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Abstract. The approximate controllability of solutions of a large class of semi-
linear parabolic problems is studied. We extend previous results in the literature
under a sublinear asymptotic condition on the nonlinearities. On the other hand,
we show that this property fails for strictly superlinear nonlinearities.
Resumen. En este trabajo se estudia la controlabilidad aproximada de una
amplia clase de problemas semilineales parabólicos. En una primera parte se
muestra esta propiedad bajo una hipótesis de comportamiento asintótico sublineal
sobre las no linealidades extendiendo resultados conocidos en la literatura. En
una segunda parte se muestra que la propiedad no se verifica si los términos no
lineales son estrictamente superlineales.

1 Introduction.

Let Ω a bounded regular subset of IRn, T > 0, O an open subset of Q := Ω×(0, T ),
f a continuous function, A(x, t) ∈ L∞(Q) and β(·) a bounded maximal monotone
graph of IR2 such that D(β) = IR. The main goal of this article is the study of
“the controllability” of the parabolic problem:

(P)





yt −∆y + f(y) + A(x, t)β(y) 3 uχO in Q
y(x, t) = 0 on Σ = ∂Ω× (0, T )
y(x, 0) = y0(x) on Ω.

Problem (P) arises in the modelling of many different applications. When
A ≡ 0 the semilinear equation of (P) is relevant, for instance, in chemical kinetics
(see e.g. Aris [1975] and Dı́az [1991a]). If A 6≡ 0 the equation of (P) may become
multivalued. So, if A > 0 in Q, problem (P) includes the large class of parabolic
variational inequalities arising in the study of many different contexts (see e.g.
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Duvaut-Lions [1972], Brézis [1973], Benilan [1978] and Dı́az [1980a] [1980b] for
details about modelling, existence and uniqueness theory and some qualitative
properties). The case A < 0 in Q have been studied recently in the context of
some combustion problems (Gianni-Hulshof [1982]) and also in Climatology (Dı́az
[1993], [1994a], [1994b]).

The main goal of this paper is the study of the controllability of solutions y of
(P) by means of controls u acting on the open set O ⊂ Q: we say that problem
(P) has the exact controllability property with respect to the states space X and
controls space U if for each yd ∈ X fixed there exists a control u ∈ U and a
solution y = y(· : u) of the associated problem (P) such that y(T : u) = yd.

This property usually holds for conservative problems (such as, for instance,
the wave equation). Nevertheless, in the case of parabolic problems the smoothing
effect is an impediment for this property except for very special choices of X.
Due to this a weaker formulation is introduced: we say that problem (P) has the
approximate controllability property with respect to the states space X and controls
space U if for each yd ∈ X fixed there exist a sequence of controls {un}n∈IN ⊂ U
and solutions yn = y(·, un) of the associated problems such that yn(T ) → yd in
X as n →∞.

A first general answer on the approximate controllability for linear parabolic
problems was given in Lions [1968]. Concerning the nonlinear case, the first type
of results assumed O = Q and A ≡ 0. (See Henry [1978] and a recent simpler
proof in Dı́az-Fursikov [1993]). Another interesting question related to the case
O = Q and A ≡ 0 appears under a restriction condition on the sign of the
controls. For example, if we assume y0 ≡ 0 and yd ∈ L2

+(Ω) it is possible to
choose the control u in the space L2

+(O). This question was already studied in
Dı́az [1990] for the linear case with controls on the boundary. The study of this
property for the nonlinear case was carried out in Dı́az-Henry-Ramos [1994].

A new method for the study of the controllability of the linear case (f =
0, A = 0) was introduced in Lions [1990], [1991] and later extended to a special
formulation of (P) by Fabre-Puel-Zuazua [1992] [1995]. In both cases the domain
of controllability is restricted to open subsets of the form O = ω×(0, T ), where ω
is an open regular subset of Ω and the nonlinear equation considered corresponds
to the case A ≡ 0 and f satisfying

f is a globally Lipschitz continuous function and(1)

|f(s)| ≤ a + b|s| if |s| > M, for some positive numbers a, b and M .(2)

Our main goal is to study the approximate controllability property when as-
sumption (1) fails. More precisely, in Section 2 we will show that the regularity
on f given by (1) can be improved once that the sublinear asymptotic condition
(2) is assumed. As an special case of our results (see Theorem 1 below) we can
make sure that the approximate controllability holds, if, for instance, A ≡ 0 and

f(s) = λ|s|r−1s(3)
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with 0 < r < 1 (notice that such a function f does not satisfy (1)): Our controlla-
bility result replace condition (1) by the differentiability of f in merely one point
(see condition (6)). This result generalizes and develops the one presented in
Dı́az [1994a] for A ≡ 0. Here we also consider the multivalued case A 6≡ 0 under
an additional assumption on β more general than the boundness condition.

Section 3 is devoted to show that the sublinear asymptotic condition (2) is
fundamental in the study of the approximate controllability property on strictly
included subdomains O ⊂ Q. More precisely we shall show that if we assume
A ≡ 0 (only for simplicity) and f given by (3), with r > 1, then a uniforme
estimate holds making impossible the approximate controllability property. In
fact, the results of this section are the motivation of a further work Dı́az [1994b]
where the approximate controllability of problem (P) is proved for functions f
having a superlinear asymptotic behaviour and under suitable restrictions on the
desired state yd.

2 Approximate controllability under a sublinear

growth.

In order to make clear our results we start by considering the case in which f is
given by (3). The case r = 1 corresponds to the linear model. The approximate
controllability can be obtained by different methods: using the Hahn-Banach
Theorem (Lions [1968]), by some constructive methods (Lions [1990]) and by a
duality argument (Lions [1991]).

Concerning the case 0 < r < 1, it is interesting to mention the work of
Seidman [1974] where an abstract result is presented and whose application to
the problem (P) was already pointed out in Dı́az [1990]. Nevertheless, this point
of view is very sophisticated and we shall follow a different method.

The main goal of this section is to obtain a more general result applicable
to the case 0 < r ≤ 1. We shall follow the duality method introduced in Lions
[1991] latter improved in Fabre-Puel-Zuazua [1992] [1995] relative to the case
β ≡ 0, O = ω × (0, T ) with ω ⊂ Ω and f satisfying (1) and (2).

Our result is the following

Theorem 1 Assume f(s) such that

f ∈ C(IR)(4)

{
there exists M > 0, c1 > 0, and c2 > 0 such that

|f(s)| ≤ c1 + c2|s|, if |s| > M
(5)

the derivative f ′(s0) exists, for some s0 ∈ IR.(6)

Then problem (P) has the approximate controllability property with state space
X = Lp(Ω), 1 < p < ∞ and control space U = L∞(Q).
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Remark 1 Condition (6) holds when f is Lipschitz continuous on some interval
(a, b) ⊂ IR. Indeed, by a well know result (see, for instance, page 145 of Brezis
[1973]), there exists f ′(s) for almost every s ∈ (a, b). 2

Corollary 1 The conclusion of Theorem 1 holds in each one of the following
special cases:

i) f is a globally Lipschitz continuous function,
ii) f is a locally Lipschitz continuous function satisfying (5),
iii) f(s) = λ|s|r−1s and 0 < r ≤ 1. 2

Before starting with the proof of Theorem 1 we shall give some previous results
and definitions.

Proposition 1 If M is an open subset of Q, 1 < p′ < ∞, a ∈ L∞(Q) and ϕ
satisfies {

−ϕt −∆ϕ + a(x, t)ϕ = 0 in Q
ϕ = 0 on Σ,

ϕ(T ) ∈ Lp′(Ω) and
ϕ = 0 in M,

then ϕ ≡ 0 in Q.

Proof. Let t∗ = sup{t ≤ T : ∃ x ∈ Ω such that (x, t) ∈ M}. Then, by the
unique continuation theorem (see Mizohata [1958] and Saut-Scheurer [1987]) and
the uniqueness of solutions we deduce that ϕ ≡ 0 in Q∗ = Ω × (0, t∗). Further,
by backward uniqueness results (see page 173 of Friedman [1964]), we conclude
that ϕ ≡ 0 in the whole domain Q.

Proposition 2 (Fabre-Puel-Zuazua [1992] [1995]) The result of Theorem 1 is
true for the linear case with a potential (i.e. with A ≡ 0 and replacing f(y) by
a(x, t)y, with a(x, t) ∈ L∞(Q)). Furthermore, the controls can be taken of “quasi
bang-bang type”(2). 2

For the sake of the exposition we recall here the idea of the proof of the
Proposition 2. The authors obtain the result for O = ω × (0, T ) but the proof
for a general open set O of Q follows with easy modifications. They obtain the
result by minimizing the functional

J(ϕ0) =
1

2

(∫

O
|ϕ(x, t)|dxdt

)2

+ ε ‖ ϕ0 ‖Lp′ (Ω) −
∫

Ω
ydϕ

0dx

over Lp′(Ω), where ϕ(x, t) is the solution of the retrograde problem




−ϕt −∆ϕ + a(x, t)ϕ = 0 in Q
ϕ = 0 on Σ
ϕ(T ) = ϕ0 on Ω.

2We say that v is of “quasi bang-bang type” if there exist a constant C and a function ϕ(·)
such that v(·) ∈ Csig ϕ(·).
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Now, by using Proposition 1, the coercitivity of the functional J(·) is shown.
Therefore, J(·) attains its minimum over Lp′(Ω) in a unique point ϕ̂0. Further, if
ϕ̂(x, t) is the solution of the corresponding retrograde problem, through the subd-
ifferential of the functional J , it can be shown that there exists v ∈ sgn(ϕ̂(x, t))χO
such that the solution of





yt −∆y + a(x, t)y = |ϕ̂|L1(O)vχO in Q
y = 0 on Σ
y(0) = 0 on Ω

satisfies ‖ y(T )− yd ‖Lp(Ω)≤ ε.

Proposition 3 (Fabre-Puel-Zuazua [1992] [1995]). Let M be the mapping

M : Lp(Ω)× L∞(Q) → Lp′(Q)
(yd, a) −→ ϕ̂0.

Then, if K is a compact subset of Lp(Ω) and B is a bounded subset of L∞(Q),
then M(K ×B) is a bounded subset of Lp′(Ω). 2

Proposition 4 Let a = a(t, x) ∈ L∞(Q). Then there exists a constant C > 0
such that for every k ∈ Lp(Q) and ω0 ∈ Lp(Ω) the solution ω of





ωt −∆ω + a(t, x)ω = k in Q
ω = 0 on Σ
ω(0) = ω0 on Ω

satisfies
‖ ω ‖L∞(0,T ;Lp(Ω))≤ C

(
‖ ω0 ‖Lp(Ω) + ‖ k ‖Lp(Q)

)
.(7)

Moreover, if ω0 ≡ 0 and a(·, ·) ≡ 0, then ω ∈ Xp(0, T ) and there exists a constant
C > 0 such that

‖ ω ‖Xp(0,T )≤ C ‖ k ‖Lp(Q),(8)

where
Xp(0, T ) = Lp(0, T ; W 1,p

0 (Ω)) ∩W 1,p(0, T ; Lp(Ω)),

and
‖ · ‖Xp(0,T )=‖ · ‖Lp(0,T ;W 1,p

0 (Ω)) + ‖ · ‖W 1,p(0,T ;Lp(Ω)) .

Proof. For (7) see Theorem 9.1, page 341 of Ladyzenskaja-Solonnikov-Uralceva
[1968] and pages 226-228 of Pazy [1983]. For (8) see pages 341-342 of Ladyzenskaja-
Solonnikov-Uralceva [1968].

Remark 2 If a(·, ·) 6≡ 0, then using Proposition 4 and Gronwall’s Lemma it is
easy to prove that ω ∈ Xp(0, T ) and

‖ ω ‖Xp(0,T )≤ Ca ‖ k ‖Lp(Q),

with Ca = o(1+ ‖ a ‖L∞(Q) exp(‖ a ‖L∞(Q))). 2
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We shall need to use a fixed point theorem for multivalued operators:

Definition 1 Let X, Y two Banach spaces and, Λ : X → P(Y ) a multivalued
function. We say that Λ is upper hemicontinuous at x0 ∈ X, if for every p ∈ Y ′,
the function

x → σ(Λ(x), p) = sup
y∈Λ(x)

< p, y >Y ′×Y

is upper semicontinuous at x0. We say that the multivalued funcion is upper
hemicontinuous on a subset K of X, if it satisfies this properties for every point
of K.

Theorem 2 (Kakutani’s fixed point Theorem). Let K ⊂ X be a convex
and compact subset and Λ : K → K an upper hemicontinuous application with
convex, closed and nonempty values. Then, there exists a fixed point of Λ. 2

For a proof see, for instance, Aubin [1984] page 126.
Proof of Theorem 1. We fix yd ∈ Lp(Ω), ε > 0 and we define

g(s) =





f(s)− f(s0)

s− s0

s 6= s0

f ′(s0) s = s0

(s0 6= 0).

As f satisfies (4), (5) and (6) then g ∈ L∞(IR) ∩ C(IR). Indeed: Let M̂ =
max{M, |s0|+ 1}. Then, as g ∈ C(IR) (by construction),

max{|g(s)| : s ∈ [−M̂, M̂ ]} < ∞.

Moreover, from (5),

sup
|s|>M̂

|g(s)| ≤ sup
|s|>M̂

( |f(s)|
|s− s0| +

|f(s0)|
|s− s0|

)
≤ sup

|s|>M̂

(
c1 + c2|s|
|s− s0|

)
+ |f(s0)| < ∞

since |s− s0| ≥ 1 and lim
|s|→∞

c1 + c2|s|
|s− s0| = c2.

Now, for each z ∈ Lp(Q) and for each b ∈ β(z) we can split y = Lb(z)+Yb(z),
where L = Lb(z) is the (unique) solution of





Lt −∆L + g(z)L = −f(s0) + g(z)s0 − A(x, t)b in Q
L = 0 on Σ
L(0) = y0 on Ω

(9)

and by using Proposition 2, for each ε > 0 it is possible to find two functions
ϕ(z, b) ∈ Lp′(Q) and v(z, b) ∈ sgn(ϕ(z, b))χO such that the solution Y = Yb(z) of





Yt −∆Y + g(z)Y = uχO in Q
Y = 0 on Σ

Y (0) = 0 on Ω
(10)
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with u =‖ ϕ(z, b) ‖L1(O) v(z, b) satisfies

‖ Y (T )− (yd − L(T )) ‖Lp(Ω)≤ ε.(11)

Now, by using Remark 2 and that

Xp(0, T ) ⊂ C([0, T ]; Lp(Ω)) with compact embedding(12)

(see Lemma 4 of page 77 and Theorem 3 of page 80 of Simon [1987]) we have
that

{yd−L(T ) : z ∈ Lp(Q), b ∈ β(z)} is a relatively compact subset of Lp(Ω).(13)

Further, y = L + Y is solution of





yt −∆y + g(z)y = −f(s0) + g(z)s0 − Ab + uχO in Q
y = 0 on Σ
y(0) = y0 on Ω

(14)

and satisfies
‖ y(T )− yd ‖Lp(Ω)≤ ε,(15)

with u =‖ ϕ(z, b) ‖L1(O) v(z, b). As g(·) is bounded, from (13) and Propositions
3 and 4 we obtain that

{‖ ϕ(z, b) ‖L1(O) v(z, b), z ∈ Lp(Q), b ∈ β(z)} is bounded in L∞(Q)(16)

and then
M = sup

z∈Lp(Q)
b∈β(z)

‖ ϕ(z, b) ‖L1(O)< ∞.(17)

Obviously u =‖ ϕ(z, b) ‖L1(O) v(z, b) satisfies

‖ u ‖L∞(Q)≤ M.(18)

Therefore, if we define the operator

Λ : Lp(Q) → P(Lp(Q))

by

Λ(z) = {y satisfies (14), (15) for some b ∈ β(z) and some u satisfying (18) },

we have seen that for each z ∈ Lp(Q), Λ(z) 6= ∅. In order to apply Kakutani’s
fixed point Theorem, we have to check that the next properties hold:

(i) There exists a compact subset U of Lp(Q), such that for every z ∈ Lp(Q),
Λ(z) ⊂ U .
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(ii) For every z ∈ Lp(Q), Λ(z) is a convex, compact and nonempty subset of
Lp(Q).

(iii) Λ is upper hemicontinuous.

The proof of those properties is as follows:
(i) From Remark 2 we know that there exists a bounded subset U of Lp(Q) such
that for every z ∈ Lp(Q), Λ(z) ⊂ U . Now, to see that we can choose such a set
U being compact we shall prove that the set

Y = {y satisfying (14) for some z ∈ Lp(Q), b ∈ β(z) and u verifying (18)}

is a relatively compact subset of Lp(Q). If y ∈ Y , there exist z ∈ Lp(Q), b ∈ β(z)
and u ∈ L∞(Q) satisfying (18) such that y = u1 + u2 + Y , where Y is given by
(10) and u1, u2 are given by





u1
t −∆u1 = −f(s0) in Q

u1 = 0 on Σ
u1(0) = y0 on Ω,




u2
t −∆u2 + g(z)(u1 + u2) = g(z)s0 − A(x, t)b in Q

u2 = 0 on Σ
u2(0) = 0 on Ω.

Since u1 is a fixed point in Lp(Q), {g(z)u1, z ∈ Lp(Q)} is a bounded subset
of Lp(Q). Then, from Remark 2, the solution u2 lies on a bounded subset of
Xp(0, T ). But, as Xp(0, T ) ⊂ Lp(Q) with compact embedding (see (12)), u2 lies
on a compact subset K1 of Lp(Q). On the other hand, by Remark 2, Y (v), lies
in a bounded subset of Xp(0, T ), and Y (v) ⊂ K2, with K2 compact on Lp(Q).
Therefore Y ⊂ u1 + K1 + K2, which is a relatively compact on Lp(Q). This
concludes the proof of (i) if we take U = Y ⊂ Lp(Q).
(ii) We have already seen that for every z ∈ Lp(Q), Λ(z) is a nonempty subset
of Lp(Q). Further Λ(z) is obviously convex, because B(yd, ε), β(z) and {u ∈
L∞(Q) : satisfying (18)} are convex sets. Then, we have to see that Λ(z) is a
compact subset of Lp(Q). In (i) we have proved that Λ(z) ⊂ U with U compact.
Let (yn)n be a sequence of elements of Λ(z) which converges on Lp(Q) to y ∈ U .
We have to prove that y ∈ Λ(z). We know that there exist bn ∈ β(z) and
un ∈ L∞(Q) satisfying (18) such that





yn
t −∆yn + g(z)yn = −f(s0) + g(z)s0 − Abn + unχO in Q

yn = 0 on Σ
yn(0) = y0 on Ω
‖ yn(T )− yd ‖Lp(Ω)≤ ε.

(19)

Now, using that β is a bounded maximal monotone graph and that the controls
un are uniformly bounded, we deduce that un → u and bn → b in the weak-
topology of Lp(Q). Further u satisfies (18) and since any maximal monotone
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graph is strongly-weakly closed (see Proposition 3.5, p. 75 of Barbu [1976]) over
Banach spaces whose topological duals are uniformly convex (for instance, Lp(Q)
with 1 < p < ∞) we obtain that b ∈ β(z). Therefore, if we pass to the limit in
(19) we obtain:





yt −∆y + g(z)y = −f(s0) + g(z)s0 + Ab + uχO in Q
y = 0 on Σ
y(0) = y0 on Ω.

Further, by the smoothing effect of the heat equation yn(T ) converge to y(T )
on Lp(Ω) (using again Remark 2 and the compactness result (12)) and ‖ y(T )−
yd ‖Lp(Ω)≤ ε. This proves that y ∈ Λ(z) and concludes the proof of (ii).
(iii) We must prove that for every z0 ∈ Lp(Q)

lim sup
zn→z0

σ(Λ(zn), k) ≤ σ(Λ(z0), k), ∀ k ∈ Lp′(Q).

holds. We have seen in (ii) that Λ(z) is a compact set, which implies that for
every n ∈ IN there exists yn ∈ Λ(zn) such that

σ(Λ(zn), k) =
∫

Q
k(t, x)yn(t, x)dxdt.

Now by (i) (yn)n ⊂ U (compact set). Then, there exists y ∈ Lp(Q) such that
(after extracting a subsequence) yn → y on Lp(Q). We shall prove that y ∈ Λ(z0).
We know that there exist bn ∈ β(zn) and un ∈ L∞(Q) satisfying (18) such that





yn
t −∆yn + g(zn)yn = −f(s0) + g(zn)− Abn + unχO in Q

yn = 0 on Σ
yn(0) = y0 on Ω
‖ yn(T )− yd ‖Lp(Ω)≤ ε.

(20)

Then there exists u ∈ L∞(Q) satisfying (18) such that un → u in the weak-∗
topology of L∞(Q). On the other hand, using again that β is a bounded strongly-
weakly closed graph and the smoothing effect of the heat equation, we deduce
that y satisfies (14) and (15) with z = z0 for some u ∈ L∞(Q) satisfying (18) and
some b ∈ β(z0), which implies that y ∈ Λ(z0). Then, for every k ∈ Lp′(Q),

σ(Λ(zn), k) =
∫

Q
k(t, x)yn(t, x)dxdt →

∫

Q
k(t, x)y(t, x)dxdt ≤

≤ sup
y∈Λ(z0)

∫

Q
k(t, x)y(t, x)dxdt = σ(Λ(z0), k),

which proves that Λ is upper hemicontinuous and concludes the proof of (iii).
Finally, if we restrict Λ to K = conv(U)( the convex enveloppe of U), which is a
compact set in Lp(Ω), it satisfies the assumptions of the Kakutani’s fixed point
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Theorem. Then, Λ has a fixed point y ∈ K. Further, by construction, there
exists a control u ∈ L∞(Q) satisfying (18) such that





yt −∆y + f(y) + A(x, t)β(y) 3 uχO in Q
y = 0 on Σ
y(0) = y0 on Ω
‖ y(T )− yd ‖Lp(Ω)≤ ε.

(21)

Therefore, y is the solution that we were looking for.

We can improve the boundness condition on β

Corollary 2 Let β : IR → P(IR) be a maximal monotone graph such that there
exist two positive constants c1 and c2 such that

|b| ≤ c1 + c2|r| ∀ b ∈ β(r),

the set of points where β is multivalued is at most a set of the form {xi : i ∈ ZZ},
· · · < x−2 < x−1 < x0 < x1 < x2 < · · · ,

if µ is the Lebesgue’s measure on IR, then
∑

i∈ZZ

µ(β(xi)) < ∞

and β is differentiable at some point x0. Then, the problem




yt −∆y + β(y) 3 uχO in Q
y(x, t) = 0 on Σ
y(x, 0) = y0(x) on Ω,

has the approximate controllability property with states space X = Lp(Ω) (1 <
p < ∞) and controls space U = L∞(Q).

Proof of Corollary 1. If we call β(·) to the maximal monotone graph such
that β(x0) = β(x0), β(·) is constant over each interval (xi, xi+1) (i ∈ ZZ) and
µ(β(xi)) = µ(β(xi)) (i ∈ ZZ), then, β is a bounded maximal monotone operator
and f = β − β is a nondecreasing function satisfying the conditions of Theorem
1. The proof concludes by applying this theorem with f + β = β.

Remark 3 It seems important to point out that Theorem 1 is established for any
open set O of Q. The case in which the controllability set O is reduced to a single
point {(t0, x0)} of Q, or a segment (0, T )×{x0}, for some x0 ∈ Ω, needs a different
approach. Notice, that, for instance, any control u with such support is not an
element of the dual of the energy space (in particular u 6∈ L2(0, T ; H−1(Ω))) and
so the associated state y(t, · : u) can not be found, in general, in the natural
energy space L2(0, T ; H1

0 (Ω)). A very special controllability result when O =
(0, T ) × {x0} (N = 1, f linear, A ≡ 0,...) was the object of the works Lions
[1994] and Glowinski-Lions [1995]. 2
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3 Negative results for the superlinear case

(r > 1).

In this case, the result about approximate controllability is, in general, negative.
For instance, if O = ω×(0, T ) with ω an regular open subset of Ω and A(·, ·) ≡ 0,
then any solution can be uniformly estimated (independently of the controls) over
Ω\ω. A first example is due to A. Bamberger (see Henry [1978]): Given Ω = (0, 1),
r > 1, and v ∈ U = L2(0, T ), we consider the problem:





yt − yxx + |y|r−1y = 0 in Q
yx(t, 0) = v(t); y(t, 1) = 0 on Σ
y(0) = 0 on Ω.

Then, if Ωε = (ε, 1) (0 < ε < 1), we have that
∫

Ωε

|y(T, x)|2dx ≤ Cε( independently of v). 2

A different method was developped in Dı́az [1990] for the global boundary
control case. Here we adapt his proof to problem (P) with A(·, ·) ≡ 0.

Theorem 3 Assume r > 1. Let u ∈ U = L2(ω × (0, T )) arbitrary and let
y(x, t : u) be the corresponding solution of the problem (P) with A(·, ·) ≡ 0. Then

|y(x, t : u)| ≤ C(r, n)

(
1

d(x)γ
+

1

t
γ
2

)
a.e. (x, t) ∈ (Ω\ω)× (0, T ),

with

γ =
2

r − 1
, and d(x) = dist(x, ∂ω). 2

Proof. It suffices to prove that

y(x, t : u) ≤ C(r, n)

(
1

d(x)γ
+

1

t
γ
2

)
a.e. (x, t) ∈ (Ω\ω)× (0, T ),

(the other inequality is analogous). We define the function

Y (x, t) = C(r, n)

(
1

d(x)γ
+

1

t
γ
2

)
.

Now, for every x0 ∈ Ω\ω, t0 ∈ (0, T ) and k = d2(x0)
t0

, we consider the function

U(t, x) =
C

(kt− r2)θ
(= C(kt− (x− x0)

2)−θ),

over the set

S = {(t, x) ∈ Q\(ω × (0, T )) : |x− x0|2 < kt, 0 < t ≤ t0},

11



with r = |x−x0| and C a constant that we shall choose later. Following the work
Kamin-Peletier-Vázquez [1989] we shall show that for C large enough, U ≥ u
in S. First of all, we point out that U = ∞ over the parabolic boundary of S.
Further, if we denote (by simplicity) ψ = kt− r2, we obtain that

L(U) ≡ Ut −∆U + Up

= −kCθψ−(θ+1) − div[2θCψ−(θ+1)(xi − x0,i)i] + Cpψ−θp

= −kCθψ−(θ+1) −
n∑

i=1

[4θC(θ + 1)ψ−(θ+2)(xi − x0,i)
2]−

n∑

i=1

[2θCψ−(θ+1)]

+Cpψ−θp

= −kCθψ−(θ+1) − 4θC(θ + 1)r2ψ−(θ+2) − 2nθCψ−(θ+1) + Cpψ−θp.

Therefore, if we choose C such that





1
3
Cp−1 ≥ 4θ(θ + 1)r2

1
3
Cp−1 ≥ 2nθψ

1
3
Cp−1 ≥ kθψ,

(22)

we obtain that L(U) ≥ 0. Now, as r2 + ψ ≤ d2(x0) = kt0, (22) is satisfied if

C = c(p, n)[d(x0)
θ + k

1
p−1 d(x0)

2
p−1 ].

Then, by applying the maximum principle to u and U in S, we obtain

u(t0, x0) ≤ U(t0, x0) =
C

(kt0)θ
= c(p, n)

d(x0)
θ + k

1
p−1 d(x0)

θ

(kt0)θ
=

= c(p, n)




1

d(x0)θ
+

kθt
1

p−1

0

(kt0)θ


 = c(p, n)


 1

d(x0)θ
+

1

t
θ
2
0


 .

Corollary 3 If r > 1, the problem (P) with A(·, ·) ≡ 0 does not verify the
approximate controllability property. 2

Remark 4 It seems possible to extend the results of this paper to other nonlinear
problems of more complex structure than the semilinear one. This is the case,
for instance, of the porous medium equation

yt −∆ym = uχO

and the (m + 1)-Laplacian equation

yt −∆(m+1)y = uχO

So, if m > 1 we have already obtained negatives answers. For 0 < m < 1 we
conjecture that the answer is positive. 2
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y numéricos”. Universidad de Málaga, 24-26 Enero, 1994.

Duvaut,G.-Lions,J.L. [1972]: Les inequations en Mécanique et en Physique.
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