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1 Introduction.

The main goal of this communication is to present some of the results of the
work Dı́az-Henry-Ramos [1994] related to the Lp-approximate controllabiliy of
the Dirichlet semilinear problem

(PD)





yt −∆y + f(y) = v in Q = Ω× (0, T ),
y = 0 on Σ = ∂Ω× (0, T ),
y(0) = y0 on Ω,

and the nonlinear Neumann type problem

(PN)





yt −∆y = 0 in Q,
∂y

∂ν
+ f(y) = v on Σ,

y(0) = y0 on Ω,

where in both cases v represents the control. Similar nonlinear problems arise
very often in the study of environmental problems.

For problem (PD) we show a stronger property than the usual approximate
controllability: for suitable desired states we can control the problem by using
merely nonnegative controls. In both cases we prove the Lp-approximate control-
lability for any p such that 1 < p < ∞.

Our treatement of problems (PD) and (PN) relies on the same general pro-
gramme: we first establish the conclusion for the linear associated problem and
as a second step, we prove the result for the nonlinear case by means of a can-
celation technique already introduced in Henry [1978]. This technique consists in
modifying the control associated to the linear case by means of a perturbation
which cancels the nonlinearity appearing at the equation.
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2 Internal nonnegative controls.

In spite of the very large literature on the approximate controllability for nonlin-
ear parabolic problems (see e.g. the list of references of the survey Dı́az [1993])
the study of the approximate controllability property under nonnegativeness con-
straint on the controls seems to be unexplored until the work Dı́az [1991] dealing
with the parabolic obstacle problem.

We point out that, in constrast with the case of unconstrained control prob-
lems (see e.g. Henry [1978] and Dı́az-Fursikov [1994]) the constraint on the con-
trols introduces some important difficulties, even if the control v acts on the whole
domain Q.

We start by considering the linear case, which we will use in the proof of the
nonlinear case. In the rest of this paper we will always assume 1 < p < ∞ (the
limit cases p = 1 and p = ∞ can be also treated after some modifications: see
Dı́az-Henry-Ramos [1994]).

Theorem 1 Let h ∈ Lp(Q), Y0 ∈ Lp(Ω) and a ∈ L∞(Q). We denote by Y (· : v)
the solution of

(LPD)





Yt −∆Y + aY = h + v in Q
Y = 0 on Σ
Y (0) = Y0 on Ω.

Then, if U is a dense subset of Lp
+(Q), the set F := {Y (T : v) : v ∈ U} is dense

in Y (T : 0) + Lp
+(Ω), where Lp

+(Ω) = {g ∈ Lp(Ω) : g ≥ 0 a.e}.
Proof. By linearity we can assume Y0 ≡ 0 and h ≡ 0. Suppose that there exists
yd ∈ Lp

+(Ω) such that yd 6∈ F (notice that F is a closed and convex set). Then,
by the Hahn-Banach Theorem (in its geometrical form), we can separate yd from
F , i.e. there exists α ∈ IR and g ∈ Lp′(Ω) (with 1

p
+ 1

p′ = 1) such that

∫

Ω
y(T : v)gdx < α <

∫

Ω
ydgdx for all v ∈ U .

Besides, if v ∈ Lp
+(Q) and λ ∈ IR+, then by linearity, y(T, λv) = λy(T, v) ∈ F

and so ∫

Ω
y(T : v)gdx ≤ 0 < α <

∫

Ω
ydgdx for all v ∈ U .(1)

Now, let q ∈ C([0, T ] : Lp′(Ω)) be the solution of the auxiliary backward problem




−qt −∆q + aq = 0 in Q
q = 0 on Σ
q(T ) = g on Ω.

(2)

Multiplying (2) by Y (v), with v ∈ U arbitrary, we obtain

0 ≥
∫

Ω
g(x)Y (T, x : v)dx =

∫

Q
qvdxdt ∀ v ∈ U .
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Then, q ≤ 0 in Q. In particular g ≤ 0, which is a contradiction with (1).

Now, we are ready to consider the nonlinear problem (PS) under the as-
sumption that f is a nondecreasing continuous real function. We also assume
y0 ∈ L∞(Ω) (for simplicity).

Theorem 2 If U is a dense subset of Lp
+(Q) then F = {y(T : v) solution of

(PD); v ∈ U} is dense in y(T : 0) + Lp
+(Ω). 2

Proof. As y0 ∈ L∞(Ω), by the maximum principle y(· : 0) ∈ L∞(Q) and
h(·) := −f(y(· : 0)) ∈ L∞(Q). Then, applying Theorem 1 with h = −f(y(· : 0)),
there exists wε ∈ L∞+ (Q) such that

‖ Y (T : wε)− yd ‖Lp(Ω)< ε.

Besides, f(Y (ωε)) ∈ Lp(Q). Now, given δ > 0, let ỹ be the unique solution of the
auxiliary problem

(P∗D)





ỹt −∆ỹ + f(ỹ + Y (ωε)) = f(Y (ωε)) + δ in Q
ỹ = 0 on Σ
ỹ(0) = 0 on Ω.

Then, if we define y = ỹ + Y (ωε), we easily check that y is solution of (PD) with

vε = wε + f(Y (ωε))− f(y(· : 0)) + δ ∈ Lp(Q).

Besides, vε ≥ 0 since f is nondecreasing and Y (· : ωε) ≥ Y (· : 0) = y(· : 0). Using
the density of U and the continuous dependence of the data in problem (P∗D),
we can choose v ∈ U such that ‖ v − vε ‖Lp(Q)≤ ε. Finally applying Hölder and
Young inequalities, we conclude (for δ > 0 small enough) that

‖ ỹ(T ) ‖Lp(Ω)≤ C1ε

and so
‖ y(T : v)− yd ‖Lp(Ω)≤ C2ε.

Remark 1. In the above theorem we can replace f by a β maximal monotone
graph of IR2. The existece of solution can be found, for instance, in Benilan [1978]
and Theorem 2 remains true if we assume β+(r) < +∞ for all r ∈ D(β), where

β+(r) := sup{b ∈ IR : b ∈ β(r)}.
This assumption is verified in many cases: i) case of D(β) = IR (as for instance
β a continuous nondecreasing function or the Heaviside graph; ii) the condition
is also satisfied in some cases for which D(β) 6= IR as for instance

β(r) =





∅ if r < 0
(−∞, 0] if r = 0

0 if r > 0.
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Remark 2. It is easy to see that Theorem 1 and the decomposition Y = Y+−Y−
allows to conclude the Lp-approximate controllability for the unconstrained linear
problem. For the unconstrained nonlinear case the Lp-approximate controllability
fo llows from obvious modifications of Theorem 2.

3 Neumann type boundary controls.

In this section, we study the problem (PN). The similar result to the internal
nonnegative controls is in this case an open problem for us. However, we can apply
the cancelation technique in order to prove the Lp-approximate controllability.

Theorem 3 Let y0 ∈ L∞(Ω) and v ∈ Lp(Σ). Let f be a nondecreasing continu-
ous real function and denotes by y(v) the unique solution of

(PN)





yt −∆y = 0 in Q
∂y

∂ν
+ f(y) = v on Σ

y(0) = y0 on Ω.

Then, if U is dense in Lp(Σ), the set F = {y(T : v); v ∈ U} is dense in Lp(Ω).

Idea of the proof: For yd ∈ Lp(Ω) and ε > 0 fix, we use the decomposition
y = ỹε + Y with Y solution of the associated linear problem

(LPN)





Yt −∆Y = 0 in Q
∂Y

∂ν
= −f(y(· : 0)) + vε on Σ

Y (0) = y0 on Ω,

for a suitable vε such that ‖ y(T : vε)− yd ‖Lp(Ω)< ε (this holds again by means
of the Hahn-Banach Theorem; see Lions [1968]). For δ > 0 let ỹ be the solution
of

(P∗N)





ỹt −∆ỹ = 0 in Q
∂ỹ

∂ν
+ f(ỹ + Y (ωε)) = f(Y (ωε)) + δ on Σ

ỹ(0) = 0 on Ω.

Then, if δ > 0 is small enough, there exists C > 0 such that

‖ ỹ(T ) ‖Lp(Ω)≤ Cε,

and so we have the result by using the triangle inequality.
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