Perturbed copula: Introducing the skew effect in the co-dependence

Alberto Elices
Model Validation Group
Risk Methodology
Group Santander

Jean-Pierre Fouque
Dep. Statistics & Applied Probability
University of California

Financial Engineering Summer School 2010
Madrid, July 6th - 9th, 2010
Outline

- Introduction.
- Formulation of perturbed copula.
- Calibration.
- Interpretation.
- Case study: FX quanto options to third currency.
 - Comparison between gaussian and perturbed copulas.
 - Comparison with a market standard: local volatility model.
- Conclusions.
Introduction

- Copula models are widely used to obtain joint asset behaviour when market information is only available for single assets.

- It is necessary to make assumptions about joint relationships when liquid multi-asset products are not available or their joint relationships are very complex.

- Most widely used copula model: gaussian copula.
 - Advantages: It is analytical, easy to interpret and condenses co-dependence in a single parameter: the correlation.
 - Drawbacks: *no fat tail behaviour*, own asset information is not incorporated in the co-dependence.
Contributions of perturbed copula:
- Incorporate the skew effect in the co-dependence of two lognormal-inspired random variables.
- Hypothesis: both random variables have a common fast mean-reverting stochastic volatility factor.
- The perturbed copula is analytic: both joint and marginal distributions are approximated using asymptotic expansions.
- The copula incorporates two parameters for each asset (level and slope of skew) as well as correlation.

Examples of traditional applications of copulas:
- Credit models (joint distribution of many factors).
- Hybrid or exotic models (joint distributions of a few factors).
Introduction

- **Copula theory:**
 - Marginal distributions $f_i^{\text{marg}}(x_i)$ of values x_i are known.
 - Original variables x_i are normalized into z_i confined in [0,1] through the cumulative density function.

\[
z_i = \int_{-\infty}^{x_i} f_i^{\text{marg}}(s) ds
\]

- The joint density shows how co-dependence, $f_{\text{cop}}(z_1, z_2)$, can be isolated from marginal behaviour $f_i^{\text{marg}}(x_i)$

\[
f_i^{\text{joint}}(x_1, x_2) = f_{\text{cop}}(z_1, z_2) f_1^{\text{marg}}(x_1) f_2^{\text{marg}}(x_2)
\]

- Copula function has the whole co-dependence information:

\[
f_{\text{cop}}(z_1, z_2) = \frac{f_{\text{cop}}^{\text{joint}}(\xi_1, \xi_2)}{f_{\text{cop} 1}^{\text{marg}}(\xi_1) f_{\text{cop} 2}^{\text{marg}}(\xi_2)} \quad z_i = \int_{-\infty}^{\xi_i} f_{\text{cop} i}^{\text{marg}}(s) ds
\]
Formulation of perturbed copula

- Starting point: lognormal-inspired underlyings with vols related by a fast mean reverting ($\varepsilon \to 0$) O-U process.

\[
\begin{align*}
 dX_t^{(1)} &= \left(\alpha_t^{(1)} - \frac{1}{2} f_1^2 (Y_t)\right) dt + f_1 (Y_t) dW_t^{(1)} \\
 dX_t^{(2)} &= \left(\alpha_t^{(2)} - \frac{1}{2} f_2^2 (Y_t)\right) dt + f_2 (Y_t) dW_t^{(2)} \\
 dY_t &= \frac{1}{\varepsilon} (m - Y_t) dt + \frac{\nu \sqrt{2}}{\sqrt{\varepsilon}} dW_t^{(Y)} \\
 X_t^{(i)} &= \ln\left(S_t^{(i)}\right)
\end{align*}
\]

- Co-dependence defined by $f_i (Y_t)$ and correlations: $\rho \rho_{1Y} \rho_{2Y}$

\[
\begin{align*}
 d(W_t^{(1)}, W_t^{(2)}) &= \rho dt \\
 d(W_t^{(1)}, W_t^{(Y)}) &= \rho_{1Y} dt \\
 d(W_t^{(2)}, W_t^{(Y)}) &= \rho_{2Y} dt
\end{align*}
\]
Formulation of perturbed copula

- Additional hypothesis: common, normalized ($\langle g^2 \rangle = 1$) volatility dynamics with different levels (σ_1 & σ_2)

$$f_1(y) = \sigma_1 g(y) \quad f_2(y) = \sigma_2 g(y) \quad \langle g \rangle = \int_{-\infty}^{\infty} g(y) \frac{1}{\nu \sqrt{2\pi}} \exp\left(-\frac{(y - m)^2}{2\nu^2}\right) dy$$

- Objective: know copula joint & marginal distributions:

$$u^\xi = P\left(X_T^{(1)} \in d\xi_1, X_T^{(2)} \in d\xi_2 | X_t = x, Y_t = y \right)$$

$$v_1^\xi = P\left(X_T^{(1)} \in d\xi_1 | X_t = x_1, Y_t = y \right)$$

$$v_2^\xi = P\left(X_T^{(2)} \in d\xi_2 | X_t = x_2, Y_t = y \right)$$

- Copula function:

$$f_{cop} (z_1, z_2) = \frac{u^\xi(t, x_1, x_2; T, \xi_1, \xi_2)}{v_1^\xi(t, x_1, T, \xi_1) v_2^\xi(t, x_2, T, \xi_2)}$$

$$z_i = P\left(X_T^{(i)} \leq \xi_i | X_t = x, Y_t = y \right)$$
Formulation of perturbed copula

- The joint and marginal transition density functions satisfy the F-P (Fokker-Plank) equation:

\[
\mathcal{L}^\varepsilon u^\varepsilon(t, x_1, x_2, y) = 0 \\
u^\varepsilon(T, x_1, x_2, y) = \delta(\xi_1; x_1)\delta(\xi_2; x_2)
\]

\[
\mathcal{L}^\varepsilon = \frac{1}{\varepsilon}\mathcal{L}_0 + \frac{1}{\sqrt{\varepsilon}}\mathcal{L}_1 + \mathcal{L}_2
\]

\[
\mathcal{L}_0 = (m - y) \frac{\partial}{\partial y} + \nu^2 \frac{\partial^2}{\partial y^2}
\]

\[
\mathcal{L}_1 = \nu \sqrt{2}\rho_{1Y} f_1(y) \frac{\partial^2}{\partial x_1 \partial y} + \nu \sqrt{2}\rho_{2Y} f_2(y) \frac{\partial^2}{\partial x_2 \partial y}
\]

\[
\mathcal{L}_2: \text{Fokker-Plank generator for two underlyings.}
\]
The solution is expanded in powers of \(\sqrt{\varepsilon} \):

\[
u^\varepsilon = u_0 + \sqrt{\varepsilon}u_1 + \varepsilon u_2 + \varepsilon^{3/2}u_3 + \cdots
\]

Replacing the expansion in the F-P equation, a system of PDEs is obtained.

\[
\frac{1}{\varepsilon}\mathcal{L}_0 u_0 + \frac{1}{\sqrt{\varepsilon}}(\mathcal{L}_0 u_1 + \mathcal{L}_1 u_0) + (\mathcal{L}_0 u_2 + \mathcal{L}_1 u_1 + \mathcal{L}_2 u_0) + \\
+ \sqrt{\varepsilon}(\mathcal{L}_0 u_3 + \mathcal{L}_1 u_2 + \mathcal{L}_2 u_1) + \cdots = 0
\]

\[
\begin{cases}
\mathcal{L}_0 u_0 = 0 \\
\mathcal{L}_0 u_1 + \mathcal{L}_1 u_0 = 0 \\
\mathcal{L}_0 u_2 + \mathcal{L}_1 u_1 + \mathcal{L}_2 u_0 = 0 \\
\mathcal{L}_0 u_3 + \mathcal{L}_1 u_2 + \mathcal{L}_2 u_1 = 0
\end{cases}
\]

This system of PDEs is solved up to first order: \(u_0, \sqrt{\varepsilon}u_1 \)
Formulation of perturbed copula

- Zero order solution: joint density of gaussian copula:

\[
u_0 = \frac{1}{2\pi \sigma_1 \sigma_2 (T-t) \sqrt{1-\rho^2}} \exp \left(-\frac{1}{2(1-\rho^2)} \left[\frac{(\xi_1 - \tilde{x}_i)^2}{\sigma_1^2 (T-t)} - 2\rho \frac{(\xi_1 - \tilde{x}_1)(\xi_2 - \tilde{x}_2)}{\sigma_1 \sigma_2 (T-t)} + \frac{(\xi_2 - \tilde{x}_2)^2}{\sigma_2^2 (T-t)} \right] \right) \]

\[
\tilde{x}_i = x_i + \int_t^T \alpha_s^{(i)} ds - \frac{1}{2} \sigma_i^2 (T-t)
\]

- First order solution: obtained by derivatives of \(u_0 \) plus some coefficients calibrated to market: \(R_1, R_2 \)

\[
\sqrt{\varepsilon} u_1 = - (T - t) \left\{ R_1 \left(\frac{\partial^3 u_0}{\partial x_1^3} - \frac{\partial^2 u_0}{\partial x_1^2} \right) + R_2 \left(\frac{\partial^3 u_0}{\partial x_2^3} - \frac{\partial^2 u_0}{\partial x_2^2} \right) \\
+ R_{12} \frac{\partial^3 u_0}{\partial x_1 \partial x_2^2} + R_{21} \frac{\partial^3 u_0}{\partial x_2^2 \partial x_1} - (Q_{12} + Q_{21}) \frac{\partial^2 u_0}{\partial x_1 \partial x_2} \right\}
\]

\[
R_{ij} = \left(\frac{\sigma_j}{\sigma_i} \right)^2 R_i + 2 \left(\frac{\sigma_j}{\sigma_i} \right) R_j \rho \\
Q_{ij} = \left(\frac{\sigma_j}{\sigma_i} \right)^2 R_i
\]
Formulation of perturbed copula

- To get positive densities: solution in terms of tanh:

\[
u^{\varepsilon}(t, x_1, x_2; T, \xi_1, \xi_2) = \frac{1}{W} u_0 \left\{ 1 + \tanh \left(\frac{\sqrt{\varepsilon} u_1}{u_0} \right) \right\}
\]

- Similar solution for marginal densities:

\[
p_i(t, x_i; T, \xi_i) = \frac{1}{\sqrt{2\pi(T-t)}} \exp \left(-\frac{(\xi_i - \tilde{x}_i)^2}{2\sigma_i^2(T-t)} \right)
\]

\[
\tilde{x}_i = x_i + \int_t^T \alpha_s^{(i)} ds - \frac{1}{2} \sigma_i^2(T-t)
\]

\[
v_i^{\varepsilon}(t, x_1; T, \xi_i) = \frac{1}{W_i} p_i \left[1 + \tanh \left(-(T - t) \frac{R_i}{p_i} \left\{ \frac{\partial^3 p_i}{\partial x_i^3} - \frac{\partial^2 p_i}{\partial x_i^2} \right\} \right) \right]
\]
- **Interpretation of the 5 parameters of the copula:**
 - σ_1: controls the volatility level of S_1.
 - σ_2: controls the volatility level of S_2.
 - R_1: controls the skew of S_1.
 - R_2: controls the skew of S_2.
 - ρ: controls the correlation between S_1 and S_2.
Calibration

- R_i and σ_i are calibrated to fit exactly 2 strikes of each underlying skew using Newton-Raphson.

$$c_i(K,T) = P(t, T) \int_{-\infty}^{\infty} (\exp(\beta_i + \xi_i) - K)^+ v_i^\epsilon(t, 0, T, \xi_i) \, d\xi_i$$

- An initial guess for the parameters is estimated using a similar asymptotic procedure. ρ is input externally.

$$\sigma_{i0}^{\text{impl}}(K) = a \left\{ \ln \left(\frac{K}{F_{iT}} \right) \right\} + b$$

$$\beta_{i0} = \ln S_0^{(i)} + \int_t^T (r_s^{(i)} - q_s^{(i)}) \, ds - \frac{1}{2} \sigma_i^2 (T-t)^2$$

$$\sigma_{i0} = b - \frac{ab^2}{2} \quad R_{i0} = -a \sigma_i^3$$

a & b are obtained through linear regression of implied vol onto log-moneyness-to-maturity ratio.
Calibration: left and right skew generated with a Heston model

- Left: fitting of implied volatility: original vs perturbed copula.
- Mid: marginal copula density for left and right skew (LS, RS)
- Right: empirical density for left and right skew.
Interpretation

- Valuation of FX call on XAU/USD quantoed to EUR. Both S (XAU/USD) and X (EUR/USD) are quoted in USD.

\[p = E \left[(S_T - K)^+ X_T D_{USD}F_T \right] \]

- Double integral valuation with USD numeraire:

\[p = D_{USD}F_T \int_{\mathbb{R}^2} \left(e^{x_1} - K \right)^+ e^{x_2} f_{\text{joint}}(x_1, x_2) dx_1 dx_2 \]

\[f_{\text{joint}}(x_1, x_2) = f_{\text{cop}}(z_1, z_2) f_{1_{\text{marg}}}(x_1) f_{2_{\text{marg}}}(x_2) \]

\[f_{i_{\text{marg}}}(x_i) = \frac{1}{D_{USD}F_T} \frac{\partial^2 P_i(e^{x_i}, T, \sigma_i^{\text{impl}}(e^{x_i}, T))}{\partial K^2} \]

- 5 Heston skew scenarios LR, RL, RR & LL are created:
 - LL is shown; the rest can be obtained through symmetries.
Interpretation: left-left skew (LL): copula related functions

- Left: copula joint density function: \(f_{cop}^{\text{joint}} = u^\epsilon \)
- Middle: copula function \(f_{cop} = u^\epsilon / (u_1^\epsilon \cdot u_2^\epsilon) \) greater than one.
- Right: ratio > 1 of perturbed over gaussian copula functions.

\[\rho = +0.6 \]
\[\rho = -0.6 \]
Interpretation: left-left skew (LL): real joint densities

- **Left:** joint density \(f_{\text{joint}} = f_{\text{cop}} \cdot f_{\text{marg}} \cdot f_{\text{marg}} \) using *gaussian* copula.
- **Mid:** joint density \(f_{\text{joint}} = f_{\text{cop}} \cdot f_{\text{marg}} \cdot f_{\text{marg}} \) using *perturbed* copula.
- **Right:** ratio > 1 of perturbed over gaussian joint density.

\[\rho = +0.6 \]

\[\rho = -0.6 \]
Interpretation: premium corrections

\[p = \mathbb{E} \left[(S_T - K)^+ X_T DF_T^{USD} \right] \]

<table>
<thead>
<tr>
<th></th>
<th>Sce</th>
<th>Gcop</th>
<th>Pcop</th>
<th>P-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-LR (\rho = +0.6)</td>
<td>0.2640</td>
<td>0.2671</td>
<td>0.0031</td>
<td></td>
</tr>
<tr>
<td>2-LR (\rho = +0.3)</td>
<td>0.2593</td>
<td>0.2623</td>
<td>0.0030</td>
<td></td>
</tr>
<tr>
<td>3-LR (\rho = +0.0)</td>
<td>0.2558</td>
<td>0.2583</td>
<td>0.0025</td>
<td></td>
</tr>
<tr>
<td>4-LR (\rho = -0.3)</td>
<td>0.2523</td>
<td>0.2544</td>
<td>0.0021</td>
<td></td>
</tr>
<tr>
<td>5-LR (\rho = -0.6)</td>
<td>0.2476</td>
<td>0.2491</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>6-RL (\rho = +0.6)</td>
<td>0.2601</td>
<td>0.2585</td>
<td>-0.0016</td>
<td></td>
</tr>
<tr>
<td>7-RL (\rho = +0.3)</td>
<td>0.2552</td>
<td>0.2530</td>
<td>-0.0022</td>
<td></td>
</tr>
<tr>
<td>8-RL (\rho = +0.0)</td>
<td>0.2515</td>
<td>0.2495</td>
<td>-0.0021</td>
<td></td>
</tr>
<tr>
<td>9-RL (\rho = -0.3)</td>
<td>0.2479</td>
<td>0.2461</td>
<td>-0.0018</td>
<td></td>
</tr>
<tr>
<td>10-RL (\rho = -0.6)</td>
<td>0.2430</td>
<td>0.2416</td>
<td>-0.0015</td>
<td></td>
</tr>
<tr>
<td>16-RR (\rho = +0.6)</td>
<td>0.2614</td>
<td>0.2595</td>
<td>-0.0020</td>
<td></td>
</tr>
<tr>
<td>17-RR (\rho = +0.3)</td>
<td>0.2559</td>
<td>0.2533</td>
<td>-0.0026</td>
<td></td>
</tr>
<tr>
<td>18-RR (\rho = +0.0)</td>
<td>0.2520</td>
<td>0.2489</td>
<td>-0.0032</td>
<td></td>
</tr>
<tr>
<td>19-RR (\rho = -0.3)</td>
<td>0.2484</td>
<td>0.2447</td>
<td>-0.0037</td>
<td></td>
</tr>
<tr>
<td>20-RR (\rho = -0.6)</td>
<td>0.2438</td>
<td>0.2402</td>
<td>-0.0037</td>
<td></td>
</tr>
<tr>
<td>21-LL (\rho = +0.6)</td>
<td>0.2642</td>
<td>0.2662</td>
<td>0.0020</td>
<td></td>
</tr>
<tr>
<td>22-LL (\rho = +0.3)</td>
<td>0.2594</td>
<td>0.2620</td>
<td>0.0026</td>
<td></td>
</tr>
<tr>
<td>23-LL (\rho = +0.0)</td>
<td>0.2559</td>
<td>0.2500</td>
<td>0.0030</td>
<td></td>
</tr>
<tr>
<td>24-LL (\rho = -0.3)</td>
<td>0.2525</td>
<td>0.2559</td>
<td>0.0034</td>
<td></td>
</tr>
<tr>
<td>25-LL (\rho = -0.6)</td>
<td>0.2479</td>
<td>0.2509</td>
<td>0.0030</td>
<td></td>
</tr>
</tbody>
</table>

Joint copula functions
Case Study: FX quanto options to a third currency

- Valuation of FX call on XAU/USD quantoed to EUR. Both S (XAU/USD) and X (EUR/USD) are quoted in USD.
 - 5 correlation scenarios considered (0.6, 0.3, 0, -0.3, -0.6).
 - XAU/USD is highly left-skewed (OTM puts are favored).
 - EUR/USD is very mildly right-skewed (almost a smile).
 - \(\text{Spot}_{\text{XAU/USD}} = 937.79 \quad \text{Spot}_{\text{EUR/USD}} = 1.4029 \).
 - Strikes used: (656.46, 797.13, 937.79, 1078.47, 1125.36).
 - Maturities: 1y, 2y.
Case Study: Calibration to left skew – smile (LS) scenario

- Left: fitting of implied volatility: original vs perturbed copula.
- Mid: marginal copula density for left skew & smile (LS, SML)
- Right: empirical density for left skew and smile.
Case Study: left skew-smile (LS): copula related functions

- Left: copula joint density function: \(f_{\text{cop}}^{\text{joint}} = u^\varepsilon \)
- Middle: copula function \(f_{\text{cop}} = u^\varepsilon / (u_1^\varepsilon \cdot u_2^\varepsilon) \) greater than one.
- Right: ratio > 1 of perturbed over gaussian copula.

\[\rho = \pm 0.6 \]
Case Study: left skew-smile (LS): real joint densities

- Left: joint density \(f_{\text{joint}} = f_{\text{cop}} f_{1 \text{marg}} f_{2 \text{marg}} \) using gaussian copula.
- Mid: joint density \(f_{\text{joint}} = f_{\text{cop}} f_{1 \text{marg}} f_{2 \text{marg}} \) using perturbed copula.
- Right: ratio > 1 of perturbed over gaussian joint density.

\[\rho = +0.6 \quad \rho = -0.6 \]
Case Study: comparison of gaussian versus perturbed copula

- **Premium difference in bp of perturbed minus gaussian copula varying moneyness, maturity & correlation:**
 - All corrections are *positive* and can go beyond 1% of notional amount.

<table>
<thead>
<tr>
<th>Sce — corr</th>
<th>+0.6</th>
<th>+0.3</th>
<th>+0.0</th>
<th>-0.3</th>
<th>-0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7 1y</td>
<td>42.7220</td>
<td>39.0641</td>
<td>43.2135</td>
<td>55.5846</td>
<td>70.5293</td>
</tr>
<tr>
<td>0.85 1y</td>
<td>26.3410</td>
<td>28.9175</td>
<td>36.3527</td>
<td>45.9614</td>
<td>47.8687</td>
</tr>
<tr>
<td>ATM 1y</td>
<td>37.6637</td>
<td>29.2587</td>
<td>34.3510</td>
<td>40.8820</td>
<td>42.3868</td>
</tr>
<tr>
<td>1.15 1y</td>
<td>42.1962</td>
<td>28.3257</td>
<td>30.5468</td>
<td>33.9383</td>
<td>35.7666</td>
</tr>
<tr>
<td>1.2 1y</td>
<td>40.2008</td>
<td>26.9267</td>
<td>28.5323</td>
<td>30.9879</td>
<td>32.2691</td>
</tr>
<tr>
<td>0.7 2y</td>
<td>28.0743</td>
<td>37.3550</td>
<td>66.0018</td>
<td>102.8655</td>
<td>126.9580</td>
</tr>
<tr>
<td>0.85 2y</td>
<td>25.1460</td>
<td>32.3338</td>
<td>58.3878</td>
<td>85.6941</td>
<td>93.8389</td>
</tr>
<tr>
<td>ATM 2y</td>
<td>41.9971</td>
<td>34.5141</td>
<td>53.7098</td>
<td>72.9845</td>
<td>78.8265</td>
</tr>
<tr>
<td>1.15 2y</td>
<td>53.5307</td>
<td>36.5053</td>
<td>49.3035</td>
<td>62.0292</td>
<td>67.1998</td>
</tr>
<tr>
<td>1.2 2y</td>
<td>54.6564</td>
<td>36.5585</td>
<td>47.6404</td>
<td>58.4658</td>
<td>63.0016</td>
</tr>
</tbody>
</table>
Case Study: comparison of gaussian copula versus local volatility model

- Premium differences in bp between gaussian copula and a local volatility model with constant correlation:
 - Gaussian copula is almost equivalent to local volatility with constant correlation.

<table>
<thead>
<tr>
<th>Scen</th>
<th>corr</th>
<th>+0.6</th>
<th>+0.3</th>
<th>+0.0</th>
<th>-0.3</th>
<th>-0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>1y</td>
<td>-15.466</td>
<td>-12.236</td>
<td>-9.3169</td>
<td>-6.5506</td>
<td>-1.7595</td>
</tr>
<tr>
<td>0.85</td>
<td>1y</td>
<td>-16.7825</td>
<td>-15.0450</td>
<td>-12.7075</td>
<td>-10.1333</td>
<td>-7.0619</td>
</tr>
<tr>
<td>1.15</td>
<td>1y</td>
<td>-10.2258</td>
<td>-9.2708</td>
<td>-7.3272</td>
<td>-6.1700</td>
<td>-5.2791</td>
</tr>
<tr>
<td>1.2</td>
<td>1y</td>
<td>-9.6079</td>
<td>-8.5011</td>
<td>-6.9462</td>
<td>-6.0872</td>
<td>-5.1886</td>
</tr>
<tr>
<td>0.7</td>
<td>2y</td>
<td>4.6959</td>
<td>-5.1750</td>
<td>-7.6028</td>
<td>-8.4318</td>
<td>-5.9855</td>
</tr>
<tr>
<td>0.85</td>
<td>2y</td>
<td>6.2041</td>
<td>-2.6924</td>
<td>-5.9902</td>
<td>-7.1165</td>
<td>-3.6275</td>
</tr>
<tr>
<td>1.15</td>
<td>2y</td>
<td>0.3596</td>
<td>-6.4414</td>
<td>-9.4217</td>
<td>-9.3834</td>
<td>-6.7082</td>
</tr>
<tr>
<td>1.2</td>
<td>2y</td>
<td>0.2626</td>
<td>-6.5320</td>
<td>-8.8819</td>
<td>-8.6984</td>
<td>-6.6643</td>
</tr>
</tbody>
</table>
Conclusions

- The perturbed copula has been successfully applied to introduce the skew information in the co-dependence:
 - For widely used lognormal-inspired underlyings.
 - In terms of simple very intuitive parameters: slope of skew and volatility level of each underlying plus correlation.
- An exact fit calibration of the copula parameters using N-R with a good initial point estimation is proposed.
- A qualitative interpretation of the perturbed copula action compared to the gaussian copula is provided.
 - How skew direction and magnitude affects co-dependence.
 - How the end joint distribution is affected qualitatively.
 - How the final premium of a given payoff might be affected.
Conclusions

- A real market case study for FX quanto options to a third currency is presented:
 - The impact of skew in the co-dependence is not negligible. It can go beyond 1% of the notional amount.
 - Valuation with gaussian copula is almost equivalent to valuation with local volatility model with constant correlation.

- Find the paper at: