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1. INTRODUCTION.

The approximate controllability for parabolic problems has received an intensive
study in the last three decades. References to the pioneering works devoted to linear
equations can be found in the book of Lions (1968) and in the survey of Russell (1978).
For numerical aspects see Carthel, Glowinski and Lions (1994), Glowinski and Lions
(1994), (1995). The study of this property for nonlinear parabolic equations seems
to have its origins in the work of Henry (1978). Since then, many other results are
today available in the literature (see some references in Dı́az (1995a), (1995b)) but,
to the best of our knowledge, always restricted to the case of semilinear parabolic
equations in which the presence of a dominating linear term allows to arrive to a
positive conclusion.

In this paper we start a series of works devoted to purely quasilinear parabolic
equations, i.e., without assuming the presence of a dominating linear term in the
equation. To fix ideas, we shall consider the question of the approximate controllability
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for the, so called, nonlinear diffusion equation




yt −∆ϕ(y) = h + vχω in Q := Ω× (0, T ),
ϕ(y) = 0 on Σ := ∂Ω× (0, T ),
y(0) = y0 in Ω,

(1)

where Ω is a bounded open subset of IRN of class C4, T > 0, ω is a nonempty open
subset of Ω, ϕ is a continuous nondecreasing real function, h ∈ L2(0, T : H−1(Ω)) and
y0 ∈ L2(Ω) are prescribed data and v represents the searched output control answering
to the approximate controllability property; i.e. such that ‖ y(t; v)−yd ‖L2(Ω)≤ δ for a
given δ > 0 and for some desired state yd ∈ L2(Ω) (here y(t; v) denotes the solution of
(1) associated to the control v). In the rest of the paper we always assume ω ⊂ Ω but
ω 6≡ Ω (the approximate controllability when ω ≡ Ω is a consequence of the results of
Dı́az and Fursikov (1994)). Before continuing, we recall that the class of equations (1)
arises in many important physical settings (see, e.g. the surveys Peletier (1981), Dı́az
(1986), Kalashnikov (1987) and Vázquez (1992)).

This paper is devoted to the case in which ϕ is assumed to be sublinear at infinity.
i.e. such that

|ϕ(s)| ≤ C(1 + |s|) for |s| > M,(2)

for some M > 0 (the superlinear case will be considered in a next work). We recall
that this type of conditions are sufficient and, in some sense, necessary in order to
have the approximate controllability of semilinear parabolic equations of the type

yt + (−∆)my + ϕ(y) = h + vχω(3)

(see Dı́az and Ramos (1997b) for m ≥ 1 and its references on the case m = 1). More
precisely, if for instance

ϕ(s) = |s|m−1s, s ∈ IR(4)

and ϕ is superlinear (i.e. m > 1) then an obstruction phenomenon occurs for the
solutions of the Cauchy-Dirichlet problem associated to (3) and thus the approximate
controllability fails for a general desired state yd (see Dı́az (1991), (1994), Dı́az and
Ramos (1997a) for m = 1 and Dı́az and Ramos (1997b) for m > 1). In contrast
with that, we shall prove in Section 2 that an obstruction phenomenon occurs for
solutions of the nonlinear diffusion equation (1) when ϕ is a strictly sublinear function
as, for instance, ϕ given by (4) with m ∈ (0, 1). Therefore, again, the approximate
controllability fails in this situation if yd is suitably chosen. Nevertheless, we shall
prove, in Section 3, that although the remaining range of sublinear functions ϕ
(satisfying (2)) which are not strictly sublinear is quite narrow, the approximate
controllability holds for a certain class of functions ϕ which are essentially linear
at infinity (see assumptions (13) and (14) bellow). This class of functions includes
the one associated to some type of two phase Stefan problem (ϕ(s) = ks for s < 0,
ϕ(s) = 0 in [0, L] and ϕ(s) = ks for s > L, for some positive constants k and L). The
result is obtained through the application of the main theorem of Dı́az and Ramos
(1997b) to the vanishing viscosity higher order problem





yt + ε∆2y −∆ϕ(y) = h + vχω in Q,
∂jy

∂νj
= 0 , j = 0, 1 on Σ,

y(0) = y0 in Ω

(5)



CONTROLLABILITY AND OBSTRUCTION FOR QUASILINEAR PROBLEMS 3

(with ε > 0 arbitrary) and posterior passing to the limit ε → 0. This vanishing viscosity
argument seems to lead to approximate controllability results for a very large class on
nonlinear parabolic equations even in non divergence form as

yt −F(t, x, y,∇y, D2y) = vχω.

2. OBSTRUCTION PHENOMENON WHEN ϕ IS STRICTLY
SUBLINEAR.

In this section we shall prove that when ϕ is strictly sublinear at infinity as, for instance,
when ϕ is given by (2) with m ∈ (0, 1), then an obstruction phenomenon arises and
therefore problem (1) does not satisfy, in general, the approximate controllability
property (in contrast with semilinear parabolic problems). Several proofs of this fact
are possible. We start with an energy argument.

Theorem 1 Let m ∈ (0, 1) and y0 ∈ L2(Ω). Let y(t;u) ∈ C([0, T ]; L2(Ω)) with
|y|m−1y ∈ L2(0, T ;H1

0 (Ω)) be a function satisfying

P(u, y0)
{

yt −∆(|y|m−1y) = uχω in D′(Q)
y(0) = y0 in Ω

with external control u ∈ L2(ω × (0, T )). Then we can choose yd ∈ L2(Ω) such that
‖ y(T ; u)− yd ‖L2(Ω)> ε for any u ∈ L2(ω × (0, T )) and any ε > 0 small enough.

The main ingredient of the proof is the following technical result due to Herrero
and Pierre (1985) (see their Lemma 3.1 and following Remark).

Lemma 1 (Herrero and Pierre (1985)). Let m ∈ (0, 1), R > 0 and y, ŷ ∈
C([0, T ];L1(BR(x0))) satisfying the equation

yt −∆(|y|m−1y) = 0 in D′((0, T )×B2R(x0)).(6)

Assume that y ≥ ŷ. Then, for any t, s ∈ [0, T ], there exists C = C(N, m) such that
∫

BR(x0)

|y(t)− ŷ(t)| ≤ C

[∫

B2R(x0)

(|y(s)− ŷ(s)|+ |t− s|αR−γ)

]
,(7)

where α = 1/(1−m) and γ = 2/(1−m)−N.

Proof of Theorem 1. Let x0 ∈ Ω\ω and R > 0 be such that B2R(x0) ⊂ Ω\ω. Let
y+
0 := sup(y0, 0), y−0 := sup(−y0, 0). Define analogously u+ and u−. Let Y+ (resp. Y−)

be the (unique) solution of problem P(u+, y+
0 ) (resp. P(u−, y−0 )) (see, for instance,

Brézis (1971)). Then, by the comparison principle (see references in Kalashnikov
(1987))

−Y−(t, x) ≤ y(t, x) ≤ Y+(t, x) and Y+(t, x) (resp. Y−(t, x)) ≥ 0

for any t ∈ [0, T ] and a.e. x ∈ Ω. Then the function Y+ (resp. Y−) and ŷ ≡ 0 satisfy
(6) in D′((0, T )×B2R(x0)) and therefore, by (7),

∫

BR(x0)

Y+(t, x)dx ≤ C

[∫

B2R(x0)

(y+
0 (x) + tαR−γ)dx

]
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for any t ∈ [0, T ]. Then

∫

BR(x0)

|y(t, x)|dx ≤ C

[∫

B2R(x0)

(|y0(x)|+ tαR−γ)dx

]
(8)

for any t ∈ [0, T ]. It is clear that (8) implies an obstruction for the L2(Ω)-norm of
y(t; u) (independent of u) and that the conclusion holds by choosing yd ∈ L2(Ω) with

∫

B2R(x0)

|yd(x)|dx >>

∫

B2R(x0)

(|y0(x)|+ TαR−γ)dx.

Remark 1 We point out that a pointwise obstruction phenomenon also arises when
m ∈ (0, 1). It is a consequence of the existence of a (unique) function Y +

λ,∞(x) (resp.
Y −

λ,∞(x)) satisfying




−∆Y +

λ,∞ + λ|Y +
λ,∞|p−1Y +

λ,∞ = 0 in Ω\ω
Y +

λ,∞ = 0 on ∂Ω
Y +

λ,∞ = ∞ (resp. Y −
λ,∞ = −∞) on ∂ω,

(9)

for any prescribed λ > 0 and p > 1 (see e.g. Bandle and Markus (1992)). Assume now
that {

there exist C > 0 and λ > 0 such that
CY −

λ,∞(x) ≤ y0(x) ≤ CY +
λ,∞(x) a.e. x ∈ Ω\ω.

(10)

Then it is possible to construct U+(t, x) (resp. U−(t, x)) satisfying




U+
t −∆(|U+|m−1U+) = 0 in D′(Ω\ω × (0, T ))

U+ = 0 on Σ
U+ = ∞ (resp. U− = −∞) on ∂ω × (0, T )
U+(0, x) = y0(x) in Ω\ω.

(11)

The main idea is to use the supersolution

U(t, x) := Y +
λ,∞(x)(m− 1)

[
λt + C1−m

] 1
1−m ,(12)

where Y +
λ,∞(x) is the solution of (9) with p := 1/m. Then the comparison principle

leads to the pointwise obstruction estimate U−(t, x) ≤ y(t, x; u) ≤ U+(t, x) for any
t ∈ [0, T ], a.e. x ∈ Ω\ω and any solutions U+ (resp. U−) of (11). We point out that
the uniqueness of solutions U+ (resp. U−) of (11) may fail (in contrast with the case of
non singular solutions or semilinear equations). This is the case if, for instance, y0 ≡ 0
(for any λ > 0 the functions Uλ(t, x) := (m − 1)(λt)1/(1−m)Y +

λ,∞(x) is a solution of
(11) with zero initial value).

3. AN APPROXIMATE CONTROLLABILITY RESULT WHEN
ϕ IS ESSENTIALLY LINEAR AT INFINITY.

The main result of this section is the following:
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Theorem 2 Let ϕ be a continuous nondecreasing function with ϕ(0) = 0. Assume
that there exists k ≥ 0 such that





ϕ ∈ C1(IR\[−M1,M1]) and |ϕ′(s)− k| ≤ C1

|s| if |s| > M1,

for some positive constants C1 and M1

(13)

and
|ϕ(s)− ks| ≤ C2 ∀ s ∈ IR.(14)

Then the approximate controllability property holds for problem (1), i.e., given yd ∈
L2(Ω) and δ > 0 there exists v ∈ L2(0, T ;L2(ω)) such that ‖ y(T ; v)− yd ‖L2(Ω)< δ.

Remark 2 Notice that assumptions (13) and (14) are not fulfilled when ϕ is given
by (2) with m ∈ (0, 1).

As mentioned at the Introduction, the proof of Theorem 2 will be obtained through
the study of the approximate controllability for the evanescent viscosity higher order
problem (5).

Theorem 3 Assume ϕ ∈ C0(IR) (non necessarily nondecreasing) satisfying (2). Let
yd ∈ L2(Ω) and δ > 0. Then, for any ε > 0 there exists a control vε ∈ L∞((0, T )×ω))
such that if y(t; v) is the corresponding solution of (5) we have

‖ y(T ; vε)− yd ‖L2(Ω)< δ.(15)

If in addition ϕ satisfies (13) and (14), then there exists a positive constant K,
depending on k, C1, C2 and M1 but independent of ε, such that the above controls
vε can be taken satisfying

‖ vε ‖L∞((0,T )×ω)≤ K, for any ε > 0.(16)

The proof of the first part of Theorem 3 is an special formulation of the main
result (Theorem 1) of Dı́az and Ramos (1997b). The second part reproduces some
of the steps of the proof of Theorem 1 of Dı́az and Ramos (1997b) that here will
be merely sketched but putting emphasis on the new arguments needed to arrive to
the conclusion. The first step consists in proving the approximate controllability for a
linearized problem (a posterior fixed point argument will extend the conclusion to the
nonlinear problem). Since assumption (13) clearly implies that ϕ′(s) → k as |s| → ∞,
it is natural to define the function

ϕ0(s) := ϕ(s)− ks, s ∈ IR(17)

(so that ϕ′0(s) → 0 as |s| → ∞). Then, it suffices to linearize function ϕ0 which (by
convenience) will be done near a point sε ∈ IR depending on ε in a suitable way as
shows the following result (that can be proved by elementary techniques of calculus)

Lemma 2 Let ϕ ∈ C0(IR) (non necessarily nondecreasing) satisfying (13). Given
ε > 0 there exists sε ∈ IR such that the function

gε(s) :=
ϕ0(s)− ϕ0(sε)

s− sε
(18)
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satisfies gε ∈ L∞(IR) ∩ C(IR) and

‖ gε ‖L∞(IR)≤
√

ε.(19)

If in addition ϕ satisfies (14), then there exists a positive constant K2, depending on
C1, C2 and M1 but independent of ε, such that

|gε(s)sε| ≤ K2, for any ε > 0 and any s ∈ IR.(20)

Now we return to our linearizing process. Since ϕ0(s) = ϕ0(sε)+gε(s)s−gε(s)sε, we
shall start by considering the approximate controllability for a linear problem obtained
by replacing the term ϕ(y) by ky + gε(z)y + ϕ0(sε)− gε(z)sε, where z is an arbitrary
function in L2(Q). Notice that when z = y this expression coincides with ϕ(y) and
that if we denote hε(z) := ∆ (ϕ0 (sε)− gε(z(t, z))sε) , then hε(z) ∈ L∞(0, T ;H−2(Ω))
for all z ∈ L2(Q) and for all ε > 0. Now, we consider the approximate controllability
property corresponding to the linear problem





yt + ε∆2y − k∆y −∆((gε(z)y) = h + hε(z) + uεχω in Q,
∂jy

∂νj
= 0 , j = 0, 1 on Σ,

y(0) = y0 in Ω.

(21)

The existence and uniqueness of a solution y ∈ L2(0, T ; H2
0 (Ω)), with yt ∈

L2(0, T ; H−2(Ω)) was given in Proposition 4 of Dı́az and Ramos (1997b).
Before stating an approximate controllability result for this problem, following Lions

(1990), Fabre-Puel-Zuazua (1992) (1995) and Dı́az-Ramos (1994), (1997a), we consider
δ > 0 and yd ∈ L2(Ω) and we introduce the functional Jε = Jε(·; z, yd) : L2(Ω) → IR
defined by

Jε(p0; z, yd)=Jε(p0) =
1
2

(∫

ω×(0,T )

|p(t, x)|dxdt

)2

+ δ ‖ p0 ‖L2(Ω) −
∫

Ω

yd p0dx(22)

where p(t, x) is the solution of the backward problem




−pt + ε∆2p− k∆p− (gε(z))∆p = 0 in Q,
∂jp

∂νj
= 0 , j = 0, 1 on Σ,

p(T ) = p0 in Ω,

(23)

for any p0 ∈ L2(Ω) given. The existence and uniqueness of a solution p ∈
L2(0, T ; H2

0 (Ω)), with pt ∈ L2(0, T ;H−2(Ω)) was given in Proposition 1 of Dı́az and
Ramos (1997b). Moreover, some easy modifications of the arguments given in Fabre,
Puel and Zuazua (1992), (1995) and the Unique Continuation property (see Saut and
Scheurer (1987)) allow to show that the functional Jε(·; z, yd) is continuous, strictly
convex on L2(Ω) and satisfies

lim inf
‖p0‖L2(Ω)→∞

Jε(p0; z, yd)
‖ p0 ‖L2(Ω)

≥ δ.(24)

Then Jε(·; z, yd) attains its minimum at a unique point p̂0
ε in L2(Ω). Furthermore,

p̂0
ε = 0 iff ‖ yd ‖L2(Ω)≤ δ.
Concerning the approximate controllability of problem (21) we have



CONTROLLABILITY AND OBSTRUCTION FOR QUASILINEAR PROBLEMS 7

Theorem 4 Let z ∈ L2(Q). Assume gε satisfying (19) and (20). Let ‖ yd −
y(T ; z, 0) ‖L2(Ω)> δ and let p̂ε be the solution of (23) corresponding to p̂(T ) = p̂0

ε,
with p̂0

ε minimum of Jε(·; z, yd − y(T ; z, 0)), where in general y(t; z, u) denotes the
solution of (21) corresponding to the control u. Then there exists q̂ε ∈ sgn(p̂ε)χω such
that the solution yε of





yt + ε∆2y − k∆y −∆((gε(z))y) = h + hε(z)+ ‖ p̂ε ‖L1((0,T )×ω) q̂εχω in Q,
∂jy

∂νj
= 0 j = 0, 1 on Σ,

y(0) = y0 in Ω,

satisfies
‖ yε(T )− yd ‖L2(Ω)≤ δ.(25)

Moreover, if ‖ yd−y(T ; z, 0) ‖L2(Ω)≤ δ, then property (25) holds for the control vε ≡ 0.
Finally, if ϕ satisfies (13) and (14), there exists a positive constant K, depending on
k, C1, C2 and M1 but independent of ε, such that the above functions p̂ε satisfy

‖ p̂ε ‖C([0,T ];L2(Ω))≤ K, for any ε > 0 and any z ∈ L2(Q).(26)

Remark 3 Theorem 4 solves the approximate controllability problem for (21) with
control uε :=‖ p̂ε ‖L1((0,T )×ω) q̂ε. Therefore

‖ uε ‖L∞(Q)≤ K.(27)

Proof of Theorem 4. We put yε = Lε + Yε, where Lε = Lε(z) satisfies




Lt + ε∆2L− k∆L−∆((gε(z))L) = h + hε(z) in Q,
∂jL

∂νj
= 0 j = 0, 1 on Σ,

L(0) = y0 in Ω

(28)

and Yε = Yε(z) is taken associated to the approximate controllability problem




Yt + ε∆2Y − k∆Y −∆ ((gε(z))Y ) = uε(z)χO in Q,
∂jY

∂νj
= 0 j = 0, 1 on Σ,

Y (0) = 0 in Ω,

with desired state yd − Lε(T ), i.e. such that ‖ Yε(T ) − (yd − Lε(T )) ‖≤ δ. Assuming
(2), by Theorem 2 of Dı́az and Ramos (1997b), there exists q̂ε ∈ sign (p̂ε)χω, with p̂ε

solution of (23) of initial value Mε(z, yd − Lε(T )), where Mε : L2(Q) × L2(Ω) −→
L2(Ω) with M(z, yd) = p̂0

ε (it can be shown that, if K is a compact subset of L2(Ω),
then, for any fixed ε > 0, Mε(L2(Q) ×K) is a bounded subset of L2(Ω)), such that
uε(z) :=‖ p̂ε ‖L1((0,T )×ω) q̂ε leads to ‖ Y (T ) − ŷd ‖L2(Ω)= δ, where ŷd := yd − Lε(T )
(in the case ‖ ŷd ‖L2(Ω)≤ δ it suffices to take uε ≡ 0). For the proof of (26) we have

Lemma 3 Assume (19) and (20). Let z ∈ L2(Q). Let p0 ∈ L2(Ω) be given. Then, if
pε is the solution of (23), we have

‖ pε ‖C([0,T ];L2(Ω))≤ eT ‖ p0 ‖L2(Ω) for any ε > 0 and any z ∈ L2(Q).(29)
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Proof. If we ”multiply” in (23) by pε, for any t ∈ (0, T ] we obtain

1
2
‖ pε(t) ‖2L2(Ω) +ε ‖ ∆pε ‖2L2((t,T )×Ω) +k ‖ ∇pε ‖2L2((t,T )×Ω)≤

1
2
‖ pε(T ) ‖2L2(Ω) + ‖ gε(z(t, x)) ‖L∞(Q)‖ ∆pε ‖L2((t,T )×Ω)‖ pε ‖L2((t,T )×Ω) .

Then, if we apply Young’s inequality, we have that

1
2
‖ pε(t) ‖2L2(Ω) +

ε

2
‖ ∆pε ‖2L2((t,T )×Ω)≤

1
2
‖ pε(T ) ‖2L2(Ω) +

1
2
‖ pε ‖2L2((t,T )×Ω) .

Then we obtain that

‖ pε(t) ‖2L2(Ω)≤‖ pε(T ) ‖2L2(Ω) +
∫ T

t

‖ pε ‖2L2(Ω) .

Applying Gronwall’s inequality, we deduce the following inequality leading to (29)

‖ pε(t) ‖2L2(Ω)≤‖ pε(T ) ‖2L2(Ω) eT−t ∀ t ∈ [0, T ].

Completion of proof of Theorem 4. From (20) we deduce that there exists
a constant K3, depending on C1, C2 and M1 but independent of ε, such that
‖ Lε(z) ‖C([0,T ];L2(Ω))≤ K3 for any ε > 0 and any z ∈ L2(Q). Moreover, Lemma
3 implies that for any ε > 0 and z ∈ L2(Q)

Jε(p0; z, yd) ≤ 1
2
|ω|e2T T 2 ‖ p0 ‖4L2(Ω) + ‖ p0 ‖L2(Ω) −

∫

Ω

ydp
0dx.

Thus, there exists a constant K4, depending on C1, C2 and M1 but independent of ε,
such that, if p̂0

ε is the minimum of Jε(·; z, yd − Lε(T )), we have ‖ p̂0
ε ‖L2(Ω)≤ K4 for

any ε > 0 and any z ∈ L2(Q). Lemma 3 implies (26) with K = eT K4.

Proof of Theorem 3. The first part was proved in Theorem 1 of Dı́az and Ramos
(1997b) by applying Kakutani’s fixed point theorem to the operator Λε : L2(Q) →
P(L2(Q)) defined by Λε(z) := {yε satisfying (21), (25), with a control uε satisfying
(27)}, where the constant K of (27) depends on ε. Finally, if ϕ satisfies (13) and (14),
then Proposition 2 shows that (26) holds, which leads to (16) with K = eT K4.

Proof of Theorem 2. First step. Assume additionally that ϕ ∈ C1(IR). For any
ε > 0, let vε and yε be the functions given in Theorem 3. Since the equation of (5)
holds on L2(0, T ; H−2(Ω)), multiplying by yε ∈ L2(0, T ; H2

0 (Ω)) and applying Young
and Gronwall inequalities we obtain, from the uniform estimate (16), that there exists
a constant C > 0 independent of ε such that

‖ yε ‖C([0,T ];L2(Ω)) +
∫

Q

ϕ′(yε)|∇(yε)|2dxdt ≤ C.(30)

Therefore, from (30) we obtain that yε is uniformly bounded in L∞(0, T ; L2(Ω))
and by the equation of (5), (yε)t is uniformly bounded in L∞(0, T ; H−4(Ω)). Then,
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since L2(Ω) ⊂ H−1(Ω) ⊂ H−4(Ω) with compact imbeddings, we have (see Aubin
(1963)) that yε is relatively compact in L∞(0, T ; H−1(Ω)). Further, from (30) and the
boundedness of function ϕ′ (notice that ϕ′ ∈ L∞(IR) by (13)), we deduce that there
exists a constant K > 0 independent of ε such that

∫ T

0

‖ ∇ϕ(yε) ‖2L2(Ω) dt =
∫

Q

ϕ′(yε(x, t)) ϕ′(yε(x, t))|∇(yε(x, t))|2dxdt < K.

Thus, there exist y ∈ L∞(0, T ; L2(Ω)) and ζ ∈ L2(0, T ; H1
0 (Ω)) such that yε → y

strongly in L2(0, T ; H−1(Ω)) and ϕ(yε) ⇀ ζ weakly in L2(0, T ;H1
0 (Ω)). But the

operator Au := −∆ϕ(u), D(A) := {u ∈ H−1(Ω) : ϕ(u) ∈ H1
0 (Ω)} is a maximal

monotone operator on the space H−1(Ω) (see Brézis (1971)). Thus, the extension
operator A of A is also a maximal monotone operator on L2(0, T ; H−1(Ω)) (see Brézis
(1973), Example 2.33). Finally, as any maximal monotone operator is strongly-weakly
closed (see Brézis (1973), Proposition 2.5), we obtain that ζ = ϕ(y) in L2(0, T ; H1

0 (Ω)).
Moreover, from estimate (16) we have that vε ⇀ v ∗-weakly in L∞((0, T )× ω), with

‖ v ‖L∞((0,T )×ω)≤ K.(31)

Then we deduce that y ∈ C([0, T ];H−1(Ω)) is solution of (1). Further, since ‖
yε(T ) ‖L2(Ω) is uniformly bounded and yε(T ) → y(T ) strongly in H−1(Ω), we deduce
that yε(T ) ⇀ y(T ) in the weak topology of L2(Ω), which implies that

‖ y(T )− yd ‖L2(Ω)≤ lim inf
ε→0

‖ yε(T )− yd ‖L2(Ω)≤ δ.

Second step. Let ϕ as in the statement of Theorem 2. It is clear that we can approximate
ϕ by ϕn ∈ C1(IR), ϕn nondecreasing, satisfying (13) and (14) with the same constants
k, C1, C2 and M1 that the ones for ϕ. Then the respective controls vn build as in step
1 are uniformly bounded and therefore the conclusion comes as an easy modification
of the well-known result expressing the continuous dependence on ϕ of solutions of (1)
(see e.g. Benilan and Crandall (1981)).
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