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Abstract

Phase separation in a binary mixture is described by the nonlinear evolution-
ary Cahn-Hilliard equation. In this paper we numerically discuss the Neumann
Control of this equation in order to avoid the unstable phase separation phe-
nomenon known as spinodal decomposition.

Introduction

Binary mixtures such as Fe-Al alloys undergo, under certain circumstances (cooling
below a critical temperature, for example), a phase separation phenomenon known as
spinodal decomposition. Starting form the pioneering work of J.W. Cahn and J.E.
Hilliard (see refs. [2] and [1]), this phenomenon has motivated a large number of in-
vestigations and it is generally agreed that spinodal decompositions of binary mixtures
are modeled by the Cahn-Hilliard equation (which is a fourth-order parabolic non-linear
equation), with appropriate initial and boundary conditions. Namely,





∂ϕ

∂t
−∆(ϕ3 − ϕ) + ε2∆2ϕ = 0 in Q := Ω× (0, T ),

ϕ(x, 0) = ϕ0(x) in Ω,
∂ϕ

∂n
=

∂

∂n
∆ϕ = 0 on ∂Σ := Ω× (0, T ).

(1)

Here Ω ⊂ IRd (d = 1, 2, or 3) is the space region in which the spinodal decomposition
is taking place, Γ := ∂Ω, ϕ is equal to c2 − c1, where c1 and c2 are the respective con-
centrations of the two mixtures components of the spinodal decomposition (therefore
ϕ must satisfy ϕ ∈ [−1, 1]), and ϕ0 is a given initial value.

The term −∆(ϕ3 − ϕ) can be also written as −∇ · (3ϕ2 − 1)∇ϕ, which shows that
in those regions of Ω where 3ϕ2 − 1 < 0 (i.e. |ϕ| < 1/

√
3), the term 3ϕ2 − 1 behaves

like a negative diffusion coefficient (this anti-diffusion is precisely what is the basis of
the spinodal decomposition, from the mathematical point of view).

In [3] the authors give a numerical method to solve this problem (without control)
and show that, if the initial condition ϕ0 is a “small” perturbation of the steady-state
solution ϕ = 0.3 (we point out that 0.3 < 1/

√
3), the solution evolves toward a steady-

state solution, where the solution jumps from -1 to +1 through a very narrow layer,
showing the spinodal decomposition is taking place.



In [4] the authors give, from a theoretical point of view, some results about the con-
trollability of some higher-order nonlinear parabolic equations of Cahn-Hilliard type.
That paper is, to the best of our knowledge, the first work dealing with the control-
lability of this type of equations and gives sufficient conditions for the non-linearity
in order to guarantee the approximate controllability property. That paper also gives
some counter-examples showing that this property does not hold for some special non-
linearities.

We discuss the Neumann Control of this problem to avoid the mentioned spinodal
decomposition. To be precise, we consider the problem





∂ϕ

∂t
−∆(ϕ3 − ϕ) + ε2∆2ϕ = 0 in Q,

ϕ(x, 0) = ϕ0(x) in Ω,
∂ϕ

∂n
= uχγ,

∂

∂n
∆ϕ = 0 on Σ,

(2)

where χγ is the characteristic function of γ ⊂ ∂Ω and u is the external control acting
on γ. The goal of this paper is to show that, if we start from a “small” perturbation
ϕ0 of a constant steady-state solution ϕs ∈ [−1, 1], we can control the solution of the
equation, in order to avoid its evolution toward a solution of the type described above,
so that it will remain near ϕs.

The plan is the following: 1) First, we linearize the system in the neighborhood
of the steady-state solution, 2) next we compute a suitable optimal control for the
linearized model and 3) finally we apply the above control to the nonlinear system.
This approach was used in [6], where the authors study the control and stabilization
of a second-order nonlinear parabolic system, which blows up when uncontrolled.

Linearization of the problem in the neighborhood of ϕs.

Let us consider a small variation δϕs of ϕs. Then the solution ϕ of (1) can be written
as ϕ = ϕs + δϕ, where, if ϕ remains near ϕs, the perturbation δϕ of the steady-state
solution ϕs satisfies approximately the following linear model:





∂δϕ

∂t
−∇ · (3ϕ2

s − 1)∇δϕ + ε2∆2δϕ = 0 in Q,

δϕ(x, 0) = δϕs(x) in Ω,
∂δϕ

∂n
=

∂

∂n
∆δϕ = 0 on Σ.

It is clear that this approximate system is no longer valid if δϕ becomes too large. The
idea is to compute a control action preventing δϕ from becoming large and hope that
this computed control will also stabilize the original nonlinear system. Therefore we
look for a control u such that the solution δϕ of





∂δϕ

∂t
−∇ · (3ϕ2

s − 1)∇δϕ + ε2∆2δϕ = 0 in Q,

δϕ(x, 0) = δϕs(x) in Ω,
∂δϕ

∂n
= uχγ,

∂

∂n
∆δϕ = 0 on Σ,

(3)

remains near 0.
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Control Problem for the Linearized Model.

We consider, for the time being, a finite-horizon T < ∞. Using the notation y = δϕ,
we (shall try to) stabilize system (3) via the following control formulation:

(CP)

{
u ∈ U ,
J(u) ≤ J(v), ∀v ∈ U ,

where U = L2(γ × (0, T )),

J(v) =
1

2

∫

γ×(0,T )
|v|2dΓdt +

k1

2

∫

Q
y2dxdt +

k2

2

∫

Ω
|y(T )|2dx,

with dx = dx1 · · · dxd, k1 ≥ 0, k2 ≥ 0, k1 + k2 > 0, and y obtained from v via the
solution of the following fourth-order linear parabolic problem:





∂y

∂t
−∇ · a∇y + ε2∆2y = 0 in Q,

y(x, 0) = y0(x) in Ω,
∂y

∂n
= vχγ,

∂

∂n
∆y = 0 on Σ.

(4)

Here a denotes the constant 3ϕ2
s − 1 ∈ [−1, 2] and y0 = δϕs.

Optimality Conditions for problem (CP).
The (unique) solution u of problem (CP) is characterized by ∇J(u) = 0. Let us
consider v ∈ U and a small perturbation δv of v. Then we have

δJ(v) =
∫

γ×(0,T )
∇J(v)δvdΓdt =

∫

γ×(0,T )
vδvdΓdt + k1

∫

Q
yδydxdt + k2

∫

Ω
y(T )δy(T )dx,

where δy is the solution of





∂δy

∂t
−∇ · a∇δy + ε2∆2δy = 0 in Q,

δy(x, 0) = 0 in Ω,
∂δy

∂n
= δvχγ,

∂

∂n
∆δy = 0 on Σ.

(5)

Then, multiplying in (5) by the solution p of





−∂p

∂t
−∇ · a∇p + ε2∆2p = k1y in Q,

p(x, T ) = k2y(x, T ) in Ω,
∂p

∂n
=

∂

∂n
∆p = 0 on Σ

and integrating by parts, we obtain

∫

γ×(0,T )
∇J(v)δvdΓdt =

∫

γ×(0,T )
(v + ap− ε2∆p)δvdΓdt.
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Since δv is arbitrary, we have proved that∇J(v) = v+(ap−ε2∆p)χγ. Thus, ∇J(u) = 0
is equivalent to the following (optimality) system

u = −(ap− ε2∆p)χγ;





∂y

∂t
−∇ · a∇y + ε2∆2y = 0 in Q,

y(x, 0) = y0(x) in Ω,
∂y

∂n
= uχγ,

∂

∂n
∆y = 0 on Σ;





−∂p

∂t
−∇ · a∇p + ε2∆2p = k1y in Q,

p(x, T ) = k2y(x, T ) in Ω,
∂p

∂n
=

∂

∂n
∆p = 0 on Σ.

Stabilization of the Nonlinear Model.

Finally, we apply the control u, obtained via linearization, to the nonlinear model to
see if it stabilizes the original nonlinear system. Here we point out that, in general,
unless the time horizon T is small enough, the solution of the linearized equation and
the the solution of the nonlinear equation is quite different and therefore the control
obtained for the linearized equation will not be suitable for the nonlinear equation. To
avoid that we consider a partition of the time interval 0 = T0 < T1 < T2 < · · · < Tr = T
and use the following algorithm:

a) Set i = 1.

b) For the subinterval (Ti−1, Ti), we compute the control by using ϕi−1−ϕs as initial
data for the linear equation and we call ϕi = ϕ(Ti), where ϕ is the solution of
the nonlinear equation, computed with the above control and initial data ϕi−1.

c) We do i = i + 1 and go to b).

Time Discretization of the Optimal Control Problem (CP).

We consider the time discretization step ∆t, defined by ∆t = T/N , where N is a
positive integer. Then, if we define tn = n∆t, we have 0 < t1 < t2 < · · · < tN = T . We
approximate then problem (CP) by the following minimization problem:

(CP)∆t

{
u∆t ∈ U∆t,
J∆t(u) ≤ J∆t(v), ∀v ∈ U∆t;

where U∆t = L2(γ)N is equipped with the scalar product (·, ·)∆t defined by

(v, w)∆t = ∆t
N∑

n=1

cn
∫

γ
vnwndΓ,
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where c1 = 3
2

and c2 = · · · cN = 1, and

J∆t(v) =
∆t

2

N∑

n=1

∫

γ
cn|vn|2dΓ +

k1∆t

2

N∑

n=1

∫

Ω
|yn|2dx +

k2

2

∫

Ω

|yN−1|2 + |yN |2
2

dx,

where {yn}N
n=1 is defined from the solution of the following second order accurate time

discretization scheme of fourth-order linear parabolic problem (4):

y0 = y0,





y1 − y0

∆t
−∇ · a∇y1 + ε2∆2y1 = 0 in Ω,

∂y1

∂n
= v1χγ,

∂

∂n
∆y1 = 0 on Γ,

(6)

and for n ≥ 2,





3
2
yn − 2yn−1 + 1

2
yn−2

∆t
−∇ · a∇yn + ε2∆2yn = 0 in Ω,

∂yn

∂n
= vnχγ,

∂

∂n
∆yn = 0 on Γ.

(7)

Now, in a way similar to that of the continuous case, it is easy to prove that the
solution u∆t of (CP)∆t is characterized by the following (optimality) system:

u = −{(apn − ε2∆pn)χγ}N
n=1,

y0 = y0,




y1 − y0

∆t
−∇ · a∇y1 + ε2∆2y1 = 0 in Ω

∂y1

∂n
= u1χγ,

∂

∂n
∆y1 = 0 on Γ,

and for n ≥ 2,





3
2
yn − 2yn−1 + 1

2
yn−2

∆t
−∇ · a∇yn + ε2∆2yn = 0 in Ω

∂yn

∂n
= unχγ,

∂

∂n
∆yn = 0 on Γ.

pN+2 = 4pN+1 − k2y
N ,

pN+1 = −k2y
N−1,

and for n = N, ..., 1,





3
2
pn − 2pn+1 + 1

2
pn+2

∆t
− cn∇ · a∇pn + cnε2∆2pn = k1y

n in Ω,

∂pn

∂n
=

∂

∂n
∆pn = 0 on Γ.
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Time Discretization of the Nonlinear model.

Adapting the scheme developed in [3] for the non-controlled case, we time discretize
the nonlinear model (2) by the following second-order accurate time discretization:

ϕ0 = ϕ0,





ϕ1 − ϕ0

∆t
−∇ · (3ϕ2

0 − 1)∇ϕ1 + ε2∆2ϕ1 = 0 in Ω,

∂ϕ1

∂n
= u1χγ,

∂

∂n
∆ϕ1 = 0 on Γ,

and for n ≥ 2,





3
2
ϕn − 2ϕn−1 + 1

2
ϕn−2

∆t
−∇ ·

[
3(2ϕn−1 − ϕn−2)2 − 1

]
∇ϕn + ε2∆2ϕn = 0 in Ω,

∂ϕn

∂n
= unχγ,

∂

∂n
∆ϕn = 0 on Γ.

As in the continuous case, we divide our interval in subintervals to avoid large
differences between the linearized model and the nonlinear model.

Full Discretization.

The full discretization is similar to that of the time discretization and is easy to ap-
ply once we know how to fully discretize fourth-order linear elliptic problems of the
following form: 




ψ − λ∇ · a∇ψ + λε2∆2ψ = f in Ω
∂ψ

∂n
= uχγ,

∂

∂n
∆ψ = 0 on Γ.

The traditional finite difference or finite element schemes are not well suited to this
type of problems, because of the fourth-order term λε2∆2y.

To overcome this difficulty we have adapted to our case the method proposed in
[3] for the uncontrolled case. That method consist of an approximate factorization of
the fourth-order linear elliptic problem into a system of two second-order linear elliptic
problems, making possible its solution by finite element techniques together with a
Least Square/Conjugate Gradient method. The details can be seen in [7].

Numerical Experiments.

In this section we take ε = 10−1, the domain Ω defined by the interval Ω = (0, 1)
and the control domain defined by the points γ = {0, 1}. We take ∆t = 1/250 and
h = 1/63, where h is the space discretization step defined by h = 1/(Nh − 1) and
Nh = 64 is the number of vertex. We consider the initial condition defined by

ϕ0(x) = 0.3 +
1

40

Nh∑

i=1

Θiwi(x), ∀ x ∈ Ω,

where, Θi is a random variable uniformly distributed over [−1, 1].
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In order to see how the non-controlled solution behaves, we have visualized in
Figures 1 and 2 the computed solution for t ∈ [0, 0.8] and the solution at time T = 0.8
respectively. Finally, in Figure 3 we have visualized the computed solution, with control
for t ∈ [0, 0.8], and in Figure 4 we have visualized the computed solution, with control
for t ∈ [0, 0.8] and without control for t ∈ (0.8, 2].
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Figure 1: Non-controlled solution during
the time-interval [0, 0.8].
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Figure 2: Solution at time t = 0.8.
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Figure 3: Solution with control during
the time interval [0, 0.8].
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Figure 4: Solution with control for t ∈
[0, 0.8] and without control for t ∈ (0.8, 2].
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We observe that the system is stabilized for 0 ≤ t ≤ 0.8, but if we stop controlling,
the small residual perturbations of the steady-state solution ϕs ≡ 0.3 at t = 0.8 are
sufficient to destabilize the system, which evolves toward a new steady-state solution,
showing that the spinodal decomposition has taken place.
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