) is constituted by the functionals S such
that

S :]0,T[— H~(f), S measurable

IR e ¥ (o,T;H—l(Q)) satisfying (S(t), o) = (R(t), B)
aetin]0,T, Ay)=k"(t)alk(t)y)

and the norm is given by

T , 1/
IS o 0, 8-1024))= ([; I @) -1 dt) ,1<p <o

I S Nleo(o,7;m-1(02))= esssup || S(t) llz-1() -
t€]0,T"

)
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The space C([0, T]; H1(2:)) will be defined as the closed subspace
of L*(0,T; H™ (%)) constituted by the functionals S such that its cor-
responding R belongs to C([0,T]; H™ Q).

Let u : Q +— R be a function and

u(x,t)=w(%t),t), w:Q—~R

E(t) 8w [ = z

, — . En— R O— — , ———

Vet = ~rgia (ept) v () @9
Let u € LP(0,T;L%(f%)),1 < p < 00, be such that £ belongs

to LP(0,T; H™1()), where £ is so that U¢ = u. Let w = k™", that is,

u(z,t) = k‘"(t).g (k(t) ) =w (k_(ﬁ t).
Then w € LP(0, T; L%()) and w’ € LP(0,T; H~1(Q)). By (4.4) we have

w©0) = (S us + '8

k(¢

then

where a E H}(Q) and B(y) = k™(t)a(k(t)y).
Clearly, v’ € LP(0,T; H ‘I(Qt))
In particular if u € L?(0, T; H}(2:)) and w’ € LP(0,T; L3(R)) then

(«'(¢), a)L2(q) = ( k,((:)) y'ﬁu— v, 'B)Lz(g)

with o € L2(€). Clearly «’ € LP(0, T; L3(Q)).

We denote by L2(0, T; L2(T's)) the Hilbert space of functions v : $
R such that ther exists g € L2(0, T; L?(T')) verifying

waﬂ=k**um(ﬁ%J),

equipped with the inner product

T
@D iromaamy = [ @050y dt.
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Remark 4.1 The unit normal vector 7(z, t) at (z,t) € S, directed to-
wards the exterior of @, has the form

1) = ) =K O @)} -+ R0 | @) A7 v =

In fact, fixe (z,t) € $. Let ¢ = 0 be a parametrization of a part U

of T, U containing y = z/k(t). Then a parametrization of a parte V of
E (z,t) €V, is ¢(z,t) = cp(:’c/k(t)) = 0. We have

Vy(z,t) = {Ve), —K'(t)(, Vo(v))} -

k(t

From this and observing that v(y) = Vp(y)/ | Ve(y) |, the remark
follows. '
Let v*(z,t) be the z-component of 5(z,t), | v*(z,t) |= 1. Then by

Remark 4.1, one has
V*(z,8) = v (k (t)) (4.5)

5 Proof of the main result

5.1 Weak Solutions and Solutions by Transposition.

In order to motivate the definition of weak solutions and solutions by
transposition of the wave equation in.Q, we obtain some relations be-
tween functions. We consider .

u(z,t) = w (%,t) . Oz, t) = k™(t)z (E% t)

o(z,t) = k" l(t)g(k(t) ) v:iS- R

W(z,t) = —_’“k—'((-tf)lyiz—z (E%t) + o (kf—t)t) (5.1)
0(z,t) = — nk" L)k (t)2 (k S ) (5.2)

One has
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e o"(z,8) — Aulz, t) = Lw (%t) A,
0" (x,t) — A0z, 1) = k() L7 (ﬁ t)

where L and L* were defined, respectively, in (3.1) and (3.2).
With the above functions we obtain formally the following results:
The change of variable = = k(t)y gives

T T
/ (v" — Au)bdzdt = / / Lw z dydt (5.3)
0 J 0 J
/ / wL* z dydt = / / u(0” — A@)dzdt (5.4)
2
and by (4.5),
k2 0z
6,] — k2 y,yj 5——u,g dl'dt = (5.5)

30
6~~—k’2k“2 i) k" ——y* v dl dt.
A .A;t U. xtm]) a$juz Y

The Green’s formula, the condition z(¢) = 0 on I', the change of variable
z = k(t)y and the relations (5.1), (5.2) furnish the identity

[w®:0) — woom - [ E0 20 0a= 6o

. 000 - w(ep @)z

The Green’s formula, the integration by parts on [0,T] and the conditions
2(t)=0o0n I',w = g on X, yield

T T
/ /szdydt:/ /wL_*zdydt+N(T)—N(0)+J (5.7)
0 JO 0 JN

where N (t) denotes the left side of (5.6) and J, the left side of (5.5).
Then from (5.3)-(5.7) we have

T
/ (" — Au)ddzdt= / [W/(T)8(T) — u(T)0'(T)ldz  (5.8)
0 J (o8
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- [ W@0@) - u(@)0'(0)1a= +

T a0
+ o 22 ) gL e
A At (6,J k“k :1:,2:]) R o -V vdldt +

J
T
+ / / u(6” — A8)dzdt.
0 Ja.

Motivated by (5.8), we introduce the following problem:

R
1
B
S
Il
)
B
Q)

6=0 on X (5.9)
0(0) =6 0'(0)=0' in
with data
0° € HY(), 6 e L¥() h e LY0,T;L3(y)). (5.10)
We say that 0 is a weak solution of Problem (5.9) if

6 € C(I0, T HJ(®y), ¢ € C(10, T LY ()

and verifies

T T T
- /0 (¢',a) 2, ydt + /0 (8, @) Hyeydt = /o (h, @) p2(q,)dt

Vo € L2(0,T; H} (%)), o' € L3(0,T; L3()), o(0) = a(T) = 0
0(0) = 6°, 6'(0) = 6!
Theorem 5.1 Let 0(z,t) = k~™(t)z(x/k(t),t). We have that if z is

a weak solution of Problem (3.3) then 6 is a weak solution of Problem

(5.9) and reciprocally. The data {00, 01,;;} and {20, 21,h} are related
by

6%(z) = k~"(0)2" (7:?%)  (sa)
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0'(x) = — nk~"1(0)K(0)<° (k(O)) (5.12)

oK oG () + 0 ()

(see (5.1), (5.2)).
Theorem 5.1 is showed by relating integrals on {); and 2 and using
Theorem 3.1 and (5.2).

The uniqueness of solutions of Problem (5.9) is a consequence of .
Theorem 5.1. We also have that, since 9——— k‘"‘lgyi

7

96 90

5y € L0, T;L3(TY)) and -(y t) = k"+1(t) (k(t)y, t)
ox; ov*

(5.13)

Remark 5.1 Clearly we can change the data at time ¢t = 0 by final
data at t = T in Problem (5.9) and obtain all the above results for the
solution w of the respective backward problem.

In the sequel we introduce the solutions by transposition. Let us
consider the problem

u” - Au =0 in 63
u=v on X (5.14)
u(0) = w0, u/(0) =ul in €
with data
w0 e L3 (), ule HY(Q), wve L2(0,T;L3Ty)). (5.15)
Motivated by (5. 8) one introduces the following definition: We say

that u € L®(0,T;L%()) is a solution by transposition of Problem
(5.14) if u verifies -

T
/0 (. k)2, = (u!,6(0)) — (u°,6'(0)) 2, )~

o0
/ / i — K 2k :z::z:)kn"'la -v; vdldi

Zj
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Vh € LY(0, T; L%())
(v* defined in (4.4)) where @ is the weak solution of the problem

-3
>
D
il
)
<]
Q)

6(t) =0, 6'(t) = 0

‘Theorem 5.2 Let u(x,t) = w (}%{5, t). We have that if w is a solution

by transposition of Problem (3.7) then u is a solutzon by transposztzon
of Problem (5.14) and reciprocally. The data {u®,u!,v} and {w wl, g}
are related by

W(z) = w° (E:_OT) (5.16)

(ul,a)—< k'((g)) fu! w1,5>, a € H3 (), (5.17)

a(z) = k~™(0)8 (&)

o(z,t) = k" L(t)g (k—(%; t) (5.18)

The proof of Theorem 5.2 is obtained by the same arguments used
in the proof of (5.8). For the initial conditions one uses the following
result:

Remark 5.2 Let u® € L2(f;) and w®(y) = u%(k(t)y). Then

u? w’

To see this it is enough to make the respective integrations.
From Theorem 5.2 the uniqueness of solutions of Problem (5.14)
follows and by Theorem 3.2,

u € C([0,T); L3(R)) N C*([0, T); H ().
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We observe that, in addition to (5.6), we have

T : 56
6--—k’2k—2 iz ) kM —u? dI‘dt—
/ A Y I"”) z; a

9 0z
/ / bij — k' y,y, k 25-—u,a—dl"dt

14

5.2 Proof of Theorem 2.1.

Let us consider the system (2.1), that is,

W'—Au=0 in Q

v on E(yo) :

0 on £\5G9) (5.19)
w(0)=ul, /(@) =u! in Qo

u =

where 6 is constructed with T > To, Ty given by (3.9). With (5.10)-
(5.12) and (5.15)-(5.17), we determine, respectively, the isomorphisms

Gy {zo, zl} = {00, 01} snd G2 {wo,wl} = {uo, ul} .

Consider the operators

2k'(0 w
o {wo,wl} = { 1o :(g))yza wo}y

A {zo’z1} — {w’(O) 2:(,(()())) a‘w(O)’ }

where A is the isomorphism defined in (3.13), that is, z is the weak
solution of the problem

L*2=0 in Q
z=0 on I (5.20)

2(00=2%2(0)=2' in Q
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and w the solution by transposition of the problem

Lw=0 in Q

% on X9

0 on X\Z@Y
w(T)=0, w'(T) =0

w =

(5.21)

Since A is an isomorphism we have that for each {w?, w} e H71(Q) x
L2(Q) there exists an unique {2°,2'} € H}(Q) x L%2) such that

! 0
A {zo, zl} = {wl"— gf—(%—)-yi@—.-, —wo} . (5.22)

Thus if w is the solution of problem (5.21) constructed with {20, 2}, we

have
w(0) = w?, w'(0) = wl.

With the above operators we determine the isomorphism
A= GlA_l(rGEI, that is ,
Ay : LX(Qg) x H™1(Qo) — HE(0) x LA(R), A: {uO, ul} - {o°, ol}.
' (5.23)
Let {uu'} € L%(0) x H 1(Q). Then by (5.23), we determine
{6°,6}. With this data we find the weak solution 6 of the problem
0"-A6=0 in Q
=0 on £ (5.24)
0(0) =69 6'(0) =6 in
and with {zo, zl} = G;l {00, 91}, the weak solution z of the problem
L*2=0 in Q@
z=0 on X

2(0)=2%2'(0)=2' in 0
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Next, we determine the solution by transposition @ of the problem
Lv=0 in Q

& o 0 ~ A o
"7 { 6E 02 g%.‘,()yo) #(0) = w°, ¥'(0) = wl (5.25)

where {w? w'} and {0, 2!} are related by (5.22). We have the unique-
ness of solutions of problem (5.25) that & = w, w the solution of (5.21)
constructed with {zo, zl}. Therefore

#(T)=0, @'(T)=0.

Finally, from Theorem 5.2, it follows that u(z,t) = w (F%’ t) is the
solution by transposition of Problem (5.19) and u satisfies the final con-
dition

u(T) =0, u/(T) = 0.
By (5.13) and (5.14), we have that the control v has the form

00

v= v’

6 weak solution of (5.24).

Thus, the proof of Theorem 2.1 is concluded.

Acknowledgement: We thank to Prof. E. Zuazua for his important
remarks. -
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