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Abstract. This work deals with some numerical experiences regarding the control of
semilinear equations of the type yt − yxx + f(y) = u(t)δ(x− 1/2) in (0, T )× (0, 1) with
Dirichlet and initial auxiliary conditions, where f is a C1 nondecreasing real function, u(t)
is the output control, δ(x−1/2) is the Dirac measure at x = 1/2 and T > 0 is (arbitrarily)
fixed. Given a target state yT we study the associated approximate controllability problem
(given ε > 0, find u ∈ L2(0, T ) such that ‖y(T ; u)− yT‖L2(0,1) ≤ ε) by passing to the
limit (when k → ∞) in the penalized optimal control problem (find uk as the minimum
of Jk(u) = 1

2
‖u‖2

L2(0,T ) + k
2
‖y(T ; u)− yT‖2

L2(0,1)). In the superlinear case (e.g. f(y) =

|y|n−1 y, n > 1) the existence of two obstruction functions Y±∞ shows that the approximate
controllability is only possible if Y−∞(x, T ) ≤ yT (x) ≤ Y∞(x, T ) for a.e. x ∈ (0, 1). We
carry out some numerical experiences showing that, for a fixed k, the ”minimal cost” Jk(u)
(and the norm of the optimal control uk) for a superlinear function f becomes much larger
when this condition is not satisfied. We also compare the values of Jk(u) (and the norm
of the optimal control uk) for a fixed yT associated with two nonlinearities: one sublinear
and the other superlinear.
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1 INTRODUCTION

This work deals with some numerical experiences regarding the control of semilinear
equations of the type

P (u)





yt − yxx + f(y) = u(t)δ(x− 1/2) in (0, T )× (0, 1),
y(0, t) = y(1, t) = 0 for t ∈ (0, T ),

y(x, 0) = y0(x) in (0, 1),

where f is a C1 nondecreasing real function, u(t) is the output control, δ(x− 1/2) is the
Dirac measure at x = 1/2, T > 0 is (arbitrarily) fixed, and y0 is a given function (for
instance y0 ∈ C0([0, 1])).

Given a target state yT (we can assume, for simplicity, that yT ∈ C0([0, 1])), the asso-
ciated approximate controllability problem consists of, given ε > 0, finding u ∈ L2(0, T )
such that ‖y(T ; u)− yT‖L2(0,1) ≤ ε where y(T ; u) denotes the solution of P (u) at time T.

It is well known (see Fabre-Puel-Zuazua [1] and Dı́az-Ramos [2]) that the answer is
positive if “f is sublinear at infinity” (|f(s)| ≤ M(|s|+1) for |s| large). In the “superlinear
at infinity” case (|f(s)| ≥ M(|s|n + 1) for |s| large and for some n > 1), the answer is
negative. This type of negative results can be proved in different ways: via an energy
argument (see, e.g. the case of control on the Neumann boundary condition, due to A.
Bamberger, in Henry [3]) or via some pointwise obstruction phenomenon (see Dı́az-Ramos
[2] for problem P (u)). In fact, in some of the above references the control u is localized
not at a point but in a bounded open set ω ⊂ (0, 1). However, the adaptation to our
setting is a routine matter.

It is also well known that in the sublinear case, the solution to the controllability
problem can be obtained by passing to the limit (as k → ∞) in the penalized optimal
control problem in which the control uk is found as the minimum of the functional

Jk(u) =
1

2
‖u‖2

L2(0,T ) +
k

2
‖y(T ; u)− yT‖2

L2(0,1)

(see Lions [4] for the linear case and Fernández-Zuazua [5] for the semilinear case).
For the superlinear case the approximate controllability was obtained in Dı́az [6] under

the assumption

Y−∞(x, T ) ≤ yT (x) ≤ Y∞(x, T ) for a.e. x ∈ (0, 1), (1)

where Y±∞ are the “largest solutions”. In our case, Y±∞ are the solutions of the problem

P (±∞)





yt − yxx + f(y) = 0 in (0, T )× ((0, 1/2) ∪ (1/2, 1))),
y(0, t) = 0, y(1/2, t) = ±∞, y(1, t) = 0 for t ∈ (0, T ),

y(x, 0) = y0(x) in (0, 1)

(the existence of such large solutions requires f to be superlinear). Notice that the
special case of yT ≡ 0 is included (see, e.g., Fernández-Cara [7], for other results on null
controllability).
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Recently, some results on the approximate controllability of the projections on finite
dimensional subspaces were obtained by Khapalov [8] (see also its references).

The main goal of this work is to carry out some numerical experiences on the penalized
optimal control problem for difference target states yT and different nonlinear terms f(y).
We illustrate that, for a fixed k, the ”minimal cost” Jk(u) (and the norm of the optimal
control uk) for a superlinear function f becomes much larger when (1) is not satisfied (see
numerical test # 1 and # 2 below). We also compare the values of Jk(u), the norm of the
optimal control uk, and ‖y(T ; u)− yT‖, for a fixed yT , associated with two nonlinearities:
one sublinear (f(y) = y3) and the other superlinear (f(y) = arctg(y)).

2 PROBLEM FORMULATION.

Let us consider a given target function yT ∈ L2(0, 1). We define the control space as
U = L2(0, T ). The goal is to find a control u ∈ U so that y(T ) is close to yT at a minimal
cost for the control, where y(x, t) is (unique) solution of P (u)). We recall that a variational
formulation of P (u) is provided by y(t) ∈ L2(0, T ; H1

0 (0, 1))∩H1(0, T ; H−1(0, 1)) satisfying




f(y) ∈ L2(0, T ; L2
ρ(0, 1)), and ∀z ∈ L2(0, T ; H1

0 )

∫ T

0
< yt, z >V ′0×V0

dt +
∫ T

0

∫ 1

0
yxzxdxdt +

∫ T

0

∫ 1

0
f(y)zdxdt =

∫ T

0
u(t)z(1/2, t)dt,

y(x, 0) = y0(x),

where L2
ρ(0, 1) = {w such that

∫ 1
0 ρ(x)w(x)2dx < +∞}, with ρ(x) = dist(x, {0} ∪ {1}).

Notice that
∫ T
0

∫ 1
0 f(y)zdxdt is well-defined for z ∈ L2(0, T ; H1

0 (0, 1)).
To do this, for every k ∈ IN , we define the cost function Jk by

Jk(v) =
1

2
‖ v ‖2

U +
k

2
‖ y(T )− yT ‖2

L2(0,1), ∀ v ∈ U .

The control problem is then

(CPk)





Find uk ∈ U , such that

Jk(uk) ≤ Jk(v), ∀v ∈ U .

A common way to solve this problem is to solve the problem

J ′k(u) = 0,

where J ′k denotes the Gateaux differential of Jk.
Now, it is easy to prove (see, e.g., [9], [10] and [11] for the case of the Burgers equation)

that
J ′k(v) = v + p(1/2, ·),
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i.e.,

(J ′k(v), w) =
∫ T

0
(v(t) + p(1/2, t))w(t)dt, ∀ w ∈ U ,

where p is the solution of the adjoint system




−pt − pxx + f ′(y)p = 0 in Q,

p(0, t) = p(1, t) = 0 in (0, T ),

p(T ) = k(y(T ; v)− yT ) in (0, 1)

and (·, ·) denotes the scalar product in L2(0, 1) defined by (u, v) =
∫ 1

0
u(t)v(t)dt.

3 TIME DISCRETIZATION.

We consider the time discretization step ∆t, defined by ∆t = T/N , where N is a
positive integer. Then, if tn = n∆t, we have 0 < t1 < t2 < · · · < tN = T . We approximate
then problem (CP) by the following finite-dimensional minimization problem:

(CPk)
∆t





Find u∆t = {un}N
n=1 ∈ U∆t, such that

J∆t
k (u) ≤ J∆t

k (v), ∀v = {vn}N
n=1 ∈ U∆t,

with the discrete control space U∆t = IRN and

J∆t
k (v) =

∆t

2

N∑

n=1

|vn|2 +
k

2

(
(1− θ) ‖ yN−1 − yT ‖2

L2(0,1) +θ ‖ yN − yT ‖2
L2(0,1)

)
,

where θ ∈ (0, 1] and {yn}N
n=1 is defined from the solution of the following second order

accurate time discretization scheme of problem (P (u)):

y0 = y0,



y1 − y0

∆t
− ∂2

∂x2
(
2

3
y1 +

1

3
y0) + f(y1) =

2

3
v1δ(x− 1/2) in (0, 1),

y1(0) = y1(1) = 0,

and for n ≥ 2,




3
2
yn − 2yn−1 + 1

2
yn−2

∆t
− ∂2

∂x2
yn + f(yn) = vnδ(x− 1/2),

yn(0) = yn(1) = 0.

Remark. We have used an implicit scheme. We could also have used a semi-implicit
scheme, treating implicitly the diffusion term and explicitly the reaction term (as done in
[9], [10] and [11] for the case of the diffusion and advection terms of the Burgers equation),
but this choice implies a problem-dependent limit on the size of ∆t, in particular for
reaction-dominated problem as the one we are treating.
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4 FULL DISCRETIZATION.

We consider the space discretization step h, defined by h = 1/I, where I is a positive
integer. Then, if xi = (i − 1)h, we have 0 = x1 < x2 < · · · < xI < xI+1 = 1. We
approximate H1

0 (0, 1) by

V0h = {z ∈ C0[0, 1] : z(0) = z(1) = 0, z|(xi,xi+1) ∈ P1, i = 1, · · · , I},

where P1 is the space of the polynomials of degree ≤ 1. We define ah by

ah(y, z) =
∫ 1

0
yxzxdx.

We approximate then problem (CPk) by the following finite-dimensional minimization
problem:

(CPk)
∆t
h





Find u∆t
h = {un}N

n=1 ∈ U∆t, such that

J∆t
k,h(u

∆t
h ) ≤ J∆t

k,h(v), ∀v = {vn}N
n=1 ∈ U∆t;

with

J∆t
k,h(v) =

∆t

2

N∑

n=1

|vn|2 +
k

2

(
(1− θ) ‖ yN−1

h − yT ‖2
L2(0,1) +θ ‖ yN

h − yT ‖2
L2(0,1)

)
,

where θ ∈ (0, 1] and {yn
h}N

n=1 is defined from the solution of the following full discretization
of problem (P (u)):





y0
h ∈ V0h,

(y0
h, z) = (y0, z), ∀z ∈ V0h;





y1
h ∈ V0h,

(
y1

h − y0
h

∆t
, z

)
+ ah(

2

3
y1

h +
1

3
y0

h, z) + (f(y1
h), z) =

2

3
v1z(1/2), ∀z ∈ V0h;

and for n ≥ 2,





yn
h ∈ V0h,

(
3
2
yn

h − 2yn−1
h + 1

2
yn−2

h

∆t
, z

)
+ ah(y

n
h , z) + (f(yn

h), z) = vnz(1/2), ∀z ∈ V0h.
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As for the continuous case, to solve problem (CP)∆t
h , we look for the solution u∆t

h of

∂J∆t
h

∂v
(u∆t

h ) = 0.

Computing
∂J∆t

h

∂v
(v) is more complicated than in the continuous case but, following the

same approach, we can show that

<
∂J∆t

k,h

∂v
(v), w >= ∆t

N∑

n=1

(vn + pn(1/2))wn,

where {pn
h}N+2

n=1 is the solution of




pN+2
h ∈ V0h,

(pN+2
h , z) = −8l(1− θ)

∫ 1

0
(yN−1

h − yT )zdx− 2lθ
∫ 1

0
(yN

h − yT )zdx, ∀z ∈ V0h;





pN+1
h ∈ V0h,

(pN+1
h , z) = −2l(1− θ)

∫ 1

0
(yN−1

h − yT )zdx, ∀z ∈ V0h;

and for n = N, · · · , 1,





pn
h ∈ V0h,

(
3
2
pn

h − 2pn+1
h + 1

2
pn+2

h

∆t
, z

)
+ ah(p

n
h, z) + (f ′(yn

h)pn
h, z) = 0, ∀z ∈ V0h.

Now, once we know how to compute
∂J∆t

h

∂v
(v), we use a quasi-Newton method à la BFGS

(see, e.g., [12] for BFGS algorithms and their implementations) to compute the solution
of the fully discrete control problem (CP)∆t

h .

5 NUMERICAL EXPERIMENTS.

In all the tests considered we have taken T = 1, I = 512, N = 1000, k = 12, a = 1/2
and y0 = 0 (notice that this implies y(x, t; 0) ≡ 0). We use, for our algorithm, θ = 3/2.
Further, if vp (p = 1, 2, · · ·) is the sequence of controls we get from the BFGS algorithm,
we use the following stopping criteria: We stop iterating after step p if either

‖ ∂J∆t
h

∂v
(up) ‖∞≤ 10−5

or
J∆t

h (up−1)− J∆t
h (up)

max{|J∆t
h (up−1)|, |J∆t

h (up)|, 1} ≤ 2 · 10−9.

We have considered 5 different tests, depending on the target function.
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5.1 Test 1: yT ≡ 3.

On Figure 1 (resp., 2) we have shown the super-solution Y∞(T ) (...), the target function
yT (- - -), and the controlled state solution y(T ) (—) corresponding to the nonlinearity
f(y) = y3 (resp. f(y) = arctg(y)). The corresponding control functions have been
represented on Figures 3 and 4.
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Figure 1: The target function (- -), the
large solution (..) and controlled (–) states
at time T , for f(y) = y3.
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Figure 2: The target function (- -) and the
controlled (–) state at time T , for f(y) =
arctg(y).
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Figure 3: The computed optimal control
for f(y) = y3.
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Figure 4: The computed optimal control
for f(y) = arctg(y).

On Figure 5 (resp., 6) we have shown the graphic of ‖ y(t)−yT ‖L2(0,1), t ∈ [0, 1], when
f(y) = y3 (resp. f(y) = arctg(y)).
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Figure 5: ‖ y(t)− yT ‖, for f(y) = y3.
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Figure 6: ‖ y(t)−yT ‖, for f(y) = arctg(y).

On Figure 7 (resp., 8) we have shown a 3D graphic of y(x, t) when t ∈ [0.95, 1] and
f(y) = y3 (resp. f(y) = arctg(y)).
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Figure 7: Graphic of y(x, t) (t ∈ [0.95, 1]),
for f(y) = y3.
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Figure 8: Graphic of y(x, t) (t ∈ [0.95, 1]),
for f(y) = arctg(y).

In Table 1 we give some further results about our solutions. The norms considered in
all the tables of the present article refer to the L2−norm of the discrete entries. One of the
entries of the table shows the number of discrete parabolic equations the BFGS algorithm
has needed to solve (a half of this number corresponds to the nonlinear state system and
the other half corresponds to the linear adjoint system). Further, y(v; T ) represents the
solution at time T , associated with the control v (y(0, T ) represents the solution without
control, at time T ).
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f(y) = y3 f(y) = arctg(y)

‖ y(u; T )− yT ‖ 0.5034 0.1994
‖ y(0; T )− yT ‖ (=‖ yT ‖) 3 3

‖ u ‖ 6.4942 · 104 8.5729 · 103

J(0) 4.5 · 1012 4.5 · 1012

J(u) 5.085 · 1011 1.930 · 1011

Table 1: Computational results.

5.2 Test 2: yT ≡ 10.

On Figure 9 (resp., 10) we have shown the super-solution Y∞(T ) (...), the target func-
tion yT (- - -), and the controlled state solution y(T ) (—) corresponding to the nonlinearity
f(y) = y3 (resp. f(y) = arctg(y)). The corresponding control functions have been repre-
sented on Figures 11 and 12.
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Figure 9: The target function (- -), the
large solution (..) and controlled (–) states
at time T , for f(y) = y3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

10

15

20

x

y(
x)

Figure 10: The target function (- -) and the
controlled (–) state at time T , for f(y) =
arctg(y).
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Figure 11: The computed optimal control
for f(y) = y3.
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Figure 12: The computed optimal control
for f(y) = arctg(y).

On Figure 13 (resp., 14) we have shown the graphic of ‖ y(t) − yT ‖L2(0,1), t ∈ [0, 1],
when f(y) = y3 (resp. f(y) = arctg(y)).
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Figure 13: ‖ y(t)− yT ‖, for f(y) = y3.
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Figure 14: ‖ y(t) − yT ‖, for f(y) =
arctg(y).

On Figure 15 (resp., 16) we have shown a 3D graphic of y(x, t) when t ∈ [0.9, 1] and
f(y) = y3 (resp. f(y) = arctg(y)).
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Figure 15: Graphic of y(x, t) (t ∈ [0.9, 1]),
for f(y) = y3.
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Figure 16: Graphic of y(x, t) (t ∈ [0.9, 1]),
for f(y) = arctg(y).

In Table 2 we give some further results about our solutions.

f(y) = y3 f(y) = arctg(y)

‖ y(u; T )− yT ‖ 16.0711 2.1205
‖ y(0; T )− yT ‖ (=‖ yT ‖) 10 10

‖ u ‖ 1.3468 · 105 9.5798 · 104

J(0) 5 · 1013 5 · 1013

J(u) 1.616 · 1013 2.145 · 1012

Table 2: Computational results.

5.3 Test 3:

yT (x) =





0 if x ∈ (0, 0.1) ∪ (0.9, 1),
1 if x ∈ (0.1, 0.2) ∪ (0.8, 0.9),
2 if x ∈ (0.2, 0.3) ∪ (0.7, 0.8),
6 if x ∈ (0.3, 0.7).

On Figure 17 (resp., 18) we have shown the super-solutions Y±∞(T ) (...), the target
function yT (- - -), and the controlled state solution y(T ) (—) corresponding to the
nonlinearity f(y) = y3 (resp. f(y) = arctg(y)). The corresponding control functions have
been represented on Figures 19 and 20.
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Figure 17: The target function (- -), the
large solutions (..) and controlled (–)
states at time T , for f(y) = y3.
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Figure 18: The target function (- -) and the
controlled (–) state at time T , for f(y) =
arctg(y).
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Figure 19: The computed optimal control
for f(y) = y3.
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Figure 20: The computed optimal control
for f(y) = arctg(y).

On Figure 21 (resp., 22) we have shown the graphic of ‖ y(t) − yT ‖L2(0,1), t ∈ [0, 1],
when f(y) = y3 (resp. f(y) = arctg(y)).
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Figure 21: ‖ y(t)− yT ‖, for f(y) = y3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

4

t

||y
(T

)−
y T

||

Figure 22: ‖ y(t) − yT ‖, for f(y) =
arctg(y).

On Figure 23 (resp., 24) we have shown a 3D graphic of y(x, t) when t ∈ [0.95, 1] and
f(y) = y3 (resp. f(y) = arctg(y)).
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Figure 23: Graphic of y(x, t) (t ∈ [0.95, 1]),
for f(y) = y3.
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Figure 24: Graphic of y(x, t) (t ∈ [0.95, 1]),
for f(y) = arctg(y).

In order to show a 3D better view of the final (in time) behavior of the solution,
on Figure 25 (resp., 26) we have shown a 3D graphic of y(x, t) when t ∈ [tN−4, 1] and
f(y) = y3 (resp. when t ∈ [tN−2, 1] and f(y) = arctg(y)).
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Figure 25: Graphic of y(x, t) (t ∈
[tN−4, 1]), for f(y) = y3.
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Figure 26: Graphic of y(x, t) (t ∈
[tN−2, 1]), for f(y) = arctg(y).

In Table 3 we give some further results about our solutions.

f(y) = y3 f(y) = arctg(y)

‖ y(u; T )− yT ‖ 0.1898 0.1435
‖ y(0; T )− yT ‖ (=‖ yT ‖) 3.9240 3.9240

‖ u ‖ 2.4651 · 104 7.3360 · 103

J(0) 7.699 · 1012 7.699 · 1012

J(u) 1.930 · 1011 1.434 · 1011

Table 3: Computational results.

6 CONCLUSIONS AND CONJECTURES.

Our numerical results show that, as we had theoretically showed in [2], when we take
a superlinear at infinity nonlinearity (e.g. f(y) = y3) and the target function yT does not
satisfy (1), then the approximate controllability property can not be obtained.

We also (numerically) show this obstruction phenomenon does not appear when f
is sublinear at infinity (e.g. f(y) = arctg(y)), which is consistent with the theoretical
approximate controllability results obtained in [1] and [2].

For the superlinear case, our experiments also show that, as theoretically proved in
[6] (the proof of that paper is for a control localized in an open subset of (0, 1), but it
can be adapted to the pointwise control case), when the target function satisfies (1), the
controllability property holds. The above mentioned proof in [6] is not constructive and
follows a scheme different of the successive penalized optimal control problems used in this
paper.

14



J. Ildefonso Dı́az, and Ángel M. Ramos

A remarkable fact is that, in both superlinear and sublinear cases, the solution y
oscillates very fast for times t ∈ (T − δ, T ), getting away from the target state yT and
finally approaching yT at time T . This is an unstable phenomenon typical of optimal
control problems of controllability type, in contrast with the non-oscillating behavior of
the solution of optimal control problems of stabilization type (see, e.g. Glowinski-Ramos
[13]).

Finally, we point out that the optimal controls obtained in our experiments follow the
typical pattern of remaining close to zero until the last part of the time interval.

The above numerical experiences lead us to formulate the following conjectures:

A. A theoretical proof of the approximate controllability property for problems with
superlinear at infinity nonlinearities and target states satisfying (1) can be also
obtained in a constructive way, by means of the penalized optimal control problems
(CPk) used in this paper.

B. Fixed a target function yT satisfying (1), the cost (in terms of the norm of the
controls) to approximate this function is, in general, much bigger for superlinear
cases than for sublinear cases. However, this result can be false if yT is small enough.
For instance, when f(y) = |y|p−1y, the cost to approximate yT is much bigger when
p > 1, except for target functions satisfying |yT (x)| ≤ 1. This conjecture is exactly
the opposite of the results obtained in Dı́az-Lions [14] for the case of initial value
control problems with nonlinearities of the type f(y) = −y3.
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