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Abstract. This article is concerned with the numerical solution of multi-objective control
problems associated to non-linear partial differential equations and more precisely to the
Burgers equation. For this kind of problems we look for the Nash equilibrium, which is
the solution to a non-cooperative game. To compute the solution of the problem, we use a
combination of finite-difference methods for the time discretization, finite element methods
for the space discretization, and a quasi-Newton algorithm à la BFGS for the iterative
solution of the discrete control problem. Finally, we apply the above methodology to the
solution of several tests problems. To be able to compare our results with existing results in
the literature, we discuss first a simple single-objective control problem, already investigated
by other authors. Finally, we discuss the multi-objective case.
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1 Introduction.

This article is a continuation of a previous article (See Ref. 1). In the above reference we proved the ex-
istence and uniqueness of a Nash equilibrium for the control of linear partial differential equations of the
parabolic type and developed an algorithm to approximate the control solution; numerical experiments
validated our methodology. In Ref. 1 we fully used the fact that the state equation was linear. One
of our long term goals is to study Nash equilibria associated to control problems for non linear partial
differential equations, such as the Navier-Stokes equations. Since this problem is quite difficult both
from a mathematical and a numerical point of view, it seems reasonable to first investigate a simpler
model problem. Here we consider the viscous Burgers equation, since it retains many of the interesting
features of the Navier-Stokes equations and can be used for the modeling of weak shock waves when the
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flow of interest is a perturbation of a uniform sonic gas flow (see, e.g. Ref. 2). The viscous Burgers
equation is

yt − νyxx + yyx = f in Q = (0, 1)× (0, T ),

where T (0 < T < ∞) is an horizon time, ν > 0 is a viscosity parameter and f is a density of external
forces.

We look for M controls vm(t) forcing the solution at the points am ∈ (0, 1), m = 1, · · · ,M . We
complete the equation with initial and boundary conditions (in order to be able to do meaningful
comparisons we employ the boundary conditions used in Refs. 3, 4 and 5); we obtain then the following
state system 




yt − νyxx + yyx = f +
M∑

m=1

vmδ(x− am) in Q,

yx(0, t) = 0, y(1, t) = 0 in (0, T ),
y(0) = y0 in (0, 1),

(1)

where x → δ(x − am) denotes the Dirac measure at am. A variational formulation of the above state
system is provided by





y(t) ∈ L2(0, T ; V0) ∩H1(0, T ; V ′
0), such that ∀z ∈ L2(0, T ; V0) we have

∫ T

0
< yt, z >V ′0×V0

dt + ν
∫ T

0
(yx, zx)dt +

∫ T

0
(yyx, z)dt =

∫ T

0
(f, z)dt +

M∑

m=1

∫ T

0
vmz(am)dt,

y(0) = y0,

where V0 = {z ∈ H1(0, 1) : z(1) = 0} and (·, ·) denotes the scalar product in L2(0, 1) defined by

(y, z) =
∫ 1

0
yzdx.

In Section 2 we discuss a single-objective control problem (with a unique functional J to be mini-
mized) and we compare our results with those obtained in Refs. 3, 4 and 5.

Finally, in Section 3 we develop an algorithm, based on the solution methods for single-objective
control problems treated in Section 2, to approximate the Nash equilibria associated to a multi-objective
control problem.

2 A Single-Objective Control Problem.

2.1 Problem Formulation.

Before introducing the Nash equilibrium problem, and in order to be able to compare our results with
existing results in the literature, we discuss a simple control problem which has been already investigated
by other authors (see, e.g., Refs. 3, 4 and 5).

Let us consider ωd, ωT ⊂ (0, 1) and the target functions yd ∈ L2(ωd × (0, T )) and yT ∈ L2(ωT ). We
define the control space as U = L2(0, T ; IRM). The goal is to find a control u = {um}M

m=1 so that y is
close to yd in ωd× (0, T ) and y(T ) is close to yT in ωT at a minimal cost for the control. To do this, we
define the cost function J by
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J(v) =
α

2
‖ v ‖2

U +
k

2
‖ y − yd ‖2

L2(ωd×(0,T )) +
l

2
‖ y(T )− yT ‖2

L2(ωT ),

where v = {vm}M
m=1, and where α > 0, k, l ≥ 0 and k + l > 0. The control problem is then

(CP)





Find u ∈ U , such that

J(u) ≤ J(v), ∀v ∈ U .

A common way to solve this problem is to solve the problem

J ′(u) = 0,

where J ′ denotes the differential of J . Now, it is a well-known result (see, e.g., Refs. 3, 4 and 5) that

J ′(v) = {αvm + p(am)}M
m=1,

i.e.,

(J ′(v), w) =
M∑

m=1

∫ T

0
(αvm + p(am))wmdt,

where p is the solution of the adjoint system





−pt − νpxx − ypx = k(y(v)− yd)χωd
in Q,

y(0, t)p(0, t) + νpx(0, t) = 0, p(1, t) = 0 in (0, T ),

p(T ) = l(y(T ; v)− yT ) in (0, 1).

2.2 Time Discretization.

We consider the time discretization step ∆t, defined by ∆t = T/N , where N is a positive integer. Then,
if tn = n∆t, we have 0 < t1 < t2 < · · · < tN = T . We approximate then problem (CP) by the following
finite-dimensional minimization problem:

(CP)∆t





Find u∆t = {un
m}n=1···N

m=1···M ∈ U∆t, such that

J∆t(u) ≤ J∆t(v), ∀v = {vn
m}n=1···N

m=1···M ∈ U∆t,

with the discrete control space U∆t = IRMN and

J∆t(v) =
∆t

2

N∑

n=1

M∑

m=1

|vn
m|2 +

k∆t

2

N∑

n=1

‖ yn − yd(n∆t) ‖2
L2(ωd)

+
l

2

(
(1− θ) ‖ yN−1 − yT ‖2

L2(ωT ) +θ ‖ yN − yT ‖2
L2(ωT )

)
,

where θ ∈ (0, 1] and {yn}N
n=1 is defined from the solution of the following second order accurate time

discretization scheme of the Burgers equation (1):
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y0 = y0,




y1 − y0

∆t
− ν

∂2

∂x2
(
2

3
y1 +

1

3
y0) + y0∂y0

∂x
= f 1 +

2

3

M∑

m=1

v1
mδ(x− am) in (0, 1),

∂y1

∂x
(0) = 0, y1(1) = 0,

and for n ≥ 2,




3
2
yn − 2yn−1 + 1

2
yn−2

∆t
− ν

∂2

∂x2
yn + (2yn−1 − yn−2)

∂

∂x
(2yn−1 − yn−2) = fn +

M∑

m=1

vn
mδ(x− am),

∂yn

∂x
(0) = 0, yn(1) = 0.

2.3 Full discretization.

We consider the space discretization step h, defined by h = 1/I, where I is a positive integer. Then, if
xi = (i− 1)h, we have 0 = x1 < x2 < · · · < xI < xI+1 = 1. We approximate V0 by

V0h = {z ∈ C0[0, 1] : z(1) = 0, z|(xi,xi+1) ∈ P1, i = 1, · · · , I},
where P1 is the space of the polynomials of degree ≤ 1. We define ah and bh by

ah(y, z) =
∫ 1

0
yxzxdx, bh(w, y, z) =

∫ 1

0
wyxzdx.

We approximate then problem (CP) by the following finite-dimensional minimization problem:

(CP)∆t
h





Find u∆t
h = {un

m}n=1···N
m=1···M ∈ U∆t, such that

J∆t
h (u∆t

h ) ≤ J∆t
h (v), ∀v = {vn

m}n=1···N
m=1···M ∈ U∆t;

with

J∆t
h (v) =

∆t

2

N∑

n=1

M∑

m=1

|vn
m|2 +

k∆t

2

N∑

n=1

‖ yn
h − yd(n∆t) ‖2

L2(ωd)

+
l

2

(
(1− θ) ‖ yN−1

h − yT ‖2
L2(ωT ) +θ ‖ yN

h − yT ‖2
L2(ωT )

)
,

where θ ∈ (0, 1] and {yn
h}N

n=1 is defined from the solution of the following full discretization of the
Burgers equation (1):





y0
h ∈ V0h,

(y0
h, z) = (y0, z), ∀z ∈ V0h;





y1
h ∈ V0h,

(
y1

h − y0
h

∆t
, z

)
+ νah(

2

3
y1

h +
1

3
y0

h, z) + bh(y
0
h, y

0
h, z) = (f 1, z) +

2

3

M∑

m=1

v1
mz(am), ∀z ∈ V0h;
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and for n ≥ 2,





yn
h ∈ V0h,

(
3
2
yn

h − 2yn−1
h + 1

2
yn−2

h

∆t
, z

)
+ νah(y

n
h , z) + bh(2y

n−1
h − yn−2

h , 2yn−1
h − yn−2

h , z)

= (fn, z) +
M∑

m=1

vn
mz(am), ∀z ∈ V0h.

As for the continuous case, to solve problem (CP)∆t
h , we look for the solution u∆t

h of

∂J∆t
h

∂v
(u∆t

h ) = 0.

Computing
∂J∆t

h

∂v
(v) is more complicated than in the continuous case but, following the same approach,

we can show that

<
∂J∆t

h

∂v
(v), w >= ∆t

N∑

n=1

M∑

m=1

(αvn
m + pn

h(am))wn
m,

where {pn
h}N+2

n=1 is the solution of





pN+2
h ∈ V0h,

(pN+2
h , z) = −8l(1− θ)

∫

ωT

(yN−1
h − yT )zdx− 2lθ

∫

ωT

(yN
h − yT )zdx, ∀z ∈ V0h;





pN+1
h ∈ V0h,

(pN+1
h , z) = −2l(1− θ)

∫

ωT

(yN−1
h − yT )zdx, ∀z ∈ V0h;





pN
h ∈ V0h,

(
3
2
pN

h − 2pN+1
h + 1

2
pN+2

h

∆t
, z

)
+ νah(p

N
h , z) = k

∫

ωd

(yN
h − yd(N∆t))zdx, ∀z ∈ V0h;





pN−1
h ∈ V0h,

(
3
2
pN−1

h − 2pN
h + 1

2
pN+1

h

∆t
, z

)
+ νah(p

N−1
h , z) + bh(2y

N−1
h − yN−2

h , z, 2pN
h )

+ bh(z, 2y
N−1
h − yN−2

h , 2pN
h ) = k

∫

ωd

(yN−1
h − yd((N − 1)∆t))zdx, ∀z ∈ V0h;

and for n = N − 2, · · · , 1,
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



pn
h ∈ V0h,

(
3
2
pn

h − 2pn+1
h + 1

2
pn+2

h

∆t
, z

)
+ νah(p

n
h, z) + bh(2y

n
h − yn−1

h , z, 2pn+1
h ) + bh(2y

n+1
h − yn

h , z,−pn+2
h )

+ bh(z, 2y
n
h − yn−1

h , 2pn+1
h ) + bh(z, 2y

n+1
h − yn

h ,−pn+2
h ) = k

∫

ωd

(yn
h − yd(n∆t))zdx, ∀z ∈ V0h.

Now, once we know how to compute
∂J∆t

h

∂v
(v) we use a quasi-Newton method à la BFGS (see, e.g., Ref.

6 for BFGS algorithms and their implementations) to compute the solution of the fully discrete control
problem (CP)∆t

h .

2.4 Numerical experiments for the single-objective control problem.

We consider the test problem defined as follows: T = 1, I = 128, N = 256, ν = 10−2, k = 0, l = 8,

f(x, t) =

{
1 if (x, t) ∈ (0, 1/2)× (0, T ),
2(1− x) if (x, t) ∈ [1/2, 1)× (0, T ),

y0 = 0 and yT (x) = 1− x3. This test problem has already been addressed in Refs. 3, 4 and 5 (In Ref.
3 the authors use I = N = 60).

Remark 2.1 This is a controllability type problem, since k = 0 and l 6= 0. We point out that the
Burgers equation, with pointwise control does not have the controllability property, since there exists a
function ψ(x) (independent of the controls) such that

y(v; x, T ) ≤ ψ(x), ∀ x ∈ I.

This obstruction phenomenon was already pointed out in Ref. 7 and later proved in Ref. 8. This result
is also true with other types of controls (such as Dirichlet control at one of the ends of the interval I or
distributed control in a subinterval of I) and with other types of equations (some numerical experiments
showing this phenomenon for a semilinear parabolic equation with a superlinear reaction term can be
seen in Ref. 9). Therefore, we cannot expect to be able to drive our solution, as close as we want, to any
target function. Nevertheless, if the target function is, at time T , sufficiently close to the uncontrolled
solution, our approach seems operational, in general.

We use, for our algorithm, θ = 3/2. Further, if vk (k = 1, 2, · · ·) is the sequence of controls we get
from the BFGS algorithm, we use the following stopping criteria: We stop iterating after step k if either

‖ ∂J∆t
h

∂v
(uk) ‖∞≤ 10−5

or
J∆t

h (uk−1)− J∆t
h (uk)

max{|J∆t
h (uk−1)|, |J∆t

h (uk)|, 1} ≤ 2 · 10−9.

On Figure 1 (resp., 3 and 5) we have shown the uncontrolled state solution y(T ) (...), the target
function yT (- - -), and the controlled state solution y(T ) (—) corresponding to a single control point
at a = 1/5 (resp., a = 2/3 and 3/5)(7). The corresponding control functions have been represented on
Figures 2, 4 and 6.

7To be precise: the control points were put on the grid points nearest to these values
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Fig. 1: The target function (- -), the uncontrolled
(..) and controlled (–) states at time T , for a = 1/5.
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Fig. 2: The computed optimal control for a = 1/5.
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Fig. 3: The target function (- -), the uncontrolled
(..) and controlled (–) states at time T , for a = 2/3.
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Fig. 4: The computed optimal control for a = 2/3.
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Fig. 5: The target function (- -), the uncontrolled
(..) and controlled (–) states at time T , for a = 3/5.
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Fig. 6: The computed optimal control for a = 3/5.

Figure 7 shows the uncontrolled state solution y(T ) (...), the target function yT (- - -), and the
controlled state solution y(T ) (—), when controlling at a1 = 1/5 and a2 = 3/5, simultaneously, while
Figures 8 shows the computed optimal controls.
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Fig. 7: The target function (- -), the uncontrolled
(..) and controlled (–) states at time T , for a1 = 1/5
and a2 = 3/5.
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Fig. 8: The computed optimal controls u1 (–) and
u2 (- -) for a1 = 1/5 and a2 = 3/5.

Our numerical results are consistent with those obtained in Refs. 3, 4 and 5. The methods employed
by these authors are based on first order accurate time discretization schemes and the iterative solution
of the discrete control problem is achieved by quasi-Newton algorithms in Ref. 3 and by conjugate
gradient algorithms in Refs. 4 and 5.
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In Table 1 we give some further results about our solutions and we do the comparison with the
results in Ref. 4. The norms considered in all the tables of the present article refer to the L2−norm
of the discrete entries. Further, y(v; T ) represents the solution at time T , associated to the control v
(y(0, T ) represents the solution without control, at time T ).

Control Points
Number of discrete

parabolic eqs. solved
‖y(u;T )−yT ‖

‖yT ‖
‖y(0;T )−yT ‖

‖yT ‖ ‖ u ‖
a=1/5 22 (178) 0.1924 (0.20) 0.1073 (0.11)
a=2/3 20 (94) 0.0983 (0.091) 0.1122 (0.11)
a=3/5 20 0.0744 0.2522 0.1162

a1 = 1/5, a2 = 3/5 26 (172) 0.0241 (0.0025)
‖ u1 ‖= 0.0541
‖ u2 ‖= 0.0944

Table 1: Computational results. In bold the results obtained in Ref. 4

3 Nash Equilibria.

3.1 Problem Formulation.

Nash equilibria define a non-cooperative multiple objective optimization approach first proposed by J.F.
Nash (see Ref. 10). Since it originated in Games Theory and Economics, the notion of player is often
used. For an optimization problem with G objectives (or functionals Ji to minimize), a Nash strategy
consists in having G players (or controls vi), each optimizing its own criterion. However, each player has
to optimize its own criterion given that all the other criteria are fixed by the rest of the players. When
no player can further improve its criterion, it means that the system has reached a Nash Equilibrium
state.

Remark 3.1 There are different strategies for Multi-objective Optimization, as the Pareto (coopera-
tive) strategy (see Ref. 11) and the Stackelberg (hierarchical non-cooperative) strategy (see Ref. 12).

All the results to follow are also valid for more than two control points but for simplicity we shall
consider the case of only two control points a1 and a2. Then, the state equation is





yt − νyxx + yyx = f + v1δ(x− a1) + v2δ(x− a2) in Q,

yx(0, t) = 0, y(1, t) = 0 in (0, T ),

y(0) = y0 in (0, 1).

Let us consider ωdi, ωT i ⊂ (0, 1) (i = 1, 2) and the target functions ydi ∈ L2(ωd × (0, T )) and
yTi ∈ L2(ωT ) (i = 1, 2). We take as the control space U1 = U2 = L2(0, T ).

The goal of each control vi (i = 1, 2) is to drive the solution y close to ydi in ωdi × (0, T ) and y(T )
close to yTi in ωTi at a minimal cost for the control vi. To do this, we define two cost functions by

Ji(v1, v2) =
αi

2
‖ vi ‖2

U +
ki

2
‖ y(v1, v2)− ydi ‖2

L2(ωdi×(0,T )) +
li
2
‖ y(v1, v2; T )− yT i ‖2

L2(ωTi)
,
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i = 1, 2, where αi > 0, ki, li ≥ 0 and ki + li > 0.
For every w2 ∈ U2 we consider the optimal control problem

(CP1(w2))





Find u1(w2) ∈ U1, such that

J1(u1(w2), w2) ≤ J1(v1, w2), ∀v1 ∈ U1.

For every w1 ∈ U1 we consider the optimal control problem

(CP2(w1))





Find u2(w1) ∈ U2, such that

J2(w1, u2(w1)) ≤ J2(w1, v2), ∀v2 ∈ U2.

A solution u1(w2) of problem (CP1(w2)) is characterized by
∂J1

∂v1

(u1(w2), w2) = 0.

A solution u2(w1) of problem (CP2(w1)) is characterized by
∂J2

∂v2

(w1, u2(w1)) = 0.

A Nash equilibrium is a pair (u1, u2) ∈ U1 × U2 such that u1 = u1(u2) and u2 = u2(u1), i.e., (u1, u2) is
a solution of the coupled (optimality) system:





∂J1

∂v1

(u1, u2) = 0,

∂J2

∂v2

(u1, u2) = 0.

(2)

Remark 3.2 If yd1 = yd2 = yd, yT1 = yT2 = yT , α1 = α2 = α, k1 = k2 = k and l1 = l2 = l, then the
Nash Equilibria problem (2) is equivalent to the classical control problem:

(CP)





Find (u1, u2) ∈ U1 × U2, such that

J(u1, u2) ≤ J(v1, v2), ∀(v1, v2) ∈ U1 × U2,

where

J(v1, v2) =
α

2
‖ v ‖2

U +
k

2
‖ y(v1, v2)− yd ‖2

L2(ωd×(0,T )) +
l

2
‖ y(v1, v2; T )− yT ‖2

L2(ωT ) .

This is easy to prove, since the solution of (CP) is equivalent to




∂J

∂v1

(u1, u2) = 0,

∂J

∂v2

(u1, u2) = 0,

and
∂J

∂vi

(v1, v2) =
∂Ji

∂vi

(v1, v2), ∀(v1, v2) ∈ U1 × U2, ∀ i = 1, 2.

Obviously, the computational cost in this case will be bigger if we follow the Nash strategy. This can be
seen from the first numerical experiment of Section 3.2.

Once w2 is fixed, we can follow the same approach as in Section 2 to solve problem (CP1(w2)) and,
similarly, once w1 is fixed, we can follow the same approach to solve problem (CP2(w1)). The difficulty
is that we do not know a priori a suitable w2(= u2) and w1(= u1).
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The algorithm we propose is the following:

Step 1. (u0
1, u

0
2) is given in U1 × U2.

Step 2. We get u1
1 as the solution of (CP1(u

0
2)).

Step 3. We get u1
2 as the solution of (CP2(u

0
1)).

Then, for k ≥ 1, assuming that (uk
1, u

k
2) ∈ U1 × U2 is known, we compute (uk+1

1 , uk+1
2 ) as

follows:

Step 4. If uk
2 = uk−1

2 then uk+1
1 = uk

1;

else get uk+1
1 as the solution of (CP1(u

k
2)).

Step 5. If uk
1 = uk−1

1 then uk+1
2 = uk

2;

else get uk+1
2 as the solution of (CP2(u

k
1)).

Step 6. If uk+1
1 = uk

1 and uk+1
2 = uk

2 then take (u1, u2) = (uk+1
1 , uk+1

2 );

else do k = k + 1 and go to Step 4.

3.2 Numerical Experiments.

We consider the same data as those considered in Section 2.4. Namely, T = 1, I = 128, N = 256,
ν = 10−2,

f(x, t) =

{
1 if (x, t) ∈ (0, 1/2)× (0, T ),
2(1− x) if (x, t) ∈ [1/2, 1)× (0, T ),

y0 ≡ 0. We consider again θ = 3/2 in the discretization of each control problem. We also consider
ki = 0 and li = 8 (i = 1, 2). All the numerical experiments have been done with a1 = 1/5 and a2 = 3/5.
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0.8

0.9

1

x

Fig. 9: The target function (- -), the uncontrolled
(..) and controlled (–) states, for the Nash strategy,
at time T .
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0

t

Fig. 10: The computed controls u1 (–) and u2 (- -)
for the Nash strategy.
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For the case yT1(x) = yT2(x) = yT (x) = 1− x3, Figure 9 shows the uncontrolled state solution y(T )
(...), the target function yT (- - -), and the controlled state solution y(T ) (—), when controlling with
a Nash strategy. Figure 10 shows the computed controls. In Table 2 we give some further information
about our solution. We point out that the results are consistent with Remark 3.2.

Quasi-Newton
Meth. for
J1 / J2

Parabolic eqs.
solved for
J1 / J2

‖y(u;T )−yT ‖
‖yT ‖

——–
‖y(0;T )−yT ‖

‖yT ‖

‖ u1 ‖ ‖ u2 ‖

19 / 18 286 / 232
0.0241
——–
0.2522

0.0540 0.0944

Table 2: Computational results for the Nash strategy with yT1(x) = yT2(x) = yT (x) = 1− x3.

For the case yT1(x) = 1
2
(1 − x3), yT2(x) = 1 − x3, Figure 11 shows the uncontrolled state solution

y(T ) (...), the target functions yT1 (- - -), yT2 (- . -), and the controlled state solution y(T ) (—), when
controlling with a Nash strategy. Figure 12 shows the computed controls. In Table 3 we give some
further information about our solution.
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Fig. 11: The target functions yT1 (- -), yT2 (- . -),
the uncontrolled (..) and controlled (–) states, for
the Nash strategy, at time T .
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Fig. 12: The computed controls u1 (–) and u2 (- -)
for the Nash strategy.
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Quasi-Newton
Meth. for
J1 / J2

Parabolic eqs.
solved for
J1 / J2

‖y(u;T )−yT1‖
‖yT1‖
——–

‖y(0;T )−yT1‖
‖yT1‖

‖y(u;T )−yT2‖
‖yT2‖
——–

‖y(0;T )−yT2‖
‖yT2‖

‖ u1 ‖ ‖ u2 ‖

5 / 4 188 / 54
0.4921
——–
1.3308

0.4110
——–
0.2522

0.3371 0.0850

Table 3: Computational results for the Nash strategy with yT1(x) = 1
2
(1− x3) and yT2(x) = 1− x3.

For the case yT1(x) = 1 − x3, yT2(x) = 9
8
(1 − x6), Figure 13 shows the uncontrolled state solution

y(T ) (...), the target functions yT1 (- - -), yT2 (- . -), and the controlled state solution y(T ) (—), when
controlling with a Nash strategy. Figure 14 shows the computed controls. In Table 4 we give some
further information about our solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

Fig. 13: The target functions yT1 (- -), yT2 (- . -),
the uncontrolled (..) and controlled (–) states, for
the Nash strategy, at time T .
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0.3

Fig. 14: The computed controls u1 (–) and u2 (- -)
for the Nash strategy.
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Quasi-Newton
Meth. for
J1 / J2

Parabolic eqs.
solved for
J1 / J2

‖y(u;T )−yT1‖
‖yT1‖
——–

‖y(0;T )−yT1‖
‖yT1‖

‖y(u;T )−yT2‖
‖yT2‖
——–

‖y(0;T )−yT2‖
‖yT2‖

‖ u1 ‖ ‖ u2 ‖

6 / 6 78 / 76
0.2288
——–
0.2522

0.1445
——–
0.1001

0.1334 0.0849

Table 4: Computational results for the Nash strategy with yT1(x) = 1− x3 and yT2(x) = 9
8
(1− x6).

For the case yT1(x) = 9
8
(1−x6), yT2(x) = 1−x3, Figure 15 shows the uncontrolled state solution y(T )

(...), the target functions yT1 (- - -), yT2 (- . -), and the controlled state y(T ) (—), when controlling with
a Nash strategy. Figure 16 shows the computed controls. In Table 5 we give some further information
about our solution.
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Fig. 15: The target functions yT1 (- -), yT2 (- . -),
the uncontrolled (..) and the controlled (–) states,
for the Nash strategy, at time T .
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Fig. 16: The computed controls u1 (–) and u2 (- -)
for the Nash strategy.
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Quasi-Newton
Meth. for
J1 / J2

Parabolic eqs.
solved for
J1 / J2

‖y(u;T )−yT1‖
‖yT1‖
——–

‖y(0;T )−yT1‖
‖yT1‖

‖y(u;T )−yT2‖
‖yT2‖
——–

‖y(0;T )−yT2‖
‖yT2‖

‖ u1 ‖ ‖ u2 ‖

55 / 55 1576 / 700
0.1702
——–
0.1001

0.2395
——–
0.2522

1.1486 0.9983

Table 5: Computational results for the Nash strategy with yT1(x) = 9
8
(1− x6) and yT2(x) = 1− x3.

4 Conclusions.

For the single-objective control problems considered in this article, the computed solutions that have
been obtained are practically the same that those obtained in Refs. 3, 4 and 5 but the computational
cost of our algorithm is much smaller (see Figures 1–8 and Table 1).

For the Nash multi-objective control problems considered here, the numerical results obtained for
the Burgers equation (a nonlinear model) are consistent with those obtained in Ref. 1 (for a linear
problem) and with what we can expect from a non-cooperative strategy such as the Nash’s one. Namely,
we observe that:

1. In the neighborhood of each control point ai, the solution, at time T , is close to the target function
yTi.

2. There are cases, when the target functions are not compatible (i.e. when being close to one of the
target functions implies to be far from the others), where the solution without control is closer to
some of the target functions than the solution obtained with the Nash strategy. This can be seen
in the numerical results comparing ‖y(u;T )−yTi‖

‖yTi‖ with ‖y(0;T )−yTi‖
‖yTi‖ , for i = 1, 2, shown in Tables 3–5.

The results obtained in this article, for the Burgers equation, call for an investigation of Nash
equilibria for more complicated models than Burgers, such as the Navier-Stokes equations, for example.
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