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Abstract. This article is concerned with the numerical solution of
multiobjective control problems associated with linear partial differ-
ential equations. More precisely, for such problems, we look for the
Nash equilibrium, which is the solution to a noncooperative game.
First, we study the continuous case. Then, to compute the solution
of the problem, we combine finite-difference methods for the time dis-
cretization, finite-element methods for the space discretization, and
conjugate gradient algorithms for the iterative solution of the discrete
control problems. Finally, we apply the above methodology to the
solution of several tests problems.

Key Words. Linear partial differential equations, optimal control,
Nash equilibria, adjoint systems, conjugate gradient methods, multi-
objective optimization.

1 Introduction

In a classical single-objective control problem for a system modeled by a Differen-
tial Equation, there is an output control v, acting on the equation and trying to
achieve a pre-determined goal, usually consisting of minimizing a functional J(·).
When there is no constraint on the control space and functional J satisfies some
suitable assumptions, there exists a unique solution u to the control problem,
which is determined by the (optimality) condition ∇J(u) = 0.

In a multiobjective control problem there are more than one goal and, pos-
sibly, more than one control acting on the equation. Now, in contrast with the
single-objective case, there are several strategies in order to choose the controls,
depending of the character of the problem. These strategies can be cooperative
(when the controls cooperate between them in order to achieve the goals) and
non-cooperative.

Nash equilibria define a noncooperative multiple objective optimization strategy
first proposed by Nash (Ref. 1). Since it originated in game theory and economics,
the notion of player is often used. For an optimization problem with G objectives
(or functionals Ji to minimize), a Nash strategy consists in having G players
(or controls vi), each optimizing his own criterion. However, each player has to
optimize his criterion given that all the other criteria are fixed by the rest of the
players. When no player can further improve his criterion, it means that the
system has reached a Nash Equilibrium state.

Of course there are other strategies for multiobjective optimization, such as
the Pareto (cooperative) strategy (Ref. 2) and the Stackelberg (hierarchical-
cooperative) strategy (Ref. 3), etc..

Some previous works about these strategies for the control of partial differen-
tial equations are the following:



In the articles by Lions (Refs. 4, 5), the author gives some results about the
Pareto and Stackelberg strategies, respectively.

In the article by Dı́az and Lions (Ref. 6), the authors prove an approximate
controllability result for a system following a Stackelberg-Nash strategy. This
result is based on the existence and uniqueness of a Nash equilibrium, which is
proved by the authors for some particular cases satisfying some restrictions (in
the present article we show the existence and uniqueness of a Nash equilibrium
for more general situations).

In the article by Bristeau et al. (Ref. 7), the authors compare Pareto and
Nash strategies by using genetic algorithms to compute numerically the solutions
corresponding to these strategies.

2 Formulation of the Problem

Let us consider T > 0, Ω ⊂ IRd, d = 1 or 2, and two subsets Γ1, Γ2 ⊂ ∂Ω, such
that ∂Ω = Γ1∪Γ2. We define Q = Ω×(0, T ), Σ1 = Γ1×(0, T ) and Σ2 = Γ2×(0, T ).
We define the control spaces U1 = L2(ω1×(0, T )) and U2 = L2(ω2×(0, T )), where
ω1, ω2 ⊂ Ω and ω1 ∩ ω2 = ∅. Finally, we consider the functionals J1 and J2 given
by

Ji(v1, v2) =
αi

2

∫

ωi×(0,T )

|vi|2dxdt

+
ki

2

∫

ωdi×(0,T )

|y − yi,d|2dxdt +
li
2

∫

ωTi

|y(T )− yi,T |2dx,

for every (v1, v2) ∈ U1×U2, where ωdi, ωTi ⊂ Ω (i = 1, 2) and function y is defined
as the solution of

∂y

∂t
−∆y = f + v1χω1 + v2χω2 in Q,

y(x, 0) = y0(x) in Ω,
y = g1 on Σ1,
∂y

∂n
= g2 on Σ2.

with f, gi, y0, yi,d and yi,T being smooth enough functions, αi > 0, ki, li ≥ 0 and
ki + li > 0 (i = 1, 2).

Remark 2.1 All the results to follow are also valid for more than two controls
(and functionals) and for more general linear operators such as, for instance,

Aϕ =
∂ϕ

∂t
−∇ · (A(x)∇ϕ) + V · ∇ϕ + c(x)ϕ.
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The results are also valid for different type of controls such as, for instance,
boundary or initial controls and for different type of functionals, such as, for
instance,

Ji(v1, v2) =
αi

2

∫

ωi×(0,T )

|vi|2dxdt

+
ki

2

∫

Ω×(0,T )

ρi(x)|y − yi,d|2dxdt +
li
2

∫

Ω

ηi(x)|y(T )− yi,T |2dx,

with ρi, ηi ∈ L∞(Ω) and ρi(x), ηi(x) ≥ 0 (i = 1, 2) (this kind of functionals is
treated, for instance, in Ref. 6).

Now, for every w2 ∈ U2 we consider the optimal control problem (CP1(w2)):
Find u1(w2) ∈ U1, such that

J1(u1(w2), w2) ≤ J1(v1, w2), ∀v1 ∈ U1;

similarly for every w1 ∈ U1 we consider the optimal control problem (CP2(w1)):
Find u2(w1) ∈ U2, such that

J2(w1, u2(w1)) ≤ J2(w1, v2), ∀v2 ∈ U2.

The (unique) solution u1(w2) (respectively u2(w1)) of problem (CP1(w2))
(respectively (CP2(w1))) is characterized by ∂J1

∂v1
(u1(w2), w2) = 0 (respectively

∂J2

∂v2
(w1, u2(w1)) = 0).

A Nash equilibrium is a pair (u1, u2) ∈ U1 × U2 such that u1 = u1(u2) and
u2 = u2(u1), i.e. (u1, u2) is a solution of the coupled (optimality) system:

∂J1

∂v1

(u1, u2) = 0 (1.a)

∂J2

∂v2

(u1, u2) = 0. (1.b)

We show that system (1) has a unique solution. Furthermore, we give a
numerical method for the solution of this problem and present the results obtained
with this method on some examples.

Remark 2.2 A special case is when ωT1 ∩ ωT2 6= ∅ and/or ωd1 ∩ ωd2 6= ∅. This
case is a competition-wise problem, with each control (or player) trying to reach
(possibly) different goals over a common domain. In some sense this is the case
where the behavior of the solution y associated to the equilibrium (u1, u2) is most
difficult to forecast.
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3 Equivalent Formulation of (Optimality) Sys-

tem (1)

Let us consider v1 ∈ U and a small perturbation δ1v1 of v1. Then we have, with
obvious notation,

δ1J1(v1, w2) =

∫

ω1×(0,T )

∂J1

∂v1

(v1, w2)δ1v1dxdt = α1

∫

ω1×(0,T )

v1δ1v1dxdt

+k1

∫

ωd1×(0,T )

(y(v1, w2)− y1,d)δ1ydxdt + l1

∫

ωT1

(y(T ; v1, w2)− y1,T )δ1y(t)dx,

where δ1y is the solution of

∂δ1y

∂t
−∆δ1y = δ1v1χω1 in Q, (2a)

δ1y(x, 0) = 0 in Ω, (2b)

δ1y = 0 on Σ1, (2c)

∂δ1y

∂n
= 0 on Σ2. (2d)

Let us introduce now a reasonably smooth function p1 defined over Q. Then,
multiplying in (2) by p and integrating by parts, we obtain

∫

Ω

p1(T )δ1y(T )dx +

∫

Q

(−∂p1

∂t
−∆p1)δ1ydxdt−

∫

Σ1

p1
∂

∂n
δ1ydΓdt

+

∫

Σ2

∂p1

∂n
δ1ydΓdt =

∫

ω1×(0,T )

p1δ1v1dxdt.

Now, in order to simplify the expression of
∂J1

∂v1

(v1, w2), we choose p1 as the

solution of the following backward adjoint system:

−∂p1

∂t
−∆p1 = k1(y(v1, w2)− y1,d)χωd1

in Q,

p1(x, T ) = l1(y(T ; v1, w2)− y1,T )χωT1
in Ω,

p1 = 0 on Σ1,
∂p1

∂n
= 0 on Σ2.

Therefore, we have that

∫

ω1×(0,T )

∂J1

∂v1

(v1, w2)δ1v1dxdt =

∫

ω1×(0,T )

(α1v1 + p1χω1)δ1v1dxdt.
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Since δ1v1 is arbitrary, we have proved that

∂J1

∂v1

(v1, w2) = α1v1 + p1χω1 .

Thus,
∂J1

∂v1

(u1, w2) = 0 is equivalent to the following (optimality) system:

u1 = − 1

α1

p1χω1 ;

∂y

∂t
−∆y = f + u1χω1 + w2χω2 in Q,

y(x, 0) = y0(x) in Ω,
y = g1 on Σ1,
∂y

∂n
= g2 on Σ2,

and

−∂p1

∂t
−∆p1 = k1(y(u1, w2)− y1,d)χωd1

in Q,

p1(x, T ) = l1(y(T ; u1, w2)− y1,T )χωT1
in Ω,

p1 = 0 on Σ1,
∂p1

∂n
= 0 on Σ2.

Similarly,
∂J2

∂v2

(w1, u2) = 0 is equivalent to the following (optimality) system:

u2 = − 1

α2

p2χω2 ;

∂y

∂t
−∆y = f + w1χω1 + u2χω2 in Q,

y(x, 0) = y0(x) in Ω,
y = g1 on Σ1,
∂y

∂n
= g2 on Σ2,

and

−∂p2

∂t
−∆p2 = k2(y(w1, u2)− y2,d)χωd2

in Q,

p2(x, T ) = l2(y(T ; w1, u2)− y2,T )χωT2
in Ω,

p2 = 0 on Σ1,
∂p2

∂n
= 0 on Σ2.
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Therefore, system (1) is equivalent to

u1 = − 1

α1

p1χω1 ,

u2 = − 1

α2

p2χω2 ,

(1)

∂y

∂t
−∆y = f + u1χω1 + u2χω2 in Q,

y(x, 0) = y0(x) in Ω,
y = g1 on Σ1,
∂y

∂n
= g2 on Σ2;

and for i = 1, 2,

−∂pi

∂t
−∆pi = ki(y − yi,d)χωdi

in Q,

pi(x, T ) = li(y(T )− yi,T )χωTi
in Ω,

pi = 0 on Σ1,
∂pi

∂n
= 0 on Σ2.

4 Conjugate Gradient Solution of System (1)

4.1 Generalities

If we define V as the Hilbert space V = U1×U2 equipped with the scalar product

((u1, u2) , (v1, v2))V =

∫

ω1×(0,T )

u1v1dxdt +

∫

ω2×(0,T )

u2v2dxdt,

then we claim that the linear system (1) is a particular case of finding u ∈ V ,
such that

a(u, v) = L(v), ∀ v ∈ V, (3)

where a : V × V → IR is bilinear continuous, symmetric and V -elliptic, and
L : V → IR is linear and continuous. Therefore (see, e.g., Glowinski Ref.8),
problem (1) has a unique solution and this solution can be computed by the
following conjugate gradient algorithm:
Step 1. u0 ∈ V is given.
Step 2. Find g0 ∈ V such that

(g0, v) = a(u0, v)− L(v), ∀v ∈ V.
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Step 3. Set w0 = g0.
Then for k ≥ 0, assuming that uk, gk and wk are known, compute uk+1, gk+1

and (if necessary) wk+1 as follows:
Step 4. Compute ρk =‖ gk ‖2 /a(wk, wk).
Step 5. Update uk via uk+1 = uk − ρkwk.
Step 6. Update gk via the solution gk+1 ∈ V of

(gk+1, v) = (gk, v)− ρka(wk, v), ∀v ∈ V.

If
‖ gk+1 ‖2

‖ g0 ‖2
≤ ε take u = uk+1; else:

Step 7. Compute γk =‖ gk+1 ‖2 / ‖ gk ‖2 .
Step 8. Update wk via wk+1 = gk+1 + γkwk.
Step 9. Do k = k + 1 and return to Step 4.

Remark 4.1 In the algorithm, ε is a number that we choose for the stopping
test. If the problem is finite dimensional, a typical value is ε = 10−8 if one works
in double precision. Concerning the convergence of the above algorithm we have,
with ε = 0, that

lim
k→+∞

‖ uk − u ‖= 0,

where u is the solution of problem (3). In fact, it can be shown (see, e.g., Ref. 9)
that

‖ uk − u ‖≤ c ‖ u0 − u ‖
(√

νa − 1√
νa + 1

)k

,

where c is a constant, and where the condition number νa is defined by νa =‖ A ‖
‖ A−1 ‖, where A is the (unique) linear operator in L(V, V ) defined by

a(v, w) = (Av, w), ∀v, w ∈ V.

4.2 Construction of a(·, ·) and L(·)
It is obvious that the mapping

(
∂J1

∂v1

,
∂J2

∂v2

) : (v1, v2) ∈ U1 × U2 −→ (
∂J1

∂v1

(v1, v2),
∂J2

∂v2

(v1, v2)) ∈ U1 × U2 (4)

is an affine mapping of U1×U2. Therefore, there exist a linear continuous mapping
A ∈ L(V, V ) and a vector b ∈ V such that

(
∂J1

∂v1

(v1, v2),
∂J2

∂v2

(v1, v2)) = A(v1, v2)− b.

Let us identify mapping A: For every (v1, v2) ∈ V , the linear part of the affine
mapping in relation (4) is defined by

A(v1, v2) = (α1v1 + p1χω1 , α2v2 + p2χω2),
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where pi, i = 1, 2, is the solution of

−∂pi

∂t
−∆pi = kiyχωdi

in Q,

pi(x, T ) = liy(T )χωTi
in Ω,

pi = 0 on Σ1,
∂pi

∂n
= 0 on Σ2,

and y is the solution of

∂y

∂t
−∆y = v1χω1 + v2χω2 in Q,

y(x, 0) = 0 in Ω,
y = 0 on Σ1,
∂y

∂n
= 0 on Σ2.

Proposition 4.1 Mapping A is linear, continuous, symmetric and strongly pos-
itive.

Proof. It is obvious that A is a linear mapping and it is easy to show (see Ref.
10) that is a continuous mapping. Let us prove that A is symmetric and strongly
positive. Let us consider (v1, v2), (w1, w2) ∈ V . We have then

A(v1, v2) · (w1, w2) = (α1v1 + pχω1 , α2v2 + pχω2) · (w1, w2)

=

∫

ω1×(0,T )

(α1v1 + p1χω1)w1dxdt +

∫

ω2×(0,T )

(α2v2 + p2χω2)w2dxdt.

Let us focus on the term
∫

ω1×(0,T )
p1χω1w1dxdt. We have

∫

ω1×(0,T )

p1w1dxdt =

∫

Ω×(0,T )

p1χω1(
∂

∂t
y(w1, w2)−∆y(w1, w2)− w2χω2)dxdt

=

∫

Ω×(0,T )

(−∂p1

∂t
−∆p1)y(w1, w2)dxdt + l1

∫

ωT1

y(T ; v1, v2)y(T ; w1, w2)dx

= k1

∫

ωd1×(0,T )

y(v1, v2)y(w1, w2)dxdt + l1

∫

ωT1

y(T ; v1, v2)y(T ; w1, w2)dx.

Then,

A(v1, v2) · (w1, w2) = α1

∫

ω1×(0,T )

v1w1dxdt + α2

∫

ω2×(0,T )

v2w2dxdt

+k1

∫

ωd1×(0,T )

y(v1, v2)y(w1, w2)dxdt + l1

∫

ωT1

y(T ; v1, v2)y(T ; w1, w2)dx

7



+k2

∫

ωd2×(0,T )

y(v1, v2)y(w1, w2)dxdt + l2

∫

ωT2

y(T ; v1, v2)y(T ; w1, w2)dx.

This proves that A is a symmetric mapping. Furthermore

A(v1, v2) · (v1, v2) ≥ inf(α1, α2)(‖ v1 ‖2
U1

+ ‖ v2 ‖2
U2

) = inf(α1, α2) ‖ (v1, v2) ‖2
V ,

which proves that A is strongly positive and completes the proof. 2

Let us identify b: The constant part of the affine mapping (4) is the function
b ∈ V defined by b = (p1χω1 , p2χω2), where pi, i = 1, 2, is the solution of

−∂pi

∂t
−∆pi = ki(Y − yi,d)χωdi

in Q,

pi(x, T ) = li(Y (T )− yi,T )χωTi
in Ω,

pi = 0 on Σ1,
∂pi

∂n
= 0 on Σ2,

and Y is the solution of

∂Y

∂t
−∆Y = f in Q,

Y (x, 0) = y0(x) in Ω,
Y = g1 on Σ1,
∂Y

∂n
= g2 on Σ2.

Now, if we define a(·, ·) : V × V → IR by

a(v, w) = (A(v), w)V ∀ v, w ∈ V,

and L : V → IR by
L(v) = (b, v)V , ∀ v ∈ V,

Proposition 4.1 proves that mapping a(·, ·) is bilinear continuous, symmetric and
V -elliptic; mapping L is (obviously) linear and continuous. Thus, as mentioned
in Section 4.1, system (1) has a unique solution, which can be computed by the
conjugate gradient algorithm described there. In Section 4.3 we shall adapt this
algorithm to the problem under consideration.

4.3 Conjugate Gradient Algorithm for System (1)

Step 1. (u0
1, u

0
2) is given in V .

Step 2.a.
∂y0

∂t
−∆y0 = f + u0

1χω1 + u0
2χω2 in Q,

y0(x, 0) = y0(x) in Ω,
y0 = g1 on Σ1,
∂y0

∂n
= g2 on Σ2.
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Step 2.b. For i = 1, 2,

−∂p0
i

∂t
−∆p0

i = ki(y
0 − yi,d)χωdi

in Q,

p0
i (x, T ) = li((y

0(T )− yi,T )χωTi
in Ω,

p0
i = 0 on Σ1,

∂p0
i

∂n
= 0 on Σ2.

Step 2.c. (g0
1, g

0
2) = (α1u

0
1 + p0

1χω1 , α2u
0
2 + p0

2χω2).

Step 3. (w0
1, w

0
2) = (g0

1, g
0
2).

Then, for k ≥ 0, assuming that (uk
1, u

k
2), (gk

1 , g
k
2), (wk

1 , w
k
2) are known, all in V ,

we compute (uk+1
1 , uk+1

2 ), (gk+1
1 , gk+1

2 ) and (if necessary) (wk+1
1 , wk+1

2 ) as follows:

Step 4.a.
∂yk

∂t
−∆yk = wk

1χω1 + wk
2χω2 in Q,

yk(x, 0) = 0 in Ω,
yk = 0 on Σ1,
∂yk

∂n
= 0 on Σ2.

Step 4.b. For i = 1, 2,

−∂pk
i

∂t
−∆pk

i = kiy
kχωdi

in Q,

pk
i (x, T ) = liy

k(T )χωTi
in Ω,

pk
i = 0 on Σ1,

∂pk
i

∂n
= 0 on Σ2.

Step 4.c. (gk
1, g

k
2) = (α1w

k
1 + pk

i χω1 , α2w
k
2 + pk

i χω2).

Step 4.d. ρk =
‖ (gk

1 , g
k
2) ‖2

V∫
ω1×(0,T )

gk
1w

k
1dxdt +

∫
ω2×(0,T )

gk
2w

k
2dxdt

.

Step 5. (uk+1
1 , uk+1

2 ) = (uk
1, u

k
2)− ρk(w

k
1 , w

k
2).

Step 6. (gk+1
1 , gk+1

2 ) = (gk
1 , g

k
2)− ρk(g

k
1, g

k
2).

If
‖ (gk+1

1 , gk+1
2 ) ‖2

V

‖ (g0
1, g

0
2) ‖2

V

≤ ε, then take (u1, u2) = (uk+1
1 , uk+1

2 ); else:

Step 7. γk =
‖ (gk+1

1 , gk+1
2 ) ‖2

V

‖ (gk
1 , g

k
2) ‖2

V

.

Step 8. (wk+1
1 , wk+1

2 ) = (gk+1
1 , gk+1

2 ) + γk(w
k
1 , w

k
2).

Step 9. Do k = k + 1, and go to Step 4.a.
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5 Time Discretization

5.1 Formulation of the Semidiscrete Problem

For simplicity, we consider from now on the special competition-wise control
problem (see Remark 2.2) given by the case where k1 = k2 = k, l1 = l2 = l,
ωd1 = ωd2 = ωd and ωT1 = ωT2 = ωT . For this special case, we point out that
the mapping A defined in Section 4.2 is A(v1, v2) = (α1v1 + pχω1 , α2v2 + pχω2),
where p = p1 = p2 (since p1 and p2, defined in Section 4.2, are solution of the
same equation). Then, the functions pk

1 and pk
2 defined in the Step 4.2 of the

Conjugate Gradient algorithm described in Section 4.3 are solution of the same
equation and therefore pk

1 = pk
2 = pk.

We consider the time discretization step ∆t, defined by ∆t = T/N , where N is
a positive integer. Then, if we denote n∆t by tn, we have 0 < t1 < t2 < · · · < tN =
T . For simplicity, we assume that f, g1, g2, y1,d and y2,d are continuous functions,
at least with respect to the time variable (if not we can always use continuous
approximations of these functions). Now, we approximate U1 by U∆t

1 = (L2(ω1))
N

and U2 by U∆t
2 = (L2(ω2))

N . Then, for every w2 ∈ U∆t
2 we approximate problem

(CP1(w2)) by the following minimization problem (CP1(w2))
∆t: Find u∆t

1 (w2) ∈
U∆t

1 , such that

J∆t
1 (u∆t

1 (w2), w2) ≤ J∆t
1 (v1, w2), ∀v1 ∈ U∆t

1 ,

with

J∆t
1 (v1, v2) = α1

∆t

2

N∑
n=1

∫

ω1

|vn
1 |2dx

+k
∆t

2

N∑
n=1

∫

ωd

|yn − y1,d(t
n)|2dx +

l

2

∫

ωT

|yN − y1,T |2dx,

where {yn}N
n=1 is defined by the solution of the following semi-discrete parabolic

problem:
y0 = y0, (5)

and for n = 1, ..., N ,

yn − yn−1

∆t
−∆yn = f(tn) + vn

1 χω1 + vn
2 χω2 in Ω, (6a)

yn = g1(t
n) in Γ1, (6b)

∂yn

∂n
= g2(t

n) in Γ2. (6c)

Similarly, for every w1 ∈ U∆t
1 , we approximate then problem (CP2(w1)) by the

following minimization problem (CP2(w1))
∆t: Find u∆t

2 (w1) ∈ U∆t
2 , such that

J∆t
2 (w1, u

∆t
2 (w1)) ≤ J∆t

2 (w1, v2), ∀v2 ∈ U∆t
2 ,

10



with

J∆t
2 (v1, v2) = α2

∆t

2

N∑
n=1

∫

ω2

|vn
2 |2dx

+k
∆t

2

N∑
n=1

∫

ωd

|yn − y2,d(t
n)|2dx +

l

2

∫

ωT

|yN − y2,T |2dx,

where {yn}N
n=1 is again defined by the solution of problem (5)–(6).

5.2 Optimality Conditions for the Semidiscretized Opti-
mal Control Problems (CP1(w2))

∆t and (CP2(w1))
∆t

We suppose that the discrete control space U∆t
i , i = 1, 2, is equipped with the

scalar product (·, ·)i,∆t defined by

(vi, wi)i,∆t = ∆t

N∑
n=1

∫

ωi

vn
i wn

i dx.

The (unique) vector u∆t
1 (w2) solution of problem (CP1(w2))

∆t is characterized

by the optimality condition
∂

∂v1

J∆t
1 (u∆t

1 (w2), w2) = 0. Similarly, the (unique)

vector u∆t
2 (w1) solution of problem (CP2(w2))

∆t is characterized by the optimality

condition
∂

∂v2

J∆t
2 (w1, u

∆t
2 (w1)) = 0.

Let us concentrate on problem (CP1(w2))
∆t. We consider v1 ∈ U∆t

1 and a
small perturbation δ1v1 of v1. Then we have, with obvious notation,

δ1J
∆t
1 (v1, w2) = (

∂

∂v1

J∆t
1 (v1, w2), δ1v1)1,∆t = ∆tα1

N∑
n=1

∫

ω1

vn
1 δ1v

n
1 dx

+k∆t

N∑
n=1

∫

ωd

(yn − y1,d(t
n))δ1y

ndx + l

∫

ωT

(yN − y1,T )δ1y
Ndx,

where
δ1y

0 = 0, (7)

and for n = 1, ..., N ,

δ1y
n − δ1y

n−1

∆t
−∆δ1y

n = δ1v
n
1 χω1 in Ω, (8a)

δ1y
n = 0 on Γ1, (8b)

∂

∂n
δ1y

n = 0 on Γ2. (8c)

11



Let us introduce now {pn
1}N+1

n=1 , where each pn
1 is a smooth function defined on

Ω. Then, multiplying in (8) by pn
1 , integrating continuously over Ω and discretely

over (0, T ), we obtain

0 = ∆t

N∑
n=1

∫

Ω

(
pn

1 − pn+1
1

∆t
−∆pn

1 )δ1y
ndx +

∫

Ω

pN+1
1 δyNdx

+∆t

N∑
n=1

(∫

Γ2

∂pn
1

∂n
δ1y

ndΓ−
∫

Γ1

pn
1

∂

∂n
δ1y

ndΓ

)
−∆t

N∑
n=1

∫

ω1

δ1v
n
1 pn

1dx.

Now, in order to simplify the expression of
∂

∂v1

J∆t
1 (v1, w2), we choose {pn

1}N+1
n=1

satisfying the following conditions:

pN+1
1 = l(yN(v1, w2)− y1,T )χωT

,

and for n = N, ..., 1,

pn
1 − pn+1

1

∆t
−∆pn

1 = k(yn(v1, w2)− y1,d(t
n))χωd

in Ω,

pn
1 = 0 on Γ1,

∂pn
1

∂n
= 0 on Γ2.

Taking the above relations into account, we obtain that

δ1J
∆t
1 (v1, w2) = ∆t

N∑
n=1

∫

ω1

(α1v
n
1 + pn

1χω1) δ1v
n
1 dx.

Since δ1v1 is arbitrary, we have proved that

∂

∂v1

J∆t
1 (v1, w2) = {α1v

n
1 + pn

1χω1}N
n=1. (9)

Therefore,
∂

∂v1

J∆t
1 (u1, w2) = 0 is equivalent to the following (optimality) system:

u1 = − 1

α1

{pn
1χω1}N

n=1;

y0 = y0,

and for n = 1, ..., N ,

yn − yn−1

∆t
−∆yn = f(tn) + un

1χω1 + wn
2 χω2 in Ω,

yn = g1(t
n) in Γ1,

∂yn

∂n
= g2(t

n) in Γ2;

12



pN+1
1 = l(yN(u1, w2)− y1,T )χωT

,

and for n = N, ..., 1,

pn
1 − pn+1

1

∆t
−∆pn

1 = k(yn(u1, w2)− y1,d(t
n))χωd

in Ω,

pn
1 = 0 on Γ1,

∂pn
1

∂n
= 0 on Γ2.

Similarly, we can find the (optimality) system equivalent to
∂

∂v2

J∆t
2 (w1, u2) = 0.

Therefore, the problem of finding (u1, u2) ∈ U∆t
1 × U∆t

2 , such that

∂

∂v1

J∆t
1 (u1, u2) = 0, (10a)

∂

∂v2

J∆t
2 (u1, u2) = 0, (10b)

is equivalent to

u1 = − 1

α1

{pn
1χω1}N

n=1;

u2 = − 1

α2

{pn
2χω2}N

n=1;

y0 = y0,

and for n = 1, ..., N ,

yn − yn−1

∆t
−∆yn = f(tn) + un

1χω1 + un
2χω2 in Ω,

yn = g1(t
n) in Γ1,

∂yn

∂n
= g2(t

n) in Γ2;

pN+1
1 = l(yN(u1, u2)− y1,T )χωT

,

and for n = N, ..., 1, and i = 1, 2,

pn
i − pn+1

i

∆t
−∆pn

i = k(yn(u1, u2)− yi,d(t
n))χωd

in Ω,

pn
i = 0 on Γ1,

∂pn
i

∂n
= 0 on Γ2.

13



6 Conjugate Gradient Solution of Problem (10)

6.1 Generalities

If we define V ∆t as the Hilbert space V ∆t = U∆t
1 × U∆t

2 equipped with the scalar
product

((u1, u2) , (v1, v2))
∆t
V = ∆t

(
N∑

n=1

∫

ω1

un
1v

n
1 dx +

N∑
n=1

∫

ω2

un
2v

n
2 dx

)
,

then we claim that the linear system (10) is a particular case of finding u ∈ V ∆t,
such that

a∆t(u, v) = L∆t(v), ∀ v ∈ V ∆t,

where a∆t : V ∆t × V ∆t → IR is bilinear continuous, symmetric and V ∆t-elliptic;
and L∆t : V ∆t → IR is linear and continuous. Therefore, as explained in Section
4.1, problem (10) has a unique solution and this solution can be computed by a
conjugate gradient algorithm.

6.2 Construction of a∆t(·, ·) and L∆t(·)
It is obvious that the mapping

(
∂J∆t

1

∂v1

,
∂J∆t

2

∂v2

) : (v1, v2) ∈ U∆t
1 ×U∆t

2 −→ (
∂J∆t

1

∂v1

(v1, v2),
∂J∆t

2

∂v2

(v1, v2)) ∈ U∆t
1 ×U∆t

2

(11)
is an affine mapping of U∆t

1 × U∆t
2 . Therefore, there exist a linear continuous

mapping A∆t ∈ L(V ∆t, V ∆t) and a vector b∆t ∈ V ∆t such that

(
∂J∆t

1

∂v1

(v1, v2),
∂J∆t

2

∂v2

(v1, v2)) = A∆t(v1, v2)− b∆t.

Let us identify mapping A∆t: For every (v1, v2) ∈ V ∆t, the linear part of the
affine mapping in relation (11) is defined by

A∆t(v1, v2) = (α1v1 + pχω1 , α2v2 + pχω2),

where p = {pn}N+1
n=1 is the solution of

pN+1 = lyNχωT
,

and for n = N, ..., 1,

pn − pn+1

∆t
−∆pn = kynχωd

in Ω,

pn = 0 on Γ1,
∂pn

∂n
= 0 on Γ2,
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and y = {yn}N
n=0 is the solution of

y0 = 0,

and for n = 1, ..., N ,

yn − yn−1

∆t
−∆yn = vn

1 χω1 + vn
2 χω2 in Ω,

yn = 0 in Γ1,
∂yn

∂n
= 0 in Γ2.

Proposition 6.1 Mapping A∆t is linear, continuous, symmetric and strongly
positive.

Let us identify b: The constant part of the affine mapping (11) is the function
b∆t ∈ V ∆t defined by b∆t = (p1χω1 , p2χω2), where, for i = 1, 2, pi = {pn

i }N+1
n=1 is

the solution of
pN+1

i = l(Y N − yi,T )χωT
,

and for n = N, ..., 1,

pn
i − pn+1

i

∆t
−∆pn

i = k(Y n − yi,d(t
n))χωd

in Ω,

pn
i = 0 on Γ1,

∂pn
i

∂n
= 0 on Γ2,

and Y = {Y n}N
n=0 is the solution of

Y 0 = y0,

and for n = 1, ..., N ,

Y n − Y n−1

∆t
−∆Y n = f(tn) in Ω,

Y n = g1(t
n) in Γ1,

∂Y n

∂n
= g2(t

n) in Γ2.

Now, if we define a∆t(·, ·) : V ∆t × V ∆t → IR by

a∆t(v, w) = (A∆t(v), w)V ∆t ∀ v, w ∈ V ∆t,

and L∆t : V ∆t → IR by

L∆t(v) = (b, v)V ∆t ∀ v ∈ V ∆t,

Proposition 6.1 proves that mapping a(·, ·) is bilinear continuous, symmetric and
V ∆t-elliptic; and mapping L∆t is (obviously) linear and continuous. Thus, as ex-
plained in Section 4.1 problem (10) has a unique solution, which can be computed
by the conjugate gradient algorithm described in Section 6.3.
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6.3 Conjugate Gradient Algorithm for the Solution of Prob-
lem (10)

Step 1. (u0
1, u

0
2) is given in V ∆t.

Step 2.a. y0,0 = y0, and for n = 1, ..., N ,

y0,n − y0,n−1

∆t
−∆y0,n = f(tn) + u0,n

1 χω1 + u0,n
2 χω2 in Ω,

y0,n = g1(t
n) on Γ1,

∂y0,n

∂n
= g2(t

n), on Γ2.

Step 2.b. For i = 1, 2, p0,N+1
i = l(y0,N − yi,T )χωT

, and for n = N, ..., 1,

p0,n
i − p0,n+1

i

∆t
−∆p0,n

i = k(y0,n − yi,d(t
n))χωd

in Ω,

p0,n
i = 0 on Γ1,

∂p0,n
i

∂n
= 0 on Γ2.

Step 2.c. (g0
1, g

0
2) = (α1u

0
1 + p0

1χω1 , α2u
0
2 + p0

2χω2).

Step 3. (w0
1, w

0
2) = (g0

1, g
0
2).

Then, for k ≥ 0, assuming that (uk
1, u

k
2), (gk

1 , g
k
2), (wk

1 , w
k
2) are known, all

in V ∆t, we compute (uk+1
1 , uk+1

2 ), (gk+1
1 , gk+1

2 ) and (if necessary) (wk+1
1 , wk+1

2 ) as
follows:

Step 4.a. yk,0 = 0, and for n = 1, ..., N ,

yk,n − yk,n−1

∆t
−∆yk,n = wk,n

1 χω1 + wk,n
2 χω2 in Ω,

yk,n = 0 on Γ1,
∂yk,n

∂n
= 0 on Γ2.

Step 4.b. pk,N+1 = lyk,NχωT
, and for n = N, ..., 1,

pk,n − pk,n+1

∆t
−∆pk,n = kyk,nχωd

in Ω,

pk,n = 0 on Γ1,
∂pk,n

∂n
= 0 on Γ2.

Step 4.c. (gk
1, g

k
2) = (α1w

k
1 + pkχω1 , α2w

k
2 + pkχω2).

Step 4.d. ρk =
‖ (gk

1 , g
k
2) ‖2

V ∆t

∆t
∑N

n=1

(∫
ω1

gk,n
1 wk,n

1 dx +
∫

ω2
gk,n

2 wk,n
2 dx

) .

Step 5. (uk+1
1 , uk+1

2 ) = (uk
1, u

k
2)− ρk(w

k
1 , w

k
2).
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Step 6. (gk+1
1 , gk+1

2 ) = (gk
1 , g

k
2)− ρk(g

k
1, g

k
2).

If
‖ (gk+1

1 , gk+1
2 ) ‖2

V ∆t

‖ (g0
1, g

0
2) ‖2

V ∆t

≤ ε, then take (u1, u2) = (uk+1
1 , uk+1

2 ); else:

Step 7. γk =
‖ (gk+1

1 , gk+1
2 ) ‖2

V ∆t

‖ (gk
1 , g

k
2) ‖2

V ∆t

.

Step 8. (wk+1
1 , wk+1

2 ) = (gk+1
1 , gk+1

2 ) + γk(w
k
1 , w

k
2).

Step 9. Do k = k + 1, and go to Step 7.

7 Full Discretization of Problem (1)

7.1 Generalities

We suppose from now on that Ω is a polygonal domain of IR2. We also consider
ωd, ωT , ω1 and ω2 subdomains of Ω. We introduce a finite-element triangulation
Th of Ω, with h the largest length of the edges of the triangles of Th, and ∂ωT , ∂ωd,
∂ω1 and ∂ω2 being part of the triangulation. Next, we approximate L2(Ω×(0, T ))
and L2(0, T : H1(Ω)) by W∆t

h defined by W∆t
h = (Wh)

N , with

Wh = {z ∈ C0(Ω), z|T ∈ P1, ∀T ∈ Th},
where P1 is the space of those polynomials of degree ≤ 1 (dim(P1) = 3 and
dim(Wh) = Nh, where Nh is the number of vertex in Th). Now, for i ∈ {1, 2}, we
approximate Ui by U∆t

i,h defined by U∆t
i,h = (Ui,h)

N , where

Ui,h = {z : z ∈ C0(ωi), z|T ∈ P1, ∀T ∈ ωi}.
Finally, we approximate the space {z ∈ L2(0, T : H1(Ω)) : z(t)|Γ1

= 0} by

W∆t
h,0 defined by W∆t

h,0 = (Wh,0)
N , where

Wh,0 = {z ∈ Wh : z|Γ1
= 0}.

7.2 Formulation of the Fully Discrete Control Problem

Let us suppose (for simplicity) that g1 = g2 = 0. For every w2 ∈ U∆t
2,h we approx-

imate then problem (CP1(w2)) by the following finite dimensional minimization
problem (CP1(w2))

∆t
h : Find u∆t

1,h(w2) ∈ U∆t
1,h, such that

J∆t
1,h(u

∆t
1,h(w2), w2) ≤ J∆t

1,h(v1, w2), ∀v1 ∈ U∆t
1,h,

with

J∆t
1,h(v1, v2) = α1

∆t

2

N∑
n=1

∫

ω1

|vn
1 |2dxdt

+k
∆t

2

N∑
n=1

∫

ωd

|yn
h − y1,d(t

n)|2dx +
l

2

∫

ωT

|yN
h − y1,T |2dx,
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where yh = {yn
h}N

n=1 ∈ W∆t
h,0 is defined by the solution of the following discrete

parabolic problem (written in variational form):

y0,h ∈ Wh, ∀ h, (12a)

lim
h→0

y0,h = y0 in L2(Ω), (12b)

y0
h = y0,h, (13)

and for n = 1, ..., N ,

∫

Ω

(
yn

h − yn−1
h

∆t
z +∇yn

h · ∇z − f(tn)− vn
1 χω1 − vn

2 χω2)zdx, ∀ z ∈ Wh,0. (14)

Similarly, for every w1 ∈ U∆t
1,h we approximate problem (CP2(w1)) by the following

finite dimensional minimization problem (CP2(w1))
∆t
h : Find u∆t

2,h(w1) ∈ U∆t
2,h, such

that
J∆t

2,h(w1, u
∆t
2,h(w1)) ≤ J∆t

2,h(w1, v2), ∀v2 ∈ U∆t
2,h,

with

J∆t
2,h(v1, v2) = α2

∆t

2

N∑
n=1

∫

ω2

|vn
2 |2dxdt

+k
∆t

2

N∑
n=1

∫

ωd

|yn
h − y2,d(t

n)|2dx +
l

2

∫

ωT

|yN
h − y2,T |2dx,

where yh = {yn
h}N

n=1 ∈ W∆t
h,0 is again defined by the solution of (12)–(14).

7.3 Optimality Conditions for the Fully-Discrete Control
Problems (CP1(w2))

∆t
h and (CP2(w1))

∆t
h

We suppose that the discrete control space U∆t
i,h , i = 1, 2, is equipped with the

scalar product (·, ·)i,h,∆t, defined by

(vi, wi)i,h,∆t = ∆t

N∑
n=1

∫

ωi

vn
i wn

i dx.

The (unique) vector u∆t
1,h(w2) solution of problem (CP1(w2))

∆t
h is characterized

by the optimality condition
∂

∂v1

J∆t
1,h(u

∆t
1,h(w2), w2) = 0. Similarly, the (unique)

vector u∆t
2,h(w1) solution of problem (CP2(w2))

∆t
h is characterized by the optimality

condition
∂

∂v2

J∆t
2,h(w1, u

∆t
2,h(w1)) = 0.
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Now, in a way similar to that followed for problem (CP1(w2))
∆t, it is easy to

deduce that, for every (v1, v2) ∈ U∆t
1,h × U∆t

2,h and i = 1, 2,

∂

∂vi

J∆t
i,h (v1, v2) = {αiv

n
i + pn

i χωi
}N

n=1 ∈ U∆t
i,h ,

where {pn
i }N+1

n=1 ∈ W∆t
h,0 is defined by the solution of

pN+1
i = l(yN

h (v1, v2)− yi,T )χωT
,

and for n = N, ..., 1,

∫

Ω

(
pn

i − pn+1
i

∆t
z +∇pn

i · ∇z)dx = k

∫

ωd

(yn
h(v1, v2)− yi,d(t

n))zdx, ∀ z ∈ Wh,0,

where {yn
h(v1, v2)}N

n=1 is defined by the solution of (12)–(14).
Therefore, the problem of finding (u1, u2) ∈ U∆t

1,h × U∆t
2,h, such that

∂

∂v1

J∆t
1,h(u1, u2) = 0, (15a)

∂

∂v2

J∆t
2,h(u1, u2) = 0, (15b)

is equivalent to

u1 = − 1

α1

{pn
1χω1}N

n=1;

u2 = − 1

α2

{pn
2χω2}N

n=1;

y0
h = y0,h,

and for n = 1, ..., N , yn
h ∈ Wh,0 is the solution of

∫

Ω

(
yn

h − yn−1
h

∆t
z +∇yn

h · ∇z)dx =

∫

Ω

(f(tn) + un
1χω1 + un

2χω2)zdx, ∀ z ∈ Wh,0;

pN+1
i = l(yN

h − yi,T )χωT
, i = 1, 2,

and for n = N, ..., 1, pn
i ∈ Wh,0, i = 1, 2, is the solution of

∫

Ω

(
pn

i − pn+1
i

∆t
z +∇pn

i · ∇z)dx = k

∫

ωd

(yn
h − yi,d(t

n))zdx, ∀ z ∈ Wh,0.
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8 Conjugate Gradient Solution of Problem (15)

8.1 Generalities

As done for the the semi-discrete problem (10), we can solve problem (15) by the
following conjugate gradient algorithm:
Step 1. (u0

1, u
0
2) is given in U∆t

1,h × U∆t
2,h.

Step 2.a. y0,0
h = y0,h, and for n = 1, ..., N , y0,n

h ∈ Wh,0 is the solution of

∫

Ω

(
y0,n

h − y0,n−1
h

∆t
z+∇y0,n

h ·∇z)dx =

∫

Ω

(f(tn)+u0,n
1 χω1 +u0,n

2 χω2)zdx, ∀ z ∈ Wh,0.

Step 2.b. For i = 1, 2, p0,N+1
i = l(y0,N

h −yi,T )χωT
, and for n = N, ..., 1, p0,n

i ∈ Wh,0

is the solution of

∫

Ω

(
p0,n

i − p0,n+1
i

∆t
z +∇p0,n

i · ∇z)dx = k

∫

ωd

(y0,n
h − yi,d(t

n))zdx, ∀ z ∈ Wh,0.

Step 2.c. (g0
1, g

0
2) = (α1u

0
1 + p0

1χω1 , α2u
0
2 + p0

2χω2).

Step 3. (w0
1, w

0
2) = (g0

1, g
0
2).

Then, for k ≥ 0, assuming that (uk
1, u

k
2), (gk

1 , g
k
2), (wk

1 , w
k
2) are known, all in

U∆t
1,h×U∆t

2,h, we compute (uk+1
1 , uk+1

2 ), (gk+1
1 , gk+1

2 ) and (if necessary) (wk+1
1 , wk+1

2 )
as follows:

Step 4.a. yk,0 = 0, and for n = 1, ..., N , yk,n
h ∈ Wh,0 is the solution of

∫

Ω

(
yk,n

h − yk,n−1
h

∆t
z +∇yk,n

h · ∇z)dx =

∫

Ω

(wk,n
1 χω1 + wk,n

2 χω2)zdx, ∀ z ∈ Wh,0.

Step 4.b. pk,N+1 = lyk,N
h χωT

, and for n = N, ..., 1, pk,n ∈ Wh,0 is the solution of

∫

Ω

(
pk,n − pk,n+1

∆t
z +∇pk,n · ∇z)dx = k

∫

ωd

yk,n
h zdx, ∀ z ∈ Wh,0.

Step 4.c. (gk
1, g

k
2) = (α1w

k
1 + pkχω1 , α2w

k
2 + pkχω2).

Step 4.d. ρk =
‖ (gk

1 , g
k
2) ‖2

U∆t
1,h×U∆t

2,h

∆t
∑N

n=1

(∫
ω1

gk,n
1 wk,n

1 dx +
∫

ω2
gk,n

2 wk,n
2 dx

) .

Step 5. (uk+1
1 , uk+1

2 ) = (uk
1, u

k
2)− ρk(w

k
1 , w

k
2).

Step 6. (gk+1
1 , gk+1

2 ) = (gk
1 , g

k
2)− ρk(g

k
1, g

k
2).

If
‖ (gk+1

1 , gk+1
2 ) ‖2

U∆t
1,h×U∆t

2,h

‖ (g0
1, g

0
2) ‖2

U∆t
1,h×U∆t

2,h

≤ ε, then take (u1, u2) = (uk+1
1 , uk+1

2 ); else:
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Step 7. γk =
‖ (gk+1

1 , gk+1
2 ) ‖2

U∆t
1,h×U∆t

2,h

‖ (gk
1 , g

k
2) ‖2

U∆t
1,h×U∆t

2,h

.

Step 8. (wk+1
1 , wk+1

2 ) = (gk+1
1 , gk+1

2 ) + γk(w
k
1 , w

k
2).

Step 9. Do k = k + 1, and go to Step 7.

Remark 8.1 The practical application of the above algorithm requires the cal-
culation of various integrals over the triangles of Th. Integrals such as

∫
T

yk,n
h zdx,∫

T
wk,n

i zdx (i = 1, 2) can be computed exactly without difficulty for the one-
dimensional case and by using the two-dimensional Simpson’s rule for the two-
dimensional case (see, e.g., page 96 of Ref. 8). Numerical integration is neces-
sary in order to compute integrals such as

∫
T

f(tn)zdx,
∫

T
yi,d(t

n)zdx,
∫

T
yi,T zdx

(i = 1, 2). Some quadrature schemes for computing approximately these integrals
can be found in, e.g., pp. 178–185 of Ref. 11.

9 Numerical Experiments.

9.1 Generalities.

We consider the domain Ω defined by Ω = (0, 1)× (0, 1) and the space discretiza-
tion step h defined by h = 1/(I − 1), where I is a positive integer (I2 =number
of vertices). Then, for every i, j ∈ {1, · · · I}, we take the triangulation Th with
vertex xi,j = ((i−1)h, (j−1)h) and the triangles as in the typical case showed in
Figure 1 (we point out that, due to the special domain consider in this example,
we have denote by h a parameter different to the one defined in Section 7.1).

We consider the case Γ = Γ1 (i.e. Γ2 = ∅), ω1 = (0, 0.25) × (0, 0.25), ω2 =
(0.75, 1) × (0, 0.25), ωT = Ω and ωd = (0.25, 0.75) × (0.25, 0.75) (see Figure 2).
For the data of the problem we take f ≡ 1, y0 ≡ 0, g1 = 0 and g2 = 0. In the
conjugate gradient algorithm we take the initial guess (u0

1, u
0
2) = (0, 0) and the

stopping criterion ε = 10−8.

9.2 Stabilization Type Test Problems (k > 0 and l = 0).

We consider the finite horizon time T = 1.5 and the time step discretization
∆t = 1.5/45. For the space discretization we consider the step h = 1/36 (I = 37).
In order to see how the non-controlled solution behaves, we have visualized in
Figure 3 the computed solution of the non-controlled equation at time t = 1.5.

Throughout this section we use k = 1 and l = 0.
Same Goal: y1,d = y2,d = 1.
In Figures 4–5 we have visualized the graph of the computed solution of the

controlled equation with α1 = α2 = 10−6.
In Figures 6–7 we have visualized the graph of the computed solution of the

controlled equation with α1 = 10−8 and α2 = 10−2.
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In Figure 8 we have visualized the graph of ‖ y(t) − 1 ‖2
L2(ωd) for different

cases. In Table 1 we give some further results about our solutions.
Different Goals: y1,d = 1 and y2,d = −1.
In Figures 9–10 we have visualized the graph of the computed solution of the

controlled equation with α1 = α2 = 10−6.
In Figures 11–12 we have visualized the graph of the computed solution of the

controlled equation with α1 = 10−8 and α2 = 10−2.
In Figures 13–14 we have visualized the graph of ‖ y(t) − 1 ‖2

L2(ωd) and

‖ y(t) − (−1) ‖2
L2(ωd) for different cases. In Table 2 we give some further results

about our solutions.

Remark 9.1 We point out (see Figures 13 and 14) that, when the goals are
different, the controlled solution can be worse (in terms of L2(ωd × (0, T )) with
respect to both goals than the uncontrolled solution.

9.3 Controllability Type Test Problems (k = 0 and l > 0).

Throughout this section we consider k = 0 and l = 1. We also consider the finite
horizon time T = 3 and the time step discretization ∆t = 3/90. For the space
discretization we consider the step h = 1/67 (I = 68). The solution without
controls behaves again as showed in Figure 3.

Same Goal: y1,T = y2,T = 1.
In Figures 15–16 we have visualized the graph of the computed solution of the

controlled equation with α1 = α2 = 10−6.
In Figures 17–18 we have visualized the graph of the computed solution of the

controlled equation with α1 = 10−6 and α2 = 10−3.
In Figure 19 we have visualized the graph of ‖ y(t) − 1 ‖2

L2(ωT ) for different

cases, for t ∈ [2.5, 3] (for t < 2.5 the solutions are almost identical). In Table 3
we give some further results about our solutions.
Different Goals: y1,T = 1 and y2,T = −1.

In Figures 20–21 we have visualized the graph of the computed solution of the
controlled equation with α1 = α2 = 10−6.

In Figures 22–23 we have visualized the graph of the computed solution of the
controlled equation with α1 = 10−6 and α2 = 10−3.

In Figures 24–25 we have visualized the graph of ‖ y(t) − 1 ‖2
L2(ωT ) and

‖ y(t) − (−1) ‖2
L2(ωT ) for different cases, for t ∈ [2.5, 3] (for t < 2.5 the solutions

are almost identical). In Table 4 we give some further results about our solutions.

10 Conclusions

The numerical results obtained in this article (see also Ref. 12) are consistent
with what we can expect from a non-cooperative strategy as the Nash strategy;
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more precisely:

(i) In a neighborhood of each control domain ωi (i=1,2), the controlled solution
tends to be close to the target function ydi, for the stabilization type prob-
lems, and close to the target function yT i, at time T , for the controllability
type problems.

(ii) In the same way as two companies having opposite goals can go bankrupt
if they do not cooperate, in our problems there are cases, when the target
functions are not compatible (i.e. when being close to one of the target
functions implies to be far from the other), where the solution without
control is closer to some of the desired states (or both of them) than the
solution obtained with the Nash strategy. This can be seen by comparing,
for the different cases, the graphs of ‖ y(u; x, t) − ydi ‖2

L2(ωd×(0,T )) with the

graphs of ‖ y(0; x, t) − ydi ‖2
L2(ωd×(0,T )), and the graphs of ‖ y(u; x, T ) −

yTi ‖2
L2(ωT ) with the graphs of ‖ y(0; x, T )− yTi ‖2

L2(ωT ), for i = 1, 2.

The results obtained in this article, for the linear heat equation, call for an
investigation of Nash equilibria for more complicated nonlinear models such as
the Burgers equation (see Ref. 13) or the Navier-Stokes equations.
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No control
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