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1 Introduction.

Let Q be a bounded open subset of RN of class C*™, T > 0, w a nonempty open subset of
Q, f a continuous real function and & € IV such that 0 < 2k < m. The main goal of this
communication is the study of the approximate controllability of the Dirichlet problem

yi + (=A)"y + f(A*y) =h 4oy, inQ:=Qx(0,T)

Dy .
(1) W:() , 7g=0,1,----m—1 on ¥ := 00 x (0,7T)
14

where v is a suitable output control, vy, is the characteristic function of w, v is the unit
outward normal vector, h € L*(Q) and yo € L*(2). Due to the factor y, the controls are
supported on the set O :=w x (0, 7).

Definition 1 We say that Problem (1) has the approximate controllability property at time
T with state space X and control space Y if the set of solutions of (1) at time T, when v
span Y, is dense in X.

We obtain the following result on approximate controllability.

Theorem 1 Assume that [ satisfies the following conditions: there exvist some positive con-
stants ¢; and cy such that

(2) 1f(s)] <1+ eals| forallse IR
and
(3) there exists f'(so) for some so € IR.

Then problem (1) has the approximate controllability property at time T with state space
L*(Q) and control space L*(O).

Remark 1 For the sake of simplicity of the notation we chose L*(O) as control space but
following the proof it’s easy to see that if we change the norm in (27) we can also choose

L=(O) if k =0 and L=(0,T; H*(Q) 0 HE(Q)) if k > 1.
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Condition (2) is a sublinear hypothesis (for large values of s). Nevertheless, we shall
prove that when f is superlinear the approximate controllability property does not hold in
general, as explained in Section 6. Therefore, if for instance f(s) = |s|?~!s, Theorem 1 gives
a positive approximate controllability result for 0 < p < 1 and the results of section 6 a
negative approximate controllability answer for 1 < p < co. A similar negative answer for
second order parabolic problems was given in Diaz and Ramos [6].

Definition 2 We say that a function
y € L*(0,T; Hy'(2)) N C([0,T7: L))
is a solution of problem (1) if y satisfies the differential equation in D'(Q) and y(0) = yo.

Remark 2 The existence of solutions is also obtained in the proof of Theorem 1 by using the
Kakutani’s fized point theorem. The uniqueness can be easily proved if f is nondecreasing or
Lipschitz, but that is not necessary in our arquments.

Remark 3 Notice that as 2k < m then if y is any solution of (1) A*u € L*(Q) and so,
by (2), f(A*y) € L*(Q). Besides the boundary conditions are satisfied in the sense that
y(t) € H(Q) for a.e. t € (0,T).

2 Preliminaries.
We consider the spaces

V= L*0,T; H(Q)) and its dual V' = L*(0,7; H™™(Q))

and denote by < -,- > the duality product between H="(Q) and H™ () and by (-,-) the
scalar product in L*(2). The norm of V is defined by

Iyllt =3 [ 107yl de dr
j=0"@

where

(4) Dyl = 3 (Dy)?

larf=j

(the sum extending to all x-derivatives of order j). By Poincaré’s inequality we have that
(5) Il < [ 10" yP dr

We summarize some well-known properties of these spaces in the following two lemmas.
We refer to Lions [9] or Lions and Magenes [12] for Lemma 1, and to [9] or Simon [15] for
Lemma 2.



Lemma 1 The space {y € V : y, € V'} is continuously imbedded in C([0,T]; L*()). If
y,z €V and y;, 2 € V' then

(6) /OT <y + (=A) "y, z > dt—/OT < =z (=A)"zy > dt
= (y(T),2(T)) = (y(0), 2(0))

and .

. A <yt (A y > ﬁ::AJDmm%hdt

—I—%/Qy(T,:Jc)2 dv — %/Qy((),ac)2 dz.
Lemma 2 The space {y € V : y, € V'} is compactly imbedded in L*(Q).
Lemma 3 If 0 < 2k < m, the space

W= {y € L*(0,T; Hg™**"(Q); yo € L2(0,T5 H™"7H(Q))}

is continuously imbedded in C([0, T]; H**(Q)). Besides, if y, = € W then

T T
/0 <yt (=A)"y, (=A)z > dt—/ <=zt (=A)"z (=AY Y > d

z
0

= (y(1), (=A)*2(T)) = (y(0), (—=2)*=(0))

Proof. To see that W is continuously imbedded in C([0,T], H**(f2)) is as in the previous

lemma. The equality can be proved by taking z € C°(£2) and by using that C2°(2) is dense
in Hyt2*(Q).

(8)

We proceed to study the problem

yi + (=A)"y +a(t,2)Afy =h  inQ

o7

(9) Y0, j=01,--;m—=1 on¥
ov! .
y(0) = yo in Q.

Besides of h € L*(Q) and yo € L*(£) we assume that
The following Proposition collects some basic results about problem (9).

Proposition 1 There exists a unique function y € V-1 C([0,T]; L*(Q)) with y, € V' which
solves Problem (9) and satisfies the estimate

(11) lylly + lyellv: < € (NAllz) + lvollzzey) -

where the constant C' depends only on M (provided that Q, T and m are kept fived). Besides,
the solution y also satisfies that

(12) y € L6, T; H*™(Q)) and y: € L*((6,T) x Q) forall § € (0,T).



3 A functional associated to a backward problem
Following Lions [11] and Fabre, Puel and Zuazua [7] [8] we consider
(13) e>0,y,€L*Q), a € L7(Q)

and introduce the functional J = J(-;a,y4) : L*() — IR defined by

1 2
(14) 76" = 5 ([ et o)ldedt) + 1l = [ ga da
where (¢, x) is the solution of the backward problem

—pr+ (=A)"p +at,x)AM =0 in Q:=Q x(0,T)

e .

(15) S5=0 . j=01-m—1 onX:=00x(0.T)
14
P(T) =r(¢") in Q)

with r(¢?) given by r(¢?) = ¢ if £ = 0 and by the solution of

(—A)er = 0 in Q
— =0 5=0,.... k=1 on 909
if £ > 1. We point out that r € H*(Q) N HE() and ¢ € W.

As usual in controllability theory we shall need to use a property of unique continuation
for solutions of a linear problem (in our case Problem (15)).

Lemma 4 Let w be a nonempty open subset of (). Assume that
p € L*(0,T5 H'(Q)) 0 C([0,T]; L*(Q))
is a solution of Fquation (15) in D'(Q) and that o =0 in O = w x (0,T). Then ¢ =0 in Q.

Proof. ;From Proposition 1 (applied with the time inversed) we deduce that ¢ € L*(0,T —
§; H*™(Q)) for all 6 € (0,T). Then Lemma 4 follows from Theorem 3.2 of Saut and Scheurer
[14].

The following two results are easy adaptation of the similar ones given in [7], [8] for second

order parabolic problems.

Proposition 2 Under the assumption (13) the functional J(-; a,yq) is continuous and strictly
conver on L*(Q) and verifies

0.
(16) lim inf 2500

|Pl—co |2 T

Besides J(-;a,yq) attains its minimum at a unique point @° in L*(Q) and

(17) =0 & |uk<e



Proposition 3 Let M be the mapping
M: L=(Q)x L*Q) — L*¥Q)

(a(tv l’), yd) - 920'
If B is a bounded subset of L>(Q) and K is a compact subset of L*(Q), then M(B x K) is
a bounded subset of L*(Q).

Definition 3 Given V : X — IRU {400} a convex and prope function on the Banach space
X, it is said that a element py of V' belongs to the set OV (x) (subdifferential of V at xg € X)
if

V(zo) — V(z) <(po,z0—2) VazelX.
Remark 4 In the conditions of Definition 3, xo minimizes V over X (or over a convex

subset of X ) if and only if

Proposition 4 Under the above conditions, if V is a lower semicontinuous function, then

po € OV (o) if and only if

(po, ) < lim L(ZoFh2) = V(o)

Jim, ; (<40) VaelX.

For a proof see, for instance, Proposition 3 of page 187 and Theorem 16 of page 198 of
Aubin-Ekeland [3].

Remark 5 If V is differentiable its differential coincides with its subdifferential.

4 Approximate Controllability for the linear associ-
ated problem.

Lemma 5 For every ©° € L*(Q), @° # 0 if ¢ is the solution of (15) verifying o(T) = r(¢Y),
we have that
9J(#% a,ya) = {6 € L*(), 3 v € sgnlp)xo satisfying

/Qg(x)e%x)dx _ (/O|<,o(t,:1;)|d2) (/Ov(t,x)e(t,x)dz)
+€/§2%90($)dx —/de(x)eo(x)dx Ve € L* ()},

where § is the solution of (15) verifying 0(T) = r(0°).

Proof. It is an easy modification of Proposition 2.4 of [8].

Before continue we need to introduce the control u, given by u, = [p|poyv (v €
sgn(@)xo) if k=0 and by means of the solution of

(— A0 talto, ) = [Blusopelto o in O {t = 1o}
¥ e 1€ |0,T
Mo _ g 20, b—1 ondon{t=ry ¢ 00T

ovs



if £ > 1. Here we point out that (since || v ||pe(g)< 1)

(15) ue € L(Q) and | u, @<l 8 ooy Tk =0

and

(19) wa € L=(0, 5 H*(Q) 0 H (), || wa HLOO(O,T;H%(Q)an(Q))S Cll e lleoy k=1,
Now we are ready to prove a linear version of Theorem 1.

Theorem 2 If |y4]2 > ¢ and ¢ is the solution of (15) verifying o(T) = @°, then there exists
v € sgn(@)xo such that the solution of

ye + (=A)"y + a(z,)AYy = b+ uxo in Q

i
(20) a—gj:() (J=0---(m—1)) on X
v
y(0) = o on
verifies
30
y(1') = ya —e—5—,
| &° |2

and then | y(T) — yq |2= &.
Remark 6 If yo =0, and & = 0, the case |y,| < e is trivially solved with the control u, = 0.

Proof of Theorem 2. By linearity we can assume yg = 0 and 2 = 0, since in other case we
can take y(7 : 0) the solution of the problem with null control and after we can take the new
desired state y, = yq — y(T : 0) € L*(Q) for the problem with yo = 0 and 2 = 0. Now, by
using the subdifferentiability of J(.;a,yq) at ¢° (# 0 by (17)), we know (see Remark 4) that

0 € aJ(@%),

which is equivalent, from Lemma 5, to the existence of v € sgn(@)yo, such that
~ € ~
(21) ¢l ([, o000 0dedt) = —— [ 2()0°(@)da
© | 2% ]2 Ja

— | ya(2)0°(x)dx.
A

On the other hand, as y € W, if we “multiply” by (—=A)*@ in (20) we obtain by (8) and (15)
that

(22) (y(T),0%) 2y xr2 () = 1@l (0) (/o v(x,t)@(x,t)dxdt)

(Here we point out that, in order to be able to integrate by parts, we are taking into account
that 0 < 2k < m). Then, from (21) and (22), we obtain

~0

(y(T),0°) 12(0)xr2(2) = (ya — 5ﬁ790)L2(Q)xL2(Q) V0 e L*(Q)
2

~0

and we conclude that y(T') = yq — s
2



5 Controllability for the nonlinear problem.

For the nonlinear case we shall need to use a fixed point Theorem for multivalued operators:

Definition 4 Let X, Y two Banach spaces and, A : X — P(Y) a multivalued function. We
say that A is upper hemicontinuous at xo € X, if for every p € Y', the function

v — o(A(z),p) = sup <p,y >yixy
yEA(m)

is upper semicontinuous at xo. We say that the multivalued funcion is upper hemicontinuous

on a subset K of X, if it satisfies this properties for every point of K.

Theorem 3 (Kakutani’s fixed point Theorem). Let K C X be a convexr and com-
pact subset and A : K — K an upper hemicontinuous application with convex, closed and
nonempty values. Then, there exists a fixed point xq, of A.

For a proof see, for instance, Aubin [2] page 126.
Proof of Theorem 1. We fix y; € L*(Q), ¢ > 0 and we define

g(s) = f(s) = f(So)'

S — So

Then, from the assumptions, we have that ¢ € L*(IR) N C(IR).
Now, by using Theorem 2, for each z € L*(0,T; HZ*(Q)) and € > 0 it is possible to find
two functions p(z) € LY(Q) and v(z) € sgn(¢(2))xo such that the solution y = y* of

i + (=A)"y + g(A*2) ARy = h — [f(s0) + g(A*2)s0 + uxo in Q

i
(23) M _y j=0,1,--m—1 on ¥
al/] 2 2 2
y(0) = yo on €,
(where u = uyar.)) satisfies
(24) ly(T) — yalr2 ) < e.
Besides
(25) elz) o) v(z), = € L*(0,T; Hgk(ﬂ))} is bounded in L=(Q)

since, following the proof of Theorem 2, ¢(z) is the solution of (15) with initial value
M( (g(A*2),y3) ) (see Proposition 3) and potential g(AFz), where y5 = y; — y*(T : 0),
with y*(T : 0) the solution of (23) at time T for the control v = 0. Therefore, by applying
Lemma 6, we obtain that y3 belongs to a compact set for all z € L2(0,T; H*(Q)) and so, by
using Proposition 3 and Proposition 1, we obtain (25).

Lemma 6 The set
{yi, = € L}0,T; H3*(Q)},

with y3 defined above is relatively compact in L*(12).



Proof of Lemma 6. We can split the set of solutions y*(- : 0) of

i + (=A)"y + g(A*2) APy = h — f(s0) + g(A*2)s0 in Q

J
%zo,j:(),l,---m—l on X
y(0) = yo on (2,

by y*(- : 0) = u 4 v, where u is the solution of

wH (A =h— f(ss)  inQ

J
%zo,j:(),l,---m—l on X
u(0) = yo on )

and v is the solution of

v+ (—A)"0 + g(Akz)(Aku + Akv) = g(AkZ)SO in Q

J
%zo,j:(),l,---m—l on X
v(0) =0 on .

Then, by applying Proposition 1 and the results of Lions-Magenes [13] (see page T8), we
obtain that there exists K > 0 independent of z such that

| v [[zem@) < K (14 || yo |2 + || P l|z2(0))-

Finally, we take into account that H'*™(Q) is compactly imbedded in C([0,T]; L*(Q)) and
we conclude the result.

End of the proof of Theorem 1. Thus

(26) Ki=  sup I #(2) |10y < oo
2€L2(0,T;H5*(Q))

Obviously, as we had seen in (18) and (19) u = uy(ak.) satisfies
(27) [ [z < K
Therefore, if we define the operator
A L2(0, T35 Hi*(Q)) — P(L*(0, T3 Hg"(2)))

by
A(z) = {y satisfies (23), (24) for some u satisfying (27) },

we have seen that for each z € L*(0,T; HZ*(Q)), A(z) # 0. In order to apply Kakutani’s
fixed point theorem, we have to chek that the next properties hold:

(i) There exists a compact subset U of L%(0,T; HZ*(Q)), such that for every z € L2(0,T; HZ*()),
Alz) CU.



1) For every z € - , z) 18 a convex, compact and nonempty subset o
i) I L¥0,T; H¥*(Q)), A i d b f
L(0,T; Hg*(42)).

(iii) A is upper hemicontinuous.
The proof of these properties is as follows:

(i) From Proposition 1 we know that, there exists a bounded subset U of {y € V' : y, € V'}
such that for every z € L*(0,T; HZ*(9Q)), A(z) C U. Now, to see that we can choose U

compact we shall prove that the set
Y = {y satisfying (23) for some z € L*(0,T; HZ*(Q)) and u verifying (27)}
is a relatively compact subset of L2(0,T; H2¥(Q)). But this is easy to prove by using that
(28) {yeV : y e V'Y C L*0,T; H¥*(Q)) with compact imbedding
(see Aubin [1]).

(ii) We have already seen that for every z € L2(0,T; H2*(Q)), A(z) is a nonempty subset
of L2(0,T; H3*(2)). Besides A(z) is obviously convex, because B(yq,¢) and {u € L*(Q) :
satisfying (27)} are convex sets. Then, we have to see that A(z) is a compact subset of
L*0,T; HZ*(9Q)). In (i) we have proved that A(z) C U with U compact. Let (y"), be a
sequence of elements of A(z) which converges on L%*(0,T; HZ*(Q)) to y € U. We have to
prove that y € A(z). We know that there exist u" € L?(Q) satisfying (27) such that

i 4 (=A)"y" 4 g(AF2) ARy = h — f(s0) + g(AFz)s0 +u"xo in Q

o'y .
(29) al/],:(),j:(),l,---,m—l on
y™(0) = yo on {2

ly™(1') — yal2 < e.

Now, by using that the controls u™ are uniformly bounded, we deduce that u™ — w in the
weak topology of L*(Q) and u satisfies (27). Therefore, if we pass to the limit in (29) we
obtain

i+ (=A)"y + g(A*2)Afy = h — f(s0) + g(A*2)so + uxo  in Q

J
%ZO,jZO,l,---,m—l on %
y(0) = o on ).

Besides, v = y — y™ is solution of

o 4 (= A)™" 4 g(AFZ) ARV = (u —u")yo  in Q

Fiv"
85],:0,]’:0,1,...,77@—1 on %
v"(0)=0 on {2

and satisfies v™ € H"*"((Q) (see [13]). Therefore, v" is a strong solution and if we “multiply”
by v" and integrate, we obtain that

| v™(T) H%Q(Q)g k/ (u—u")yov"dedt — 0 as n — oo.
Q

9



Thus y"(7T') converges to y(T') in the topology of L*(Q) and |y(T) — ya|2 < &. This prove that
y € A(z) and concludes the proof of (ii).

(iii) We must prove that for every zo € L*(0,T; H*(Q))

limsup  o(A(z,), k) < o(A(z0), k), ¥ k € L*(0,T; H™2*(Q)).
12(0,7,H2¥(02)

Zn 20

We have seen in (ii) that A(z) is a compact set, which implies that for every n € IV there
exists y" € A(z,) such that

o(A(zn), k) =< k(x,1),y"(2,1) > L2(0,T;H=2K(Q)) x L2 (0,T;HZR () -

Now, by (i), (y"), C U (compact set). Then, there exists y € L2(0,T; H2*(£2)) such that
(after extracting a subsequence) y” — y on L2(0,T; H3*(2)). We shall prove that y € A(z).
We know that there exist u™ € L*(Q) satisfying (27) such that

yr 4 (=A) "y + g(AF 2 ) ARy = h — f(s0) + g(AFz,)s0 + u"xo in Q

dy" .
(30) al/],:(),j:(),l,---,m—l on
y"(0) = yo on )

ly™(T) — yal2 < e.

Then there exists u € L*((Q) satisfying (27) such that u™ — w in the weak topology of L*(O).
On the other hand, by using the smoothing effect of the parabolic linear equation (in a similar
way to the proof of (ii)) and that ¢ € L*(IR) N C(IR), we deduce that y satisfies (23) and
(24) with z = 2, for some u € L?*(Q) satisfying (27), which implies that y € A(zp). Then, for
every k € L*(0,T; H=2*()),

o(A(zn), k) =< k(,1),y"(x,1) > L2(0,T;H=2K(Q)) x L2(0,T; H2*(2))

—< k(z,t),y(z,1) > 12(0,T;H —2K(Q)) x L2(0,T; HZ* ()

< _SB(P : < k(z,t),y(z,1) > L2(0,T3H=2K(Q)) x L2 (0,T; H2K(Q)) = o(A(z0), k),
yeA(z0

which proves that A is upper hemicontinuous and conclude the proof of (iii).

Finally, if we restrict A to K = conv(U) (the convex enveloppe of U), which is a compact
set in L2(0, T; H2*(Q)), it satisfies the assumptions of Kakutani’s fixed point theorem. Then,
A has a fixed point y € K. Besides, by construction, there exists a control v € L*(Q)
satisfying (27) such that

i+ (=A)"y + f(A') = h+uxo inQ

07y .
(31) w:(),j:(),l,m—l on X
y(0) = yo on

y(T) = yal2 < e

Therefore, y is the solution that we were looking for.

10



6 Non-controllability for superlinear problems.

In this section we assume k = 0. We shall prove a result of non-contrallability for a superlinear
case with o C Q.

Theorem 4 Ifp > 1 and yo € L*(Q) the problem

v+ (=A)"y + |yl ly = uxe i Q
y(0) = o on

with controls w € L*(Q) (or more general with v € L (Q) where 1 = p +1 > 2 and
so " € (1,2)) and any boundary condition does not satisfy, in general, the approximate
controllability property at time T'.

In order to prove this theorem we need some previous results.

Young’s inequality. If ¢, B> 0, >0 and ¢ > 1 then

(32) AB < eA?4 K(e,q)B" with

Notation. If we take B > 0 we can define in IR" the functions
En(z) = (B2 = [2P)/R if [e] < R, €a(e)=0 if |2 > R
and the powers £, of the function £g, where s > 1 is a real number. We can also define
(33) dp(z) =R —|z| if || <R, dr(z)=0 if |z|> R
and then, the following relation holds for all x € IRY.

(34) dr(z) < €r(z) < 2dr(2).

The following result was proved in Bernis [4].

Proposition 5 Let s > 2m and R > 0. Then, for each ¢ > 0 there exist a constant C

depending only on N, m, s and ¢ (thus independent of R) such that the following inequality
holds for all y € HJI(IR"):

((_A)myafzs%y)Hl— (RN)xHP (RN) 2 (1—¢) /RN Epl D™ y|Pdx — C/RN £ 2y d.

Remark 7 Since s > 2m, &5 € W2m(IRN). Hence £ € C™(IRN) (see e.g. Corollary
IX.13 of [5]) and Eu € H™(IRY) (see e.g. Note J of Chapter IX of [5]).

Corollary 1 Let s > 2m and R > 0 such that B C Q. Then, for each ¢ > 0 there exist a
constant C' depending only on N, m, s and € (thus independent of R) such that the following
inequality holds for all y € H™():

(=A)"9 ) -miapsnpiey = (1 =) | D"y de = C [ 72"y de.

11



Proof. We take y € H™(Q) such that ¥ =y in Q (we can see that this ¥ exists in Theorem
IX of Brezis [5]). Then we have the inequality for 7, but as Br C £ we obtain the result.

Theorem 5 Let p > 1, r = p+1, yo € L*Q) and v € L (Q). Then any solution y €
L7(Q) 1 LA(0. T H™(9) of

ye + (=A)"y + lylPly =u in D'(Q)
(35) { y(0) = yo on 1,

with any boundary conditions, satisfies the local estimate

sup [ y(x,t)de + (I1D™y|? + ly|")d=dt
0<t<T JBpg Brx(0,T)

<K (1 —I—/ | dzdt —I—/ ygd:zj)
BRl)((O,T) BR1

if Br, C Q and 0 < R < R,. Besides, the constant K depends only on N, m, p, R, R, and
T.

Remark 8 The set of solutions of the problem in Theorem 5 is not the empty set since,
for instance with Dirichlet conditions on the boundary, we know that there exists a unique
solution (see e.g. Lions [10]).

Proof of Theorem 5. We take X, = L"(Q) N L*(0,T; Hy(Q). Then the equality of the
equation of (35) isin X! = L' (Q) + L*(0,T; H="™()). Then, if s > 2m, we can multiply in
(35) by &y with the duality product (-,-)xsxx, and we obtain

1 S m S b S
§/BR Epy(a, T)2de 4+ ((=A)"y, Epy )2 0.1sm-m@) < 220,737 @) + (1Y 705 ERY) v 0y x 20 0)

1 S S
= 5/ fR?JO(fI;)zdx + (UafRy)Lr’(Q)er(Q)-
Br

Now, from Corollary 1 it follows that

1

- 5 T 2d / 5 Dm 2 r d dt

5, G TPt [ (D7l e
<C / £syo(e)2de + C / £2m 2 dt 4 O ¢8uyddt.

BR BRX(O,T)

BRX (O,T)

(36)

By (33) and (34) we can replace in (36) {r(x) by R — |2| (modifying the constants). Besides,
writing s — 2m = 2s/r + (s(r — 2)/r) — 2m, we can apply Holder’s or Young’s inequality (32)
with exponents ¢ = r/2 and ¢’ = r/r — 2 and we obtain

/ (R — |z|)*~ "y dxdt
BRX(O,T)

< R — |||y dedt + K (e, 2/ R — |z|)*"dudt
e om Bl ol dedi 4 Ker2) [ (R el

RX(O,T)

with
2mr

r—2

"}/:

12



Hence, if we choose s > ~ — 1, the last integral is finite and equal to CR**N=7. On the other
hand, we can apply again (32) and we have

R—|e|)uydedt < / R—|e|)*|y|"dedt + ke, /' R—|e|)*|u|” dedt.
/BRxw,T)( el uyded < ¢ BRX(O,T)( oIyl dedt + k(e,r) (R—|z|)[u]" da

BRX (O,T)

Thus, by changing the constants, we deduce that

/ (2, T)?de + / — 2] (1D g + |y dedt
2 Brx(0

gC(/(R—@Wm@f@+RHMﬁ+ (R—MWWWM&)
Bgr

Finally, by replacing R by R; and by taking into account that Ry — || > Ry — R and
— |z] < Ry if |2| £ R we deduce the result with

Ry . CR7TN
Ri— R’ (R, — R)®

BRX (O,T)

K = maX{C(

Proof of Theorem 4. The proof of Theorem 4 is a consequence of Theorem 5 since, if Ry
satisfies Bp, C Q\w, then

[ y(u; 1) H%?(Q)S K1+ || vo "%2(0)) Yue L™ (Q)
and if we take y4 such that || y4 ||r2(q) is large enough we cannot find a satisfactory control.

Acknowledgements. The authors thank to F. Bernis by the conversations held on this
subject.
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