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Introduction
The study of the approximate controllability property for linear parabolic problems was
already treated in [9]. The study of this property for nonlinear parabolic equations seems
to have its origins in [8]. Since then, many other results are today available in the literature
but, to the best of our knowledge, always restricted to the semilinear case. This paper is a
variation of the recent results in [4], [5] by considering the problem





yt −∆ϕ(y) = h in Q := Ω× (0, T ),
ϕ(y) = 0 on Σ := ∂Ω× (0, T ),
y(0) = v in Ω,

(1)

where Ω is a bounded open subset of IRN of class C4, T > 0, ϕ is a continuous non-
decreasing real function, h ∈ L2(0, T ; H−1(Ω)) and v represents the control answering
the following approximate controllability property: Fixed γ > 0, we find v such that
‖ y(t; v) − yd ‖H−(1+γ)(Ω)≤ δ for a given δ > 0 and for some desired state yd ∈ L2(Ω).
With this regularity of the data, y(v) ∈ C([0, T ]; H−1(Ω)) (see [2]). We prove that the ap-
proximate controllability holds for a certain class of functions ϕ. This class of functions
includes the one associated to some type of two phase Stefan problem (ϕ(s) = ks if s < 0 or
s > L and ϕ(s) = 0 in [0, L], for some constants k, L > 0). The result is obtained through
a variation of the main theorem of [6] for the vanishing viscosity problem





yt + ε∆2y −∆ϕ(y) = h in Q,
y = ∆y = 0 on Σ,
y(0) = v in Ω.

(2)

An approximate controllability result when ϕ is essentially linear at infinity Let
us denote Hr := Hr(Ω), for every r ∈ IR and |.|r its associated norm.

Theorem 1 Let ϕ be a continuous nondecreasing function with ϕ(0) = 0. Assume that
there exists some positive constans k,M1, C1, C2 such that

ϕ ∈ C1(IR\[−M1,M1]) and |ϕ′(s)− k| ≤ C1

|s| if |s| > M1,(3)

|ϕ(s)− ks| ≤ C2 ∀ s ∈ IR.(4)

Then, if ϕ′(s) ≥ c > 0 a.e. s ∈ IR or h ∈ L2(Q), then problem (1) satisfies the approximate
controllability property in H−(1+γ) for any γ > 0.

Theorem 2 Assume ϕ ∈ C0(IR) satisfying |ϕ(s)| ≤ C(1 + |s|) for |s| > M2 (C,M2 > 0).
Let yd ∈ H−(1+γ) and δ > 0. Then, for any ε > 0 there exists a control vε ∈ H0 such that if
y(t; v) is the corresponding solution of (2) we have

|y(T ; vε)− yd|−(1+γ) < δ.(5)

If in addition ϕ satisfies (3) and (4), then there exists a positive constant K, depending on
k, C1, C2 and M1 but independent of ε, such that the controls vε can be taken satisfying

|vε|0 ≤ K, for any ε > 0.(6)



The proof of the first part of Theorem 2 is an special formulation of the main result (Theorem
1) of [6]. The second part reproduces some of the steps of the proof of Theorem 1 of
[6] that here will be merely sketched. The first step consists in proving the approximate
controllability for a linearized problem (a posterior fixed point argument will extend the
conclusion to the nonlinear problem). We define function ϕ0(s) := ϕ(s) − ks and linearize
ϕ0 near a point sε ∈ IR depending on ε. This point will be chosen in a suitable way as the
following result shows (proved in [5]):

Lemma 3 Let ϕ ∈ C0(IR) satisfying (3). For any ε > 0 there exists sε ∈ IR such that the

function gε(s) := ϕ0(s)−ϕ0(sε)
s−sε

satisfies gε ∈ L∞(IR) ∩ C(IR) and

‖ gε ‖L∞(IR)≤
√

ε.(7)

If ϕ satisfies (4), then there exists a positive constant K2, independent of ε, such that

|gε(s)sε| ≤ K2, for any ε > 0 and any s ∈ IR.(8)

Now we return to our linearizing process. Since ϕ0(s) = ϕ0(sε)+gε(s)s−gε(s)sε, we shall start
by replacing the term ϕ(y) by ky+gε(z)y+ϕ0(sε)−gε(z)sε, where z is an arbitrary function
in L2(Q). If we denote E := H2 ∩ H1

0 and hε(z) := ∆ (ϕ0 (sε)− gε(z)sε) = −∆ (gε (z)sε) ,
then hε(z) ∈ L∞(0, T ; E ′). Now, we consider the approximate controllability property for
the linear problem





yt + ε∆2y − k∆y −∆ (gε(z)y) = h + hε(z) in Q,
y = ∆y = 0 on Σ,
y(0) = uε in Ω.

(9)

The existence and uniqueness of a solution y ∈ {y ∈ L2(0, T ; E) : yt ∈ L2(0, T : E ′} was
proved in [6]. In order to state an approximate controllability result for this problem, we

look for the inf
v∈H0

{
1
2

∫
Ω v2dx, Yε,z(T, v) ∈ yd + δB−(1+γ)

}
, where B−(1+γ) is the unit ball in

H−(1+γ) and Yε,z is the solution of




Yt + ε∆2Y − k∆Y −∆ (gε(z)Y ) = 0 in Q,
Y = ∆Y = 0 on Σ,
Y (0) = uε(z) in Ω.

(10)

Then, by duality theory, it is easy to prove that the above optimal control problem is
equivalent to find the infp0∈H1+γ

0
Jε(p

0), with Jε = Jε(·; z, yd) : H1+γ
0 → IR defined by

Jε(p
0) = 1

2
|p(x, 0)|20+ δ|p0|1+γ− < yd, p

0 >H−(1+γ)×H1+γ
0

. Here p denotes the solution of




−pt + ε∆2p− k∆p− gε(z)∆p = 0 in Q,
p = ∆p = 0 on Σ,
p(T ) = p0 in Ω.

(11)

The existence and uniqueness of a solution p ∈ L2(0, T ; E), was proved in [6]. The connection
between both minimizing problems is that the solution u ∈ H0 of the first one is u =
p̂(x, 0), where p̂ is the solution of (11) with p̂(T ) = p̂0

ε (minimizer of Jε). Now, some easy
modifications of the arguments given in [7] for a functional similar to this one and the
backward uniqueness theorem of Bardos and Tartar [1] allow to show that the functional

Jε(·; z, yd) is continuous, strictly convex on H1+γ
0 and satisfies lim inf

|p0|1+γ→∞
Jε(p0;z,yd)
|p0|

H
1+γ
0

≥ δ. Then

Jε(·; z, yd) attains its minimum at a unique point p̂0
ε in H1+γ

0 . Furthermore, p̂0
ε = 0 iff

|yd|H−(1+γ) ≤ δ. Now we shall give an approximate controllability result for an special case:



Lemma 4 Let z ∈ L2(Q) and yd ∈ H−(1+γ). Then, for any δ > 0, the solution Yε of problem
(10) with vε ≡ p̂(x, 0) satisfies |yd − Yε(T )|H−(1+γ) ≤ δ.

Theorem 5 Let z ∈ L2(Q) and yd ∈ H−(1+γ). Then there exists K > 0 and uε ∈ H0 such
that the associated solution yε of (9) satisfies

|yε(T )− yd|−(1+γ) ≤ δ,(12)

|uε|0 ≤ K, for any ε > 0 and any z ∈ L2(Q).(13)

Proof of Theorem 5. We put yε = Lε + Yε, where Lε = Lε(z) ∈ C([0, T ]; H0) satisfies




Lt + ε∆2L− k∆L−∆ (gε(z)L) = h + hε(z) in Q,
L = ∆L = 0 on Σ,
L(0) = 0 in Ω

(14)

and Yε = Yε(z) is taken associated to the approximate controllability problem (10), with
desired state yd−Lε(T ). We find the control uε in the same way as in Lemma 4. Therefore,
if p̂ε is the solution of (11) with final data M(ε, z, yd − Lε(T )), where M : (0, R]× L2(Q)×
H−(1+s) −→ H0 is defined by M(ε, z, yd) = p̂0

ε, then the control uε := p̂ε(x, 0) leads to
|Y (T ) − ŷd|−(1+γ) ≤ δ, where ŷd := yd − Lε(T ) (if |ŷd|−(1+γ) ≤ δ it suffices to take uε ≡ 0).
For the proof of (13) we need the following four lemmas (some of them proved in [5]).

Lemma 6 Assume (7) and (8). Let z ∈ L2(Q). Let p0 ∈ H0 be given. Then, if pε is the
solution of (11), we have ‖ pε ‖C([0,T ];H0)≤ eT |p0|0 for any ε > 0 and any z ∈ L2(Q).

Lemma 7 Let α, ε > 0 and γ ≥ −1/2. Then the mappings

Sε : E −→ H2m,1(Q)
p0 → p

and
Tε : H1+γ

0 −→ L2(0, T ; H
5
2
−α)

p0 → p,

where p is the solution of (11) associated to p0, are linear and continuous.

Lemma 8 If K is a compact subset of H−(1+γ) then M((0, R] × L2(Q) ×K) is a bounded
subset of H1+γ

0 .

Proof. If Lemma 8 is not true there exists three sequences {zn} ⊂ L2(Q), {yn
d} ⊂ K

and {εn} ⊂ (0, R] such that |p0(εn, zn, yn
d )|1+γ = |M(εn, zn, y

n
d )|1+γ → ∞. Then we can

suppose that gεn ⇀ a weak-∗ in L∞(Q), yn
d → yd in H−(1+γ) and εn → ε̃ in IR. To obtain a

contradiction, let us prove that for any sequence {p0
n} ⊂ H1+γ

0 such that |p0
n|1+γ →∞

lim inf
n→∞

Jεn(p0
n; zn, y

n
d )

|p0
n|1+γ

≥ δ.(15)

If (15) is not true, then there exists {p0
n} ⊂ H1+γ

0 such that |p0
n|1+γ →∞ and

lim inf
n→∞

Jεn(p0
n; zn, yn

d )

|p0
n|1+γ

< δ.(16)

If p̃0
n = p0

n

|p0
n|1+γ

and p̃n is the solution of (11) associated to zn, εn and p̃n(T ) = p̃0
n, then

|p̃n(x, 0)|21+γ → 0 as n →∞,(17)



because in other case lim inf
n→∞

Jεn(p0
n;zn,yn

d )

|p0
n|1+γ

≥ lim inf
n→∞ (

1

2
|p0

n|1+γ|p̃n(x, 0)|20 + δ − |yn
d |−(1+γ)) = ∞.

We can suppose that there exists p̃0 ∈ H1+γ
0 such that p̃0

n ⇀ p̃0 weakly in H1+γ
0 . Then, by

Lemma 6, we obtain that p̃n is uniformly bounded in C([0, T ]; H0) and therefore there exists
p̃ ∈ L∞(0, T ; H0) such that p̃n ⇀ p̃ weakly in L2(Q). To pass to the limit in the equation
of p̃n we distinguish different cases: a) ε̃ > 0, b) ε̃ = 0 and k > 0 and c) ε̃ = 0 and k = 0.
From Lemma 7, we know that we can choose pn

0 ∈ E such that |p̃0
n − p0

n|1 ≤ 1 and

‖ p̃n − pn ‖L2(0,T ;H
5
2−α)

≤ 1.(18)

Since pn ∈ {p ∈ H2m,1(Q) : p, ∆p ∈ L2(0, T ; H1
0 )} we can “multiply” by −∆pn in the

equation of pn and we obtain that there exists K independent of n ∈ IN such that

|p0
n|1 + ε̃ ‖ ∇∆pn ‖L2(Q) + ‖ √εn∇∆pn ‖L2(Q) +k ‖ ∆pn ‖L2(Q)≤ K.(19)

Now, let us pass to the limit in the three different cases: In case a), from (18) and (19),

we deduce that there exists p̃ ∈ L2(0, T ; H
5
2
−α) such that p̃n ⇀ p̃ weakly in L2(0, T ; H

5
2
−α).

Then, we deduce that ∂p̃n

∂t
is uniformly bounded in L2(0, T ; H− 3

2
−α). Now, since H

5
2
−α ⊂

H2 ⊂ H− 3
2
−α with compact imbeddings, {p̃n} is relatively compact in L2(0, T ; E) and so in

{p ∈ L2(0, T ; E) : pt ∈ L2(0, T ; E ′)} ⊂ C([0, T ]; H0). Therefore, gεn(zn)∆p̃n ⇀ a∆p weakly
in L2(Q), which allows us to pass to the limit and deduce that p̃ is solution of





−p̃t + ε̃∆2p̃− k∆p̃− a∆p̃ = 0 in Q,
p̃ = ∆p̃ = 0 on Σ,
p̃(T ) = p̃0 in Ω.

In case b), again from estimates (18) and (19), we deduce that there exists p̃ ∈ L2(0, T ; E)
such that p̃n ⇀ p̃ weakly in L2(0, T ; E). Now, since ε̃ = 0 and gεn satisfies (7), gεn(zn) → 0
in L∞(Q). Therefore, gεn(zn)∆p̃n ⇀ a∆p ≡ 0 weakly in L2(Q), which allows us to pass to
the limit and deduce that p̃ satisfies −p̃t− k∆p̃ = 0 in Q. Then, p̃ ∈ {p ∈ L2(0, T ; E) : pt ∈
L2(Q)} ⊂ C([0, T ]; H1

0 ). Now, to obtain the final data p̃(T ), for all u ∈ L2(Q) we consider
ϕ(u) ∈ L2(0, T ; E) such that ϕt −∆ϕ = u in Q and ϕ(0) = 0 in Ω . Then

−
∫

Ω
(p̃0

n − p̃(T ))ϕ(T )dx +
∫

Q
(p̃n − p̃)ϕtdxdt +

∫

Q
εn∆p̃n∆ϕdxdt

−
∫

Q
k∆(p̃n − p̃)ϕdxdt−

∫

Q
gεn(zn)∆p̃nϕdxdt = 0 for any u ∈ L2(Q).

Passing to the limit, we obtain
∫
Ω(p̃0− p̃(T ))ϕ(T )dx = 0 for any u ∈ L2(Q). Then p̃(T ) = p̃0,

since {ϕ(T ; u) : u ∈ L2(Q)} is a dense subset of H0. Thus, p̃ ∈ L2(0, T ; E) satisfies

{
−p̃t − k∆p̃ = 0 in Q,
p̃(T ) = p̃0 in Ω.

In case c), again from (18) and (19), we deduce that there exists p̃ ∈ L2(0, T ; H1
0 ) such that

p̃n ⇀ p̃ weakly in L2(0, T ; H1
0 ). Hence,

√
εn∆p̃n → 0 in L2(0, T ; H−1). Further, also from

(18) and (19), we know that
√

εnp̃n is uniformly bounded in the topology of L2(0, T ; H
5
2
−α).

Then, in a way similar to that of the case a), we obtain that
√

εn
∂p̃n

∂t
is uniformly bounded

in L2(0, T ; H− 3
2
−α) and so

√
εnp̃n is relatively compact in L2(0, T ; E). Then,

√
εn∆p̃n → 0



in L2(Q) and gεn(zn)∆p̃n = gεn (zn)√
εn

√
εn∆p̃n ⇀ 0 weakly in L2(Q), which allows us to pass

to the limit in the equation satisfied by p̃n and deduce that p̃ satisfies −p̃t = 0 in Q. Then,
p̃ ∈ L2(0, T ; H1

0 ) and p̃(x, t) = p̃(x, T ) for all t ∈ [0, T ]. Further, as in case b), we deduce
that p̃(T ) = p̃0. Hence, p̃ ∈ L2(0, T ; H1

0 ) is solution of
{
−p̃t = 0 in Q,
p̃(T ) = p̃0 in Ω.

Let us see that p̃(x, 0) ≡ 0: In case a) we have proved that p̃n → p̃ in C([0, T ]; H0) and so
p̃n(x, 0) → p̃(x, 0). Then, from (17), we obtain p̃ ≡ 0. In cases b) and c) we have that

∫

Ω
p̃n(x, 0)− p̃(0))ϕdx−

∫

Ω
(p̃0

n − p̃(T ))ϕdx +
∫

Q
εn∆p̃n∆ϕdxdt

+
∫

Q
k∇(p̃n − p̃)∇ϕdxdt−

∫

Q
gεn(zn)∆p̃nϕdxdt = 0 for any ϕ ∈ E.

Finally, passing to the limit, we obtain that p̃n(x, 0) ⇀ p̃(0) in the weak topology of H0.
Then, from (17), we obtain that p̃(x, 0) ≡ 0. Now, since p̃ satisfies a suitable linear parabolic
equation for any of the cases a), b) or c), we can apply a backward uniqueness result
(see Theorem II.1 of [1]) and deduce that p̃ ≡ 0 in Q. Therefore p̃0 ≡ 0 in Ω. Thus,

lim inf
n→∞

Jεn (p0
n;zn,yn

d )

|p0
n|1+γ

≥ lim inf
n→∞

(
δ− < yn

d , p̃0
n >H−(1+γ)×H1+γ

0

)
= δ, which contradicts (16) and

proves (15). Finally we point out that Jεn(p̂0(εn, zn, yn
d ); zn, yn

d ) ≤ Jεn(0; zn, y
n
d ) = 0, which

is a contradiction with (15) and concludes the result.

Lemma 9 The solutions Lε(z) of (14), with arbitrary ε > 0 (small emough) and z ∈ L2(Q),
are uniformly bounded in C([0, T ]; H−1) ∩ L2(Q).

Completion of proof of Theorem 5. From Lemma 9 we can deduce that there exists a
constant K3, independent of ε, such that ‖ Lε(z) ‖C([0,T ];H−1)≤ K3 for any ε > 0 and any
z ∈ L2(Q). Then {Lε(z; T ), for any ε > 0 and any z ∈ L2(Q)} is a relatively compact subset
of H−(1+γ) for all γ > 0. Then, applying Lemma 8, there exists a constant K4, independent
of ε, such that, if p̂0

ε is the minimum of Jε(·; z, yd−Lε(T )), we have |p̂0
ε|0 ≤ K4 for any ε > 0

and any z ∈ L2(Q). Lemma 6 implies (13) with K = eT K4.
Proof of Theorem 2. The first part is similar to that proved in Theorem 1 of [6] by
applying Kakutani’s fixed point theorem to the operator Λε : L2(Q) → P(L2(Q)) defined by
Λε(z) := {yε satisfying (9), (12), with a control uε satisfying |uε|0 ≤ K}, where the constant
K depends on ε. Finally, if ϕ satisfies (3) and (4), then Theorem 5 shows that (13) holds
(i.e. K does not depend on ε), which leads to (6).
Proof of Theorem 1. First step. Assume ϕ ∈ C1(IR). For any ε > 0, let vε and yε be the
functions given in Theorem 2. Since the equation of (2) holds in L2(0, T ; E ′), multiplying
by yε ∈ L2(0, T ; E) we obtain the existence of a constant C > 0 independent of ε such that

‖ yε ‖L∞(0,T ;H0) +
∫

Q
ϕ′(yε)|∇yε|2dxdt ≤ C.

Therefore we obtain that yε is uniformly bounded in L∞(0, T ; H0) and by the equation of (2),
(yε)t is uniformly bounded in L∞(0, T ; H−4). Then, since H0 ⊂ H−1 ⊂ H−4 with compact
imbeddings, we have that yε is relatively compact in C([0, T ]; H−1). Further, since ϕ′ is a
bounded function, we deduce that there exists a constant K > 0 independent of ε such that

∫ T

0
|∇ϕ(yε)|20dt =

∫

Q
ϕ′(yε(x, t)) ϕ′(yε(x, t))|∇(yε(x, t))|2dxdt < K.



Thus, there exist y ∈ L∞(0, T ; H0) and ζ ∈ L2(0, T ; H1
0 ) (recall that ϕ(0) = 0) such that

yε → y strongly in L2(0, T ; H−1) and ϕ(yε) ⇀ ζ weakly in L2(0, T ; H1
0 ). But the operator

Au := −∆ϕ(u), D(A) := {u ∈ H−1 : ϕ(u) ∈ H1
0} is a maximal monotone operator on

the space H−1 (see [2]). Thus, the extension operator A of A is also a maximal monotone
operator on L2(0, T ; H−1) (see [3]), Example 2.33). Finally, as any maximal monotone
operator is strongly-weakly closed (see [3], Proposition 2.5), we obtain that ζ = ϕ(y) in
L2(0, T ; H1

0 ). Moreover, from (6) we have that vε ⇀ v weakly in H0, with |v|0 ≤ K. Then
we deduce that y ∈ C([0, T ]; H−1) is solution of (1). Further, since yε(T ) → y(T ) strongly
in H−1, we deduce that |y(T )− yd|−(1+γ) = limε→0 |yε(T )− yd|−(1+γ) ≤ δ.
Second step. Let ϕ as in Theorem 1. We approximate ϕ by ϕn ∈ C1(IR), ϕn nondecreasing,
satisfying (3) and (4) with the same constants k, C1, C2 and M1. Then the respective controls
vn built as in step 1 are uniformly bounded and the conclusion comes from the well-known
result expressing the continuous dependence in C([0, T ]; H−1), on ϕ, of solutions of (1).
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