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Abstract. This article is concerned with the numerical solution of
multiobjective control problems associated with linear partial differ-
ential equations. More precisely, for such problems, we look for the
Nash equilibrium, which is the solution to a noncooperative game.
First, we study the continuous case. Then, to compute the solution
of the problem, we combine finite-difference methods for the time dis-
cretization, finite-element methods for the space discretization, and
conjugate gradient algorithms for the iterative solution of the discrete
control problems. Finally, we apply the above methodology to the
solution of several tests problems.
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1 Introduction

In a classical single-objective control problem for a system modeled by a Differen-
tial Equation, there is an output control v, acting on the equation and trying to
achieve a pre-determined goal, usually consisting of minimizing a functional J(-).
When there is no constraint on the control space and functional J satisfies some
suitable assumptions, there exists a unique solution u to the control problem,
which is determined by the (optimality) condition V.J(u) = 0.

In a multiobjective control problem there are more than one goal and, pos-
sibly, more than one control acting on the equation. Now, in contrast with the
single-objective case, there are several strategies in order to choose the controls,
depending of the character of the problem. These strategies can be cooperative
(when the controls cooperate between them in order to achieve the goals) and
non-cooperative.

Nash equilibria define a noncooperative multiple objective optimization strategy
first proposed by Nash (Ref. 1). Since it originated in game theory and economics,
the notion of player is often used. For an optimization problem with GG objectives
(or functionals J; to minimize), a Nash strategy consists in having G players
(or controls v;), each optimizing his own criterion. However, each player has to
optimize his criterion given that all the other criteria are fixed by the rest of the
players. When no player can further improve his criterion, it means that the
system has reached a Nash Equilibrium state.

Of course there are other strategies for multiobjective optimization, such as
the Pareto (cooperative) strategy (Ref. 2) and the Stackelberg (hierarchical-
cooperative) strategy (Ref. 3), etc..

Some previous works about these strategies for the control of partial differen-
tial equations are the following:



In the articles by Lions (Refs. 4, 5), the author gives some results about the
Pareto and Stackelberg strategies, respectively.

In the article by Diaz and Lions (Ref. 6), the authors prove an approximate
controllability result for a system following a Stackelberg-Nash strategy. This
result is based on the existence and uniqueness of a Nash equilibrium, which is
proved by the authors for some particular cases satisfying some restrictions (in
the present article we show the existence and uniqueness of a Nash equilibrium
for more general situations).

In the article by Bristeau et al. (Ref. 7), the authors compare Pareto and
Nash strategies by using genetic algorithms to compute numerically the solutions
corresponding to these strategies.

2 Formulation of the Problem

Let us consider 7> 0, Q C IR%, d =1 or 2, and two subsets I'y, I'; C 95, such
that 0Q2 = ['url's. We define Q = Ox (0, T), Y =TI1x (0, T) and Yo = I'y X (0, T)
We define the control spaces Uy = L*(wy x (0,T)) and Uy = L*(wq x (0,T')), where
wi,ws C Q and w; Nwy = (0. Finally, we consider the functionals J; and .J, given
by

Q;

J,‘(Ul,vg) = ? o) |U1|2dIdt
w; X (U,
+ v~ yealdedt + 5 [ 1y(T) = P,
wdiX(U,T) Wy

for every (v1,v2) € Uy XUz, where wy;, wr; C Q2 (i = 1,2) and function y is defined
as the solution of

0 )

a_? - Ay = f + V1 Xwr + V2 X wo m Qa
y(x,0) = yo(x) in Q,
y@: g1 on X,
6—;!1 = g2 on 22.

with f, g;, Y0, ¥i.q and y; r being smooth enough functions, a; > 0, k;,[; > 0 and

Remark 2.1 All the results to follow are also valid for more than two controls
(and functionals) and for more general linear operators such as, for instance,

Ap = %—f — V- (A@)Ve)+V - Vo +c(z)p.



The results are also valid for different type of controls such as, for instance,
boundary or initial controls and for different type of functionals, such as, for
instance,

Ji(Ul,U2> = % o) ‘U1’2d$dt
w; X (U,
kz‘ 2 li 2
+5 pil@)ly = yial dzdt + = | mi(2)y(T) — yir|de,
Qx(0,T) Q

with p;,m; € L*(Q) and p;(z),n:(x) > 0 (i = 1,2) (this kind of functionals is
treated, for instance, in Ref. 6).

Now, for every wy € Uy we consider the optimal control problem (CP;(w,)):
Find u(w9) € Uy, such that

Jl(ul<w2),UJ2) S J1<U1,'U}2>, Vvl € L{l,

similarly for every w; € U; we consider the optimal control problem (CP2(wy)):
Find uy(wq) € Us, such that

Jo(wy, ug(wy)) < Jo(wy, ve), Yvg € Us.

The (unique) solution wuj(wsy) (respectively wug(wy)) of problem (CPp(ws))
(respectively (CPa(wy))) is characterized by g—;ﬁ(ul(wg),u&) = 0 (respectively
‘g—‘gj(wl,m(wl)) = 0)

A Nash equilibrium is a pair (uj,us) € U; X Uy such that u; = wuy(uz) and

ug = us(uy), i.e. (up,uy) is a solution of the coupled (optimality) system:

0J
—avi (ul, Ug) =0 (1&)
oJ.
_(%j (u1,uz) = 0. (Lb)

We show that system (1) has a unique solution. Furthermore, we give a
numerical method for the solution of this problem and present the results obtained
with this method on some examples.

Remark 2.2 A special case is when wp; Nwrs # 0 and/or wg; Nwge # 0. This
case is a competition-wise problem, with each control (or player) trying to reach
(possibly) different goals over a common domain. In some sense this is the case
where the behavior of the solution y associated to the equilibrium (uq, ug) is most
difficult to forecast.



3 Equivalent Formulation of (Optimality) Sys-
tem (1)

Let us consider v; € U and a small perturbation d;v; of v1. Then we have, with
obvious notation,

(51J1(1)1, wg) == / %(’Ul,wg)(slﬂldl’dt == Oél/ vlélvldxdt
w1x(0,T) 91 w1 x(0,T)

T1

+/€1/ (y(Uh wz) - yl,d)(;ﬂ/dxdt + ll/ (U(T§ Ul,w2) - yl,T)5ly(t)d$a
wle(O,T) W

where §;y is the solution of

00y

o Adry = 0101 Xw, in Q, (2a)
oy(z,0)=0 in €, (2b)
0y =20 on X, (2¢)
o)

a;y =0 on Y. (2d)

Let us introduce now a reasonably smooth function p; defined over ). Then,
multiplying in (2) by p and integrating by parts, we obtain

0 0
[ p@smde+ [ (B - Apysiydode — [ pisiyarde
Q Q D] n
Ip1 .
+ —51ydfdt = plélvldxdt.
3o an le(O,T)

0.4

81)1

solution of the following backward adjoint system:

Now, in order to simplify the expression of (v1,ws), we choose p; as the

5 .
_% — Apr = ki (y(vr, w2) — Yr,a) Xy 0 @,

pi(z,T) = L(y(T;v1,we) — Y1.7)Xwyy, 10 €2,

plzo on 217
0
%:0 on 22.

Therefore, we have that

oJ
/ —1(1)1, wy )0 vy dxdt = / (0101 + P1Xw, 0101 ddt.
w1 % (0,T) vy w1 x(0,T)



Since d;v; is arbitrary, we have proved that

0Jy
8_vl<vl’ W) = Q101 + P1 X -
0J; . : : o
Thus, — (u1, wy) = 0 is equivalent to the following (optimality) system:
U1
1
U = = —P1Xwrs
aq
0 :
8_35 —Ay=[f+ Ul Xw; T W2Xw, 11 Q,
y(x,0) = yo(x) in Q,
Yy=2aq on 217
Iy
bt A Y,
on 92 On Zip
and
op

o Apy = ky(y(ur,w2) — y1,4)Xw, 10 Q,
Pl(fEaT) = ll(y(T;ul, w2) - yl,T)me in Q,

pp =0 on X,
opm
e — Y.
on on =2
. 0J, : : : N
Similarly, — (w1, u2) = 0 is equivalent to the following (optimality) system:
V2
1
U2 = ——P2Xws;
(25
oy .
E - Ay = f T WiXw;, T U2Xw, 1D Q7
y(x,0) = yo(x) in Q,
ya =g on i,
Y
ZJ by
an g2 on 27
and
Opa

o Apy = ko (y(wr,u2) — Y2.4)Xwy, 10 Q,
p2($> T) = lQ(y(T; whq, u2) - yQ,T>XwT2 in Q’

b2 = 0 on 217
Op2

) Y.
an on 2y



Therefore, system (1) is equivalent to

1
Uy = ——P1Xwr>»
o
1
U2 = ——P2Xws>s
Qg
(1)
dy .
a - Ay = f + U1 Xwy + U2 X wo m Q>
y(x,0) = yo(x) in €,
%: g1 on 217
Y
A 3
and for i = 1,2,
Op;

o Ap; = ki(y — Yid)Xwy; 10 Q,
pi(x, T) = L(y(T) = ¥ir)Xwr; D €,

p; =20 on X,
Ip;
a]; =0 on Y.

4 Conjugate Gradient Solution of System (1)

4.1 Generalities

If we define V' as the Hilbert space V' = U; x Uy equipped with the scalar product

wyv drdt + / UgUodxdt,

w2 % (0,T")

((u1,u2) , (vi,v2))v :/

w1 X (O,T)

then we claim that the linear system (1) is a particular case of finding u € V/,
such that

a(u,v) = L(v), Vv eV, (3)

where a : V x V — IR is bilinear continuous, symmetric and V-elliptic, and
L :V — IR is linear and continuous. Therefore (see, e.g., Glowinski Ref.8),
problem (1) has a unique solution and this solution can be computed by the
following conjugate gradient algorithm:

Step 1. u’ € V is given.

Step 2. Find ¢ € V such that

(¢°,v) = a(u®,v) — L(v), Yv € V.



Step 3. Set w® = ¢°.
Then for k > 0, assuming that u*, ¢* and w* are known, compute u*
and (if necessary) w**! as follows:
Step 4. Compute p* =|| ¢* ||? /a(w", w*).
Step 5. Update u* via uf*! = uF — pFwk.
Step 6. Update ¢g* via the solution g*¥*! € V of

(ngaU) = (gkav> - pka(wk,v), Yv e V.

+1 k+1

)

g™

19|12
Step 7. Compute 7* =[| ¢*** [|* / || ¢" |I* .
Step 8. Update w* via wh*t! = gh+l 4 ~kk,
Step 9. Do k =k + 1 and return to Step 4.

If K

< ¢ take u = uF*1; else:

Remark 4.1 In the algorithm, € is a number that we choose for the stopping
test. If the problem is finite dimensional, a typical value is € = 10~® if one works
in double precision. Concerning the convergence of the above algorithm we have,
with € = 0, that
lim || u* —u =0,
k——+o0

where u is the solution of problem (3). In fact, it can be shown (see, e.g., Ref. 9)
that i
w— 1
< el —u ) (L21)
Vi 1

where ¢ is a constant, and where the condition number v, is defined by v, =|| A ||
| A1 ||, where A is the (unique) linear operator in £(V, V') defined by

a(v,w) = (Av,w), Yv,w € V.

4.2 Construction of a(-,-) and L(-)

It is obvious that the mapping

0J; 0Jy
—, =) Uy x U — — Uy x U 4
(avla 81}2) (v1,v2) € Uy X Uy — (81)1 (v1,v9), B (vi,v2)) €U XUy (4)
is an affine mapping of U; xU,. Therefore, there exist a linear continuous mapping
A€ L(V,V) and a vector b € V such that

0.J, 0.Js

(a—vl(vla v2), (’9_@(”1’”2)) = A(vi,v2) — b.

Let us identify mapping A: For every (vy,vs) € V, the linear part of the affine
mapping in relation (4) is defined by

0.1 0.Js

A(v1,v2) = (0101 + D1Xwr > 202 + P2Xaws ),

6



where p;, i = 1,2, is the solution of

B Ip;

i Ap; = kiyXw, nQ,
pz(xaT) - lzy<T)Xle iIl Q7

pi=0 on X,
Ipi
81:1 =0 on X,

and y is the solution of

oy .
E - Ay = V1Xw; T V2Xw, 1D Q,
y(z,0) = in ,
y=20 on X,
0
=0 on .
Proposition 4.1 Mapping A is linear, continuous, symmetric and strongly pos-

itive.

Proof. It is obvious that A is a linear mapping and it is easy to show (see Ref.
10) that is a continuous mapping. Let us prove that 4 is symmetric and strongly
positive. Let us consider (vy,vs), (w1, ws) € V. We have then

A(v1,v2) - (W, wa) = (0101 + DXwy > Q2V2 + PXusy) - (W1, W2)

= / (041111 +plxw1)w1dxdt + / (042?)2 + szwQ)IUngdt.
w1 x(0,T") w2 % (0,T)

Let us focus on the term fmx(o T P1Xw, wrdzdt. We have

0
/ prwydzrdt = / P1Xw; (=Y (w1, we) — Ay(wy, we) — waXy, )dxdt
le(O,T) QX(OvT) at
_ Ip1 . :
= (— — Apy)y(wq, wo)dxdt + 1 y(T5 01, v2)y(T; wy, wy)dx
Qx(0,T) ot wr1

:kl/ y(vl,vg)y(wl,wg)dxdt+l1/ y(T; 01, v9)y(T; wy, woy)dz.
wdlx(O,T) w

T1

Then,

A(vy,v9) - (wy,wy) = al/

w1 X(O,T)

viwrdrdt + oy / vowodxdt

w2 X(O,T)

—i—kl/ y(vl,vg)y(wl,wQ)dmdt—i—ll/ y(T; v1, v2)y(T; wy, we)dx
wle(O,T) w

T1



+/€2/ y(vl,v2)y(w1,w2)dxdt+12/ y(T; 01, v9)y(T; wy, woy)dz.
OJdQX(O7T) w

T2

This proves that A is a symmetric mapping. Furthermore

A(v1,v2) - (v1,v2) > inf(ar, az) (|| v 7, + | 02 [17,) = inf(an, az) || (v1,v2) [[3,
which proves that A is strongly positive and completes the proof. O
Let us identify b: The constant part of the affine mapping (4) is the function
b € V defined by b = (p1Xw,, P2Xw, ), Where p;, i = 1,2, is the solution of

Op; .
- Iz — Ap; = k’i(Y - yi,d)dei in @,

pi(iﬂ, T) = li(Y(T) - yi,T)XwTi in €2,

p; =0 on X,
Op;
8]791 =0 on o,
and Y is the solution of

% —AY =f inQ,

Y(2,0) = yolz) inQ

Y = g1 on Xy,

)4

% = (g2 on 22.

Now, if we define a(-,-) : V x V — IR by
a(v,w) = (A(U),U))V v v,w € ‘/a

and L :V — IR by
L) = (bo)y, YveV,

Proposition 4.1 proves that mapping a(-, ) is bilinear continuous, symmetric and
V-elliptic; mapping L is (obviously) linear and continuous. Thus, as mentioned
in Section 4.1, system (1) has a unique solution, which can be computed by the
conjugate gradient algorithm described there. In Section 4.3 we shall adapt this
algorithm to the problem under consideration.

4.3 Conjugate Gradient Algorithm for System (1)

Step 1. (u?,uY) is given in V.

Step 2.a.
81/0 0 0 0 .
o AV =S uiXe tuXe, G,
y°(z,0) = yo(x) in Q,
y’ 0: (1 on 1,
0
a—:i =gy on .



Step 2.b. For i =1, 2,

ap; .
B ot Apz ki(yo o yiad)dei m Qa
P, T) = L((W°(T) = yir)Xor, nQ,
p? = 0 on 21,
opy
I =0 on Y.

(alutl) + p(l)qu ) 042U(2) + ngwg)
(91 ) 92)

Step 2.c. (g7, 93) =
Step 3. (w17w2)

Then, for k > 0, assuming that (u},u%), (g%, ¢5), (w¥,wk

k o,k

) are known, all in V,

we compute (uft? ugﬂ), (g5t g™ and (if necessary) (wi™ w5™!) as follows:
Step 4.a.
oy* _ .
@ - Ayk - w]wal + wIQCsz m Qa
7°(z,0) =0 in Q,
7 =0 on Xy,
8—k
8_yn =0 on Xs.
Step 4.b. For i =1, 2,
3 _ .
t — AP} = kil Xw, nQ,
pi(x,T) = ll-y (1) Xwr,s in Q,
=0 on Xy,
opr
a_T:I =0 on 22.
Step 4.c. (1,5) = (1w} + i Xan, Q25 + Py X )
I (97, 95) IIF
Step 4.d. p, = L2’ TV
Jorxor Frwidzdt + [ o Gywidadt
Step 5. (u :E Uy ') = (u;f,uk’i)—pk(lg’f,zv’é)-
Step 6. (97,95 ) = (91, 95) — px(97.G3)-
| (o195 ) ||
If =2~V < e, then take (up,uz) = (uf™, ust); else:
| (97, 99) 7%
o 7. LG5 1
- ||k(911a92) |]LV1 -
Step 8. (wy™, wyt) = (g7, g5 ) + e (wh, wh).

Step 9. Do k=k+1, and go to Step 4.a.



5 Time Discretization

5.1 Formulation of the Semidiscrete Problem

For simplicity, we consider from now on the special competition-wise control
problem (see Remark 2.2) given by the case where ky = ko = k, [} = I = [,
Wyl = Weer = wg and wyr = wre = wp. For this special case, we point out that
the mapping A defined in Section 4.2 is A(vy, ve) = (101 + DXwy> X2V + DXwn),
where p = p; = ps (since p; and po, defined in Section 4.2, are solution of the
same equation). Then, the functions p} and p§ defined in the Step 4.2 of the
Conjugate Gradient algorithm described in Section 4.3 are solution of the same
equation and therefore pf = p§ = p".

We consider the time discretization step At, defined by At = T/N, where N is
a positive integer. Then, if we denote nAt by t", wehave 0 < t! < 2 < ... <tV =
T'. For simplicity, we assume that f, g1, g2, y1,4 and ¥y, ¢ are continuous functions,
at least with respect to the time variable (if not we can always use continuous
approximations of these functions). Now, we approximate U; by UA! = (L?(w;))™
and Uy by ULt = (L*(ws))Y. Then, for every ws € UL we approximate problem
(CP1(wq)) by the following minimization problem (CPl(wg))At: Find uft(wy) €
UAL, such that

JlAt(UlAt(w2)7w2) < JlAt(thz), Vv, € UlAt
with

T (1, ve) = 041—2/ [v7|2dw
w1

[
+k_ Z |Z/" —yra(t")Pda + 5 / Y™ =y rlPda,

where {y"}Y_, is defined by the solution of the following semi-discrete parabolic
problem:

yO = Yo, (5)
and forn=1,..., N,
VU A= ) e o) in 0 6
P Ay = ) o e, D (63)
Yyt =g (t") in I'y, (6b)
oy" .
y _ g2 (t™) in I'y. (6¢)

on
Similarly, for every w; € UR!, we approximate then problem (CPy(w;)) by the
following minimization problem (CPq(w;))>": Find ug!(w;) € UL, such that

I3t (wy, up (wn)) < Jyt(wi,v2), Yo € Us™,

10



with

JQAt(vl,vg = 0@—2/ |v2|2dx

‘HC—Z y" = yo.a(t")Pda + 5 /|?J — 7| de,

=1 Jwa
where {y"}Y_| is again defined by the solution of problem (5)—(6).

5.2 Optimality Conditions for the Semidiscretized Opti-
mal Control Problems (CP;(ws))?! and (CPa(w;))A!

We suppose that the discrete control space U2, i = 1,2, is equipped with the
scalar product (-,-); o; defined by

N
(vi, w;)ine = At g / viwtdz.
n=1"Y Wi

The (unique) vector uf(w,) solution of problem (CP;(ws))?t is characterized

0
by the optimality condition ——J& (uf (wy), wy) = 0. Similarly, the (unique)

vy
vector u5'(w;) solution of problem (CPy(wy))A! is characterized by the optimality
condition — J& (wy, us (wy)) = 0.

@1}2
Let us concentrate on problem (CP;(ws))2t. We consider v; € UA! and a
small perturbation d;v; of v;. Then we have, with obvious notation,

0

51J (Ul,'ll]g) = (aTJA (?]1,’(1]2) (51?)1 1At = AtC(l Z/ 51'111
1

+kAtZ/ y" —yrat )51y”dm—|—l/ (y —yl,T)51yNdx,

where
513/0 = O, (7)
and forn=1,.... N,
5 n __ 6 n—1 )
% — A0Y" = 6107 X, in €, (8a)
51y" =0 onI'y, (8b)
0
%(ﬁy” =0 on I's. (8¢)

11



Let us introduce now {p?})*! where each p? is a smooth function defined on

Q. Then, multiplying in (8) by p?, integrating continuously over {2 and discretely
over (0,7"), we obtain

n+1

— Ap})oy"dx + / pY L oyNda

opY 0
—i—AtZ </r %(ﬁyndf—/ pla—ély dF) AtZ/ o vyptd
n=1 2

Now, in order to simplify the expression of — 3 J2 vy, wy), we choose {pp }H!
U1
satisfying the following conditions:
p{VH l(yN(’Ul, W2) = Y1,7) Xewr
and forn =N, ... 1,
n+1
Py —p n n n :
A—tl — Apy = k(y" (vi,wa2) — y1.4(t")) Xwq in 2,
py =0 on I'y,
Ipt
— =0 on I'5.
on nhe
Taking the above relations into account, we obtain that
N
51J1At(’l)1, U)Q) = AtZ/ (Oél?]? —I—p?le) 61U711d1}.
Since d1v; is arbitrary, we have proved that
0 n n N
o Jl "(v1,we) = {a10] + P Xen - (9)

0
Therefore, 8_J1 A%y, wy) = 0 is equivalent to the following (optimality) system:
vy

1
u = ——{p{Xewr ot
aq

yO = Yo,
and forn=1,.... N,

yn - yn—l Ay" = " n n in O
t - Yy _f( >+u1XuJ1 +w2Xw2 m )
ya” = g1 (t") in I'y,
y" .
——— = go(t" in I'y;
an 92( ) 2

12



Py =1y (w1, w2) — Y1.7) Xors

and forn =N, ..., 1,

pp—pit!
% — Api = k(y" (w1, w2) — y1,a(t"))Xw, in €,
pt =0 on I'y,
% =0 on I's.
o N . 0 A
Similarly, we can find the (optimality) system equivalent to a—szz (w1, ug) = 0.
Therefore, the problem of finding (uy,us) € UL x UL, such that
ilet(ul UQ) =0 (10&)
81}1 Y Y
0
a_’UQJQAt(UhUQ) = 0, (IOb)

is equivalent to
1 n N
up = —a—l{Pl Xen Fnet;
1 n N
Uz = —a—Q{pQsz}n:ﬁ

0 _
= Yo,

and forn=1,..., N,

n n—1
At _Ay :f(t )+U1Xw1+U2Xw2 m Qa
ya” = ¢ (t") in I'y,
y" :
L = g (" I's;
an 92( ) m 2
p]1V+l = l(yN(UbUQ) - yl,T>XwT7

and forn=N,...;,1,and i = 1,2,

pn _pn—i_l

% — Ap! = k(y" (ur, u2) — yia(t"))xw, in Q,

p? = 0 on Fl,

op?

% _0 on I's.
n

13



6 Conjugate Gradient Solution of Problem (10)

6.1 Generalities

If we define V4! as the Hilbert space VA = UA x US equipped with the scalar
product

((u1,uz) , (v1,02))5" = At (i‘:/ ulvldx—i-Z/ ugvyd )

then we claim that the linear system (10) is a particular case of finding u € V2!,
such that
Ay, v) = LA (v), Vv € VA,

where @' : VA" x VA" — IR is bilinear continuous, symmetric and V*-elliptic;
and LA : VAt — IR is linear and continuous. Therefore, as explained in Section
4.1, problem (10) has a unique solution and this solution can be computed by a
conjugate gradient algorithm.

a

6.2 Construction of a®(-,-) and L2()
It is obvious that the mapping

DI A

aJAt aJAt
( 81}1 ’ 81)2 )

s (v1,v9) € UL XUP — (2 (01, v3), —2—(v1, v2)) € UL x UL
81}1 8 V2 ( )
11

is an affine mapping of U~ x U, Therefore, there exist a linear continuous
mapping A2 € L(VA1, VA and a vector bt € VA such that

aJAt 8JAt
(8—;1(@1702) s (01702)) = AAt(UhUQ) -

b2
Let us identify mapping A%*: For every (v;,vy) € VA the linear part of the
affine mapping in relation (11) is defined by
AP (v1,v2) = (101 4 PXns @202 + PXus),
where p = {p"}*! is the solution of
PN = 1Ny,
and forn =N, ..., 1,

7 n+1
AL Ap" = ky"xo, 1in £,
pt =0 on I'y,
8 n
ai =0 on FQ,
n

14



and y = {y"}_, is the solution of

y’ =0,
and forn=1,..., N,

n n—1
e — — A = X,
y" =0 in T,
a n
ai =0 in FQ.
n

Proposition 6.1 Mapping A*! is linear, continuous, symmetric and strongly
positive.

Let us identify b: The constant part of the affine mapping (11) is the function
bAt € VAt defined by bAt = <p1Xw17p2Xw2)7 Wherea for ¢ = 1727 bi = {p;n £LV:+11 is
the solution of

pZNH = Z(YN — YiT) Xeor»

and forn =N, ... 1,

Pt —pn""l

b — Ap = k(Y — pat)xey 0 S
pi =0 on I'y,
o

% =0 on I'y,

and Y = {Y"}¥_ is the solution of

and forn=1,..., N,

Ynr — Yn—l
—— —AY" = (1) O,
YY" = gl(tn) n Fl,
oy .
B = g2(t") in T's.

Now, if we define a®!(-,-) : VA x VA — IR by
a® (v, w) = (AM(v), w)yae Y v,w € VA,
and LA : VA — IR by
LAv) = (b,v)yar Y v e VA,

Proposition 6.1 proves that mapping a(, ) is bilinear continuous, symmetric and
VAL elliptic; and mapping L is (obviously) linear and continuous. Thus, as ex-
plained in Section 4.1 problem (10) has a unique solution, which can be computed
by the conjugate gradient algorithm described in Section 6.3.
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6.3 Conjugate Gradient Algorithm for the Solution of Prob-
lem (10)

Step 1. (ul,ug) is given in VA<,

Step 2.a. y*0 =gy, and for n =1, ..., N,

yor —yont 0 0
T - Ayom = f(tn) + ulyanl + u2’an2 in €2,
yo’z =g (t") onI'y,
oy
= t" Ts.
an 92( )7 on 2

Step 2.b. For i =1, 2, po N+ =1(y"" — ¥i7)Xwy, and for n = N, ..., 1,

» o+l
7 i 0,n n n .
—_Zr—“Aﬂ = k(™" = yia(t"))Xw, 9,
P =0 on I'y,
op>™
U on I's.
on 2

Step 2.c. (g, 95) = (oquf + pxw,, 2ud + PYxu, ).
Step 3. (wla w2) (91 ) 92)
k k

Then, for k& > 0, assuming that (u},u}), (g%, ¢%), (w¥,wk) are known, all
in VA we compute (u ( ML b ) (g8 g5+ and (if necessary) (wi*! wé“) as

follows:

Step 4.a. *° =0, and forn =1, ..., N,

gk,n o yk,n—l k X
At N Ayk,n = wlmxau + wzmxcuz in €,
g =0 on I'y,
8@]{:,71
=0 on I's.
on 2

Step 4.b. PPN = [y Ny, and for n = N, ..., 1,

=kn _ =kn+l
p A]Z . Aﬁk’n — kyk,nxwd in Q,
PP =0 on I'y,
a—k,n
P =0 on FQ.
on

Step 4.c. (5,75) = (1w} + P xw,, aowh + P xw,).

Step 4.d. pr = - |_‘k(j71 vkgj) 1520 o
A (U, gl de + [, gh e )

Step 5. (ui ™, uy ™) = (uf, uf) — pi(wy, wh).
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Step 6. (91", 95*") = (9f, 65) — Pk (91, 95)-
H ( k+1 k+1)

927 ) Ilya < ¢, then take (u1,uy) = (ub™, ubth); else:
” (91792) HvAt

e et s

H (91792) “VAz
Step 8. (w’f+1 wyth) = (g1 g5 ) + (wf, wh).
Step 9. Do k =k + 1, and go to Step 7.

Step 7. 7,

7 Full Discretization of Problem (1)

7.1 Generalities

We suppose from now on that  is a polygonal domain of IR?>. We also consider
wq, wr, wp and ws subdomains of €2. We introduce a finite-element triangulation
Ty, of Q, with h the largest length of the edges of the triangles of 7, and dwr, Owy,
Ow; and Ow, being part of the triangulation. Next, we approximate L*(Q2x (0,7))
and L*(0,T : H(Q)) by WA defined by WA = (Wh) with

W, ={z€C’Q), 2, € P, VT € T,},

where P; is the space of those polynomials of degree < 1 (dim(P;) = 3 and
dim(W},) = Ny, where Nh is the number of vertex in 7). Now, for i € {1, 2}, we
approximate U; by Z/{ defined by L{ﬁf = (U; )N, where

Up={z:2z¢€ C' (@), 2y € P, VT € w;}.

Finally, we approximate the space {z € L*(0,T : H*(Q)) : z(t);,, = 0} by
Wi defined by Wii§ = (W)™, where

Who={2€ W) : 2y, = 0}.

7.2 Formulation of the Fully Discrete Control Problem

Let us suppose (for simplicity) that g; = g» = 0. For every w, € U5} 5.n W€ approx-
imate then problem (CP;(ws)) by the following finite dimensional minimization
problem (CP1(wy))p": Find u} (ws) € UL, such that

Jon(ush (ws), ws) < Jiy(vr,ws), Yoy € UL,

with
JlA,ii(Ul,Uz) = CY1—Z v P dadt
n=1 Y w1
l
+k—; 5 lyh — yra(t™))Pda + < 5 /WT lyn — yir|de,

17



where y, = {y;}_; € Wi is defined by the solution of the following discrete
parabolic problem (written in variational form):

Yo,n € Wha v h7 (12&)
}llir% Yo = Yo in L*(Q), (12b)
Yn = Yo (13)

and forn=1,.... N,

n __ ,n—1
/Q(yh Aih Z+ vy}? -Vz — f(tn) - U?Xan - U;sz)dea Vze Wh70' (14)

Similarly, for every w; € Uf}. we approximate problem (CPy(w:)) by the following
finite dimensional minimization problem (CPs(wy))p": Find ug (wy) € Uy, such
that

J5 h(wl,ugz(wl)) < Jf,ﬁ(wl,vz), Yoy € L{ﬁ,

with
N
At
Jf,’i(vl,vg) = 04272 vy |?dxdt

nle

[
+k—z Y — Y2.alt )|2d$+§/ Yy — yorl*de,
wr

n=1"Y%d

where y;, = {yp})L, € Wi is again defined by the solution of (12)-(14).

7.3 Optimality Conditions for the Fully-Discrete Control
Problems (CP;(ws))5! and (CPy(w1))5!

We suppose that the discrete control space L{ h, © = 1,2, is equipped with the
scalar product (-, -); s a¢, defined by

N
n n
(Vi wi)ipar = At E /vi w;'dx.
n=1"7wi

The (unique) vector uff,(ws) solution of problem (CPi(w,))i" is characterized

0
by the optimality condition a—JlA,fi(u1 ! (wq),wy) = 0. Similarly, the (unique)
At

vector ug, (wy) solution of problem (CPa(ws))5" is characterized by the optimality

condition aa Js h(wl,uffl(wl)) = 0.

18



Now, in a way similar to that followed for problem (CP;(ws))??, it is easy to
deduce that, for every (vi,vy) € Uf,ﬁ X Z/{ZAﬁ and i = 1,2,

0 n n
%Jﬁf(vl,vg) = {Oéﬂ)i + p; Xwi}gzl € ul%f’

where {pr}2H! € W§ is defined by the solution of

PfVH = l(yI]zV(UhU?) - yi,T)XWT,

and forn =N, ..., 1,

n _ ntl
/(%z + Vp} - Vz)dr = k/ (Yh (v1,v2) — yiat"))zde, V 2 € Wiy,
Q wWq

where {y'(vy,v2)}_, is defined by the solution of (12)—(14).

n=1

Therefore, the problem of finding (uy, uz) € UL} x Us, such that

0
_avl JlA’]i(uly UQ) - 07 (15&)
0

a—wJQAﬁ(ul, Ug) = O, (15b)

is equivalent to

1 n N
Uy = _a_l{pl Xer Fr=1)

1
Uy = ——{Ph Xen
6%)]

0 _
yh - y07h7

and for n =1,..., N, yp € W) is the solution of

n_ ,n—1
J O — V - Ve = [ () + v + ua)ade, Yz € Wi

pzN—H = l(nyzV - %,T)wa 1=1,2,

and for n = N, ..., 1, pi € Wy, 7 = 1,2, is the solution of

no_ pntl
/(Z%Z + VPZL . VZ)dx = l{j/ (yz — yz’d(tn))Zd.T, V A Wh,O-
Q wd
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8 Conjugate Gradient Solution of Problem (15)

8.1 Generalities

As done for the the semi-discrete problem (10), we can solve problem (15) by the

following conjugate gradient algorithm:

Step 1. (ul,ug) is given in Uy x Usy,

Step 2.a. yh = Yo, and forn =1, ..., N, yg’" € Wi, is the solution of

0,n 0,n—1
/(%z—l—Vyg’sz)dx = /(f(t")—l—u(l)’"xw1 —i—ug’"xu,?)zdx, YV z € Whyp.
Q Q

Step 2.b. Fori =1, 2, pO N+ l(yh —YiT)Xwr, and for n = N, ..., 1, p?’n € Who
is the solution of

mo Qn+1
/Q(Z%Z VO Va)da = k/ (2" — yialt™))zdz, ¥ = € Wi,
wq

Step 2.c. (g1, 95) = (et + PiXuy, Q215 + PoXun)-
Step 3. (w?, wd) = (g7, g3).
Then, for k > 0, assuming that (u¥, u), (g% ¢5), (wh, wh) are known, all in

URE x UYL, we compute (uf ™, us™), (gf*", g5*") and (if necessary) (wi™, wi™)

as follows.

Step 4.a. 70 = 0, and for n = 1,..., N, g™ € Wy is the solution of

—k,n —kn—1
/Q(%Z + V_k" Vz)dr = /Q(wlf’nxwl + w’;’”xm)zd:v, V 2z € Wiy

Step 4.b. pPNH1 = 177Ny, and for n = N, ..., 1, " € W), is the solution of

pk,n o ﬁk,n—ﬁ—l
/ (s =+ VP"" - Va)dr = k / 7 zde, Y 2 € Wi,
Q

Wa

Step 4.c. (gF,75%) = (aywy + PPy, 20421;)]5 + 7 X))
I (97, 95) ”uAt xUPL

Step 5. (u :*11 u]’§+11> (u;f,uk’z“) —pk(lz’fyivé)-
Step 6. (g * »92+ ) =(91,95) — Pe(97, 5)-

(™ a5 1y ene
If 20 < e then take (ug, ug) = (ufT ust); else:

I (97 95) H“lAﬁX%AZ

Step 4.d. pr =
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I (95 05°) s

Step 8. (wyth wy™) = (g7, g5 ) + (W, wh).
Step 9. Do k =k + 1, and go to Step 7.

Step 7. 1 =

Remark 8.1 The practical application of the above algorithm requires the cal-
culation of various integrals over the triangles of 7. Integrals such as fT yl,j’”zdx,
Iz wf "zdx (i = 1,2) can be computed exactly without difficulty for the one-
dimensional case and by using the two-dimensional Simpson’s rule for the two-
dimensional case (see, e.g., page 96 of Ref. 8). Numerical integration is neces-
sary in order to compute integrals such as [, f(t")zdx, [, yia(t")zdz, [ y;rzde
(1 =1,2). Some quadrature schemes for computing approximately these integrals
can be found in, e.g., pp. 178-185 of Ref. 11.

9 Numerical Experiments.

9.1 Generalities.

We consider the domain €2 defined by €2 = (0,1) x (0, 1) and the space discretiza-
tion step h defined by h = 1/(I — 1), where [ is a positive integer (I* =number
of vertices). Then, for every i,j € {1,---I}, we take the triangulation 7, with
vertex x; ; = ((1 —1)h, (j —1)h) and the triangles as in the typical case showed in
Figure 1 (we point out that, due to the special domain consider in this example,
we have denote by h a parameter different to the one defined in Section 7.1).

We consider the case I' =T’y (i.e. Ty = 0), w; = (0,0.25) x (0,0.25), wy =
(0.75,1) x (0,0.25), wr = Q and wy = (0.25,0.75) x (0.25,0.75) (see Figure 2).
For the data of the problem we take f =1, yp =0, gy = 0 and go = 0. In the
conjugate gradient algorithm we take the initial guess (ud,u3) = (0,0) and the
stopping criterion € = 1078,

9.2 Stabilization Type Test Problems (k£ > 0 and [ = 0).

We consider the finite horizon time 7" = 1.5 and the time step discretization
At = 1.5/45. For the space discretization we consider the step h = 1/36 (I = 37).
In order to see how the non-controlled solution behaves, we have visualized in
Figure 3 the computed solution of the non-controlled equation at time ¢ = 1.5.

Throughout this section we use k =1 and [ = 0.

Same Goal: y; 4 =1y24 = 1.

In Figures 4-5 we have visualized the graph of the computed solution of the
controlled equation with a; = ay = 1076,

In Figures 6-7 we have visualized the graph of the computed solution of the
controlled equation with a; = 107% and ay = 1072,
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In Figure 8 we have visualized the graph of || y(t) — 1 H%z(wd) for different
cases. In Table 1 we give some further results about our solutions.

Different Goals: y;4=1 and y, 4 = —1.

In Figures 9-10 we have visualized the graph of the computed solution of the
controlled equation with a; = ay = 1076,

In Figures 11-12 we have visualized the graph of the computed solution of the
controlled equation with a; = 107% and ay = 1072.

In Figures 13-14 we have visualized the graph of || y(¢) — 1 ||%2( ) and

wq
| y(t) — (=1) H%Q(wd) for different cases. In Table 2 we give some further results

about our solutions.

Remark 9.1 We point out (see Figures 13 and 14) that, when the goals are
different, the controlled solution can be worse (in terms of L*(wy X (0,7)) with
respect to both goals than the uncontrolled solution.

9.3 Controllability Type Test Problems (k=0 and [ > 0).

Throughout this section we consider £ = 0 and [ = 1. We also consider the finite
horizon time T = 3 and the time step discretization At = 3/90. For the space
discretization we consider the step h = 1/67 (I = 68). The solution without
controls behaves again as showed in Figure 3.

Same Goal: y1 7 =y27 = 1.

In Figures 15-16 we have visualized the graph of the computed solution of the
controlled equation with a; = ay = 1076,

In Figures 17-18 we have visualized the graph of the computed solution of the
controlled equation with a; = 107¢ and ay = 1073.

In Figure 19 we have visualized the graph of || y(t) — 1 Hi?(w) for different
cases, for t € [2.5,3] (for ¢t < 2.5 the solutions are almost identical). In Table 3
we give some further results about our solutions.

Different Goals: y;r =1 and y 7 = —1.

In Figures 20-21 we have visualized the graph of the computed solution of the
controlled equation with a; = ay = 1076,

In Figures 22-23 we have visualized the graph of the computed solution of the
controlled equation with a; = 107¢ and ay = 1073,

In Figures 24-25 we have visualized the graph of || y(¢) — 1 H%Q(W) and
| y(t) — (1) H%Q(WT) for different cases, for ¢t € [2.5,3] (for ¢ < 2.5 the solutions
are almost identical). In Table 4 we give some further results about our solutions.

10 Conclusions

The numerical results obtained in this article (see also Ref. 12) are consistent
with what we can expect from a non-cooperative strategy as the Nash strategy;
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more precisely:

(1)

(i)

In a neighborhood of each control domain w; (i=1,2), the controlled solution
tends to be close to the target function yy;, for the stabilization type prob-
lems, and close to the target function yz;, at time 7', for the controllability
type problems.

In the same way as two companies having opposite goals can go bankrupt
if they do not cooperate, in our problems there are cases, when the target
functions are not compatible (i.e. when being close to one of the target
functions implies to be far from the other), where the solution without
control is closer to some of the desired states (or both of them) than the
solution obtained with the Nash strategy. This can be seen by comparing,
for the different cases, the graphs of || y(u;x,t) — yai ||%2(de(O7T)) with the
graphs of || y(0;z,t) — ya ||%2(de(O7T)), and the graphs of || y(u;x,T) —
y7i 172y With the graphs of || y(0;2,T) — yrs |72, for i = 1,2.

The results obtained in this article, for the linear heat equation, call for an
investigation of Nash equilibria for more complicated nonlinear models such as
the Burgers equation (see Ref. 13) or the Navier-Stokes equations.
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