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1 INTRODUCTION

Many optimization algorithms can be viewed as discrete forms of Cauchy
problems for a system of ordinary differential equations in the space of con-
trol parameters [1, 2]. We will see that if one introduces an extra information
on the infimum, solving global optimization problems using these algorithms
is equivalent to solving Boundary Value Problems (BVP) for the same equa-
tions. A motivating idea is therefore to apply algorithms solving BVPs to
perform this global optimization.
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In this paper, we introduce and apply a particular algorithm, issued
from our BVP analysis, to a pointwise control problem of the viscous burg-
ers equation. This equation retains many of the interesting features of the
Navier-Stokes equations and can be used for the modeling of weak shock
waves when the flow of interest is a perturbation of a uniform sonic gas
flow [3]. The weight coefficient value of the control part of the equation, de-
noted α, is progressively decreased in order to see the effect on the optimized
solution.

Obtained results are then compared with those given by:

• A genetic algorithm (GA) in order to perform a comparison with a
current popular method [4, 5].

• A Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) al-
gorithm [1, 6] in order to see, depending on the previous value of α,
the necessity to use or not global optimization methods.

Section 2 presents our optimization methods and a short related mathe-
matical background. In Section 3, we introduce our general pointwise control
problem and intend to solve it, with various values of α, using the mentioned
approaches.

2 Optimization methods

We present here a short introduction of each optimization method used
to solve the problems considered in section 3.

We consider a function J : Ω → IR to be minimized, where the opti-
mization parameter x belongs to an admissible set Ω ⊂ RN . We make the
following assumptions on the functional [1]: J ∈ C1(Ω, IR), it is coercive and
the minimum of J in Ω is denoted by Jm.

2.1 Semi-Deterministic Algorithms (SDA)

Many minimization algorithms which perform the minimization of J can
be seen as discretizations of continuous dynamical systems with associated
initial conditions [1, 2].

A numerical global optimization of J with one of those algorithms, called
here core optimization method, is possible if the following BVP has a solution:

{

First or second order Initial Value Problem
|J(x(Z)) − Jm| < ǫ

(1)

where x(Z) is the solution of the considered dynamical system found at a
given finite time Z ∈ IR and ǫ the approximation precision. In practice, when
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Jm is unknown, we set Jm to a lower value (for example Jm = 0 for a non-
negative function J) and look for the best solution for a given complexity
and computational effort.

This BVP is over-determined as it includes more conditions than deriva-
tives. This over determination can be removed for instance by considering
one of the initial conditions in the considered dynamical system as a new
variable denoted by v. Then we could use what is known on BVP theory,
for example a shooting method [1],in order to determine a suitable v solving
(1).

In order to illustrate and implement previous methodology, we consider
in this paper a steepest descent method, as core optimization method, which
come from the discretization of the following dynamical system:







dx(ζ)

dζ
= −∇J(x(ζ))

x(0) = x0

(2)

Thus BVP (1) can be rewritten as:















dx(ζ)

dζ
= −∇J(x(ζ))

x(0) = x0

|J(x(Z)) − Jm| < ǫ

(3)

A discrete form of the considered steepest descent algorithm with an out-
put called D(x0, I, ǫ) is given by:

• Input: x0, I, ǫ
• x1 = x0

For n going from 1 to I
• Determine ρopt = argminρ(J(xn − ρ∇J(xn))) using a dichotomy

algorithm (see [1])
• xn+1 = xn − ρopt∇J(xn)
• If J(xn+1) < Jm + ǫ EndFor

EndFor

• Output: D(x0, I, ǫ) = xn+1

The inputs x0 ∈ Ω, ǫ ∈ IR and I ∈ IN are respectively the initial condi-
tion, the stopping criterion and the iteration number.

In this case, BVP (1) is solved if the initial condition x0 lies in the
attraction basin of the global minimum of J and I is large enough. In order
to determine such an initial condition, we consider x0 = v as a new variable
in the previous algorithm to be found by the minimization of:

h(v) = J(D(v, I, ǫ)) − Jm (4)
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To perform the minimization of (4), we then consider the following algo-
rithm with an output called A1(v1, N, I, ǫ):

• Input: v1, N, I, ǫ
• v2 chosen randomly
For i going from 1 to N
• oi = D(vi, I, ǫ)
• oi+1 = D(vi + 1, I, ǫ)
• If J(oi) = J(oi+1) EndFor

• If min{J(ok), k = 1, ..., i} < Jm + ǫ EndFor

• vi+2 = vi+1 − J(oi+1)
vi+1−vi

J(oi+1)−J(oi)
EndFor

• Output: A1(v1, N, I, ǫ) = argmin{J(ok), k = 1, ..., i}

The inputs are v1 ∈ Ω, (N, I) ∈ IN2 and ǫ ∈ IR.

This line search minimization algorithm might fail. An external level to
the algorithm A1 is added in order to have a multidimensional search. As
previously, we consider v1 = w as a new variable in A1 to be found by the
minimization of:

h̃(w) = h(A1(w, N, I, ǫ)) (5)

To perform the minimization of (5), we then consider the following two-level
algorithm with an output called A2(w1, M, N, I, ǫ):

• Input: w1, M, N, I, ǫ
• w2 chosen randomly
For i going from 1 to M
• pi = A1(wi, N, I, ǫ)
• pi+1 = A1(wi + 1, N, I, ǫ)
• If J(pi) = J(pi+1) EndFor

• If min{J(pk), k = 1, ..., i} < Jm + ǫ EndFor

• wi+2 = wi+1 − J(pi+1)
wi+1−wi

J(pi+1)−J(pi)
EndFor

• Output: A2(w1, M, N, I, ǫ) = argmin{J(pk), k = 1, ..., i}

Here w1 ∈ Ω, (M, N, I) ∈ IN3 and ǫ ∈ IR. In order to add search direc-
tions, the previous construction can be easily pursued recursively.

The choice of the initial condition w2 in this algorithm contains the only
non-deterministic feature of the SDA method. In practice we also randomly
choose the initial condition w1 ∈ Ω.
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A mathematical background for this approach as well as a validation on
academic test cases or on problems including solutions of nonlinear partial
differential equations are available [7, 1, 8, 9, 10].

2.2 Genetic Algorithms (GA)

Genetic algorithms approximate the global minimum of J , called in this
case fitness function, through a stochastic process based on an analogy with
the Darwinian evolution of species [4]: a first family, called ’population’,
X0 = {x0

l ∈ Ω, l = 1, ..., Np} of Np possible solutions of the optimization
problem, called ’individuals’, is randomly generated in the search space Ω.
Starting from this population, we build recursively Ngen new populations,
called generations, Xi = {xi

l ∈ Ω, l = 1, ..., Np} with i = 1, .., Ngen through
three stochastic steps, called selection, crossover and mutation.

More precisely we present here a non usual matrix-form approach for GA:

We first rewrite Xn using the following (Np, N)-real valued matrix form:

Xi =









xi
1(1) . . . xi

1(N)
...

. . .
...

xi
Np

(1) . . . xi
Np

(N)









(6)

Selection: Each individual, xi
l is ranked with respect to its fitness value

J(xi
l) (i.e. lower is the fitness value better is the ranking). Then Np indi-

viduals are randomly selected (individuals with better ranking have higher
chances to be selected), with eventual repetitions, to become ’parents’.

Introducing Si a binary (Np, Np)-matrix, generated according to previous
ranking and selection processes, with Si

j,k = 1 if the kth individual of Xi is

the ’parent’ selection number j and Si
j,k = 0 if not. We define:

Xi+1/3 = SiXi. (7)

Crossover: This process leads to a data exchange between two ’parents’
and the apparition of two new individuals called ’children’. We determine,
with a probability pc, if two consecutive parents in Xi+1/3 should exchange
data or if they are directly copied into the intermediate population Xi+2/3.

Introduce Ci a real-valued (Np, Np)-matrix where for each couple of con-

secutive lines (2j − 1, 2j) (1 ≤ j ≤
Np

2 in case Np is a even number or

1 ≤ j ≤
Np−1

2 in case Np is a odd number), the coefficients of the 2j − 1th
and 2jth rows are given by:

Ci
2j−1,2j−1 = λ1, Ci

2j−1,2j = 1 − λ1, Ci
2j,2j−1 = λ2, Ci

2j,2j = 1 − λ2

in this expression:
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• λ1 = λ2 = 1 if parents are directly copied (with a probability 1 − pc).

• λ1 and λ2 are randomly chosen in ]0, 1[ if a data exchange occurs
between the two parents (with a probability pc).

Other coefficients of Ci are set to 0. If Np is a odd number, the Npth parent
is directly copied, i.e Ci

Np,Np
= 1.

This step can be summarized as:

Xi+2/3 = CiXi+1/3 (8)

Mutation: This process leads to new parameters values for some in-
dividuals of the population. More precisely, each children is modified (or
mutated) with a fixed probability pm.

Introduce for instance a random perturbation matrix E i with a i-th line
equals to:

• a random vector ǫi ∈ IRN , according to the admissible space Ω, if a
mutation is applied to the ith children (with a probability pm).

• 0 if no mutation is applied to the ith children (with a probability 1-pm).

This step can then take the following form:

Xi+1 = Xi+2/3 + E i (9)

Therefore, the new population can be written as:

Xi+1 = CiSiXi + E i (10)

With these three basic evolution processes, it is generally observed that
the best obtained individual is getting closer after each generation to the
optimal solution of the problem [4].

Engineers like GAs because these algorithms do not require sensitiv-
ity computation, perform global and multi-objective optimization and are
easy to parallelize. However, their drawbacks remain their weak mathemati-
cal background, their computational complexity, their slow convergence and
their lack of accuracy.

As a fine convergence is difficult to achieve with GA based algorithms,
it is recommended when it is possible, to complete the GA iterations by a
descent method. This is especially useful when the functional is flat around
the infimum [5]. The hybridization between both methods is usually called
Hybrid Genetic Algorithm (HGA).
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2.3 Limited-memory Broyden-Fletcher-Goldfarb-Shanno al-
gorithm (L-BFGS)

This is a modification of the BFGS method [11]. This deterministic
method is based on a limited-memory quasi-Newton algorithm well suited
for large-scale bound-constrained or unconstrained optimization. It is out
of the scope of this paper but the interested reader can find more details in
literature (See, for instance, [1, 12]).

3 Application to Pointwise Control Problems

We consider the following viscous Burgers equation:

yt − νyxx + yyx = f in Q = (0, 1) × (0, T ) (11)

where T ∈]0,∞) is an horizon time, ν > 0 is a viscosity parameter and f is
a density of external forces.

We look for a control v(t) forcing the solution at a point a ∈ [0, 1],
completing the equation with the initial and boundary conditions used in
[13] (and in other references cited here):











yt − υyxx + yyx = f + vδ(x − a) in Q
yx(0, t) = 0, y(1, t) = 0 for t ∈ [0, T ]
y(0) = y0 for t ∈ [0, 1]

(12)

where δ(x − a) denotes the Dirac measure at point a.
A variational formulation of the above system (12) is provided by y(t) ∈

L2(0, T ; V0) ∩ H1(0, T ; V ′
0), such that y(0) = y0 and:

{

∫ T
0 < yt, z >V ′

0
×V0

dt + ν
∫ T
0 (yx, zx)dt +

∫ T
0 (yyx, z)dt

=
∫ T
0 (f, z)dt +

∫ T
0 vz(a)dt ∀ z ∈ L2(0, T ; V0),

(13)

where V0 = {z ∈ H1(0, 1) : z(1) = 0} and (·, ·) denotes the scalar product in

L2(0, 1) defined by (y, z) =

∫ 1

0
yzdx.

3.1 Problem Formulation

Let us consider a target function yT ∈ L2(0, 1). We define the bounded
control space as U = {f ∈ L2(0, T ) : for all x ∈ [0, T ] |f(x)| ≤ Sb }, where
Sb ∈ IR. The objective is to find a control u ∈ U , forcing the solution at the
point a, such that y(T ) is close to yT in (0, 1) at a minimal cost (norm) for
the control. To do this, we define the cost function J by:

J(v) = α ‖ v ‖2
U + ‖ y(T ) − yT ‖2

L2(0,1) (14)

where α ≥ 0.
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Then, we define the optimal control problem (CP) as:

{

Find u ∈ U such that:
J(u) = min

v∈U
J(v)

When α = 0 there is no proof for existence of solution for (CP). In
this case, we are interested by finding a solution as close as possible to the
infimum of the function.

In order to solve numerically (CP) we need to define an associated discrete
problem. Following [13] we consider:

• A time discretization step ∆t, defined by ∆t = T/L, where L is a
positive integer. Then, if tl = l∆t, we have 0 < t1 < t2 < · · · < tL = T .

• A space discretization step h, defined by h = 1/I, where I is a positive
integer. Then, if xi = (i − 1)h, we have 0 = x1 < x2 < · · · < xI <
xI+1 = 1.

Then we approximate V0 by

V0h = {z ∈ C0[0, 1] : z(1) = 0, z|(xi,xi+1) ∈ P1, i = 1, · · · , I},

where P1 is the space of the polynomials of degree ≤ 1. We define ah and bh

by

ah(y, z) =

∫ 1

0
yxzxdx, bh(w, y, z) =

∫ 1

0
wyxzdx.

Thus the discrete problem associated to (CP) is defined by the following
finite-dimensional minimization problem (CP)∆t

h :
{

Find u∆t
h = {ul}l=1···L ∈ U∆t such that:

J∆t
h (u∆t

h ) ≤ J∆t
h (v), ∀v = {vl}l=1···L ∈ U∆t,

where the discrete control space U∆t in (CP)∆t
h is initially equal to [−Sb , Sb ]L

and

J∆t
h (v) = α∆t

L
∑

l=1

|vl|2+l
(

(1 − θ) ‖ yL−1
h − yT ‖2

L2(0,1) +θ ‖ yL
h − yT ‖2

L2(0,1)

)

with θ ∈ (0, 1] yL defined from the solution of the following full discretization
of the Burgers equation (1):










































yl
h ∈ V0h, l = 0, ..., L such that, ∀z ∈ V0h:

(y0
h, z) = (y0, z)

(
y1

h
−y0

h

∆t , z) + νah(2
3y1

h + 1
3y0

h, z) + bh(y0
h, y0

h, z) = (f1, z) + 2
3vlz(a)

for l ≥ 2 :

(
3

2
yl

h
−2yl−1

h
+ 1

2
yl−2

h

∆t , z) + νah(yl
h, z) + bh(2yl−1

h − yl−2
h , 2yl−1

h − yl−2
h , z)

= (f l, z) + vlz(a).

(15)
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In order to keep a certain regularity in the computed controls and also to
reduce the degrees of freedom, we generate them by spline interpolation [1]
through a number of NS = 8 points included in [−Sb , Sb ]. Thus the new
control space becomes U∆t

NS
= [−Sb , Sb ]NS and we denote by (CP)∆t

h,NS ,α the

new associated minimization problem. For each control u ∈ U∆t
NS

, we obtain

an associated u ∈ U∆t, which is used in the discrete state equation.

3.2 Results

We consider the test problem defined as follows: a = 0.5, T = 1, I = 128,
N = 1500, ν = 10−2, Sb = 20, α is user defined, y0 = 0 and

f(x, t) =

{

1 if (x, t) ∈ (0, 1/2) × (0, T ),
2(1 − x) if (x, t) ∈ [1/2, 1) × (0, T ),

We construct the target solution yT using the predefined control uT (t) =
9+sin(t ∗ 0.2 ∗ π), t ∈ [0, 1]. Figure 1 shows uT and the associated target
solution yT = y(T ; uT ). We point that uT does not belong to U∆t

NS
defined

previously.
In order to solve numerically (CP)∆t

h,NS ,α with α set to 0, 0.01, 0.1 and 1,
respectively, we will use the three different optimization methods presented
previously:

• L-BFGS algorithm is applied with the same configuration as the one
used in [13]. It starts from a null control.

• The two-level SDA algorithm A2 is used with w1 = 0 and (M, N, I, ǫ) =
(5, 5, 10, 1.e−6). These values give a good compromise between com-
putation complexity and result accuracy (see [1, 10, 9]). As the value
of Jm is unknown and J∆t

h is a non-negative function, we set Jm = 0.

• HGA is applied with the following values for the three associated
stochastic processes (see section 2.2):

– The population size has been set to Np = 180 and the generation
number to Ngen = 30.

– The selection is a roulette wheel type [4] proportional to the rank
of the individual in the population.

– The crossover is barycentric in each coordinate with a probability
of pc = 0.45.

– The mutation process is non-uniform with a probability of pm =
0.15.

– A one-elitism principle, that consists in keeping the current best
individual in the next generation, has also been imposed.
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– At the end of the algorithm, in order to improve the result ac-
curacy, we perform a steepest descent method starting from the
optimized result.

This set of parameters have been previously applied with success in
order to solve various complex engineering problems [5, 14].

In all algorithms, points already computed are stocked in memory in
order to avoid recomputations. This technique is useful in particular for SDA
and HGA techniques. Indeed, in HGA each individual can be present and
repeated in various generations. In SDA, if two consecutive initial conditions
give the same minimum, dynamical system trajectory is projected on the
maximum or minimum boundary border. This can occur various time during
the optimization process.

All these parameters are fixed and used in all computations of this paper.
Optimization algorithms are run on a 3Ghz PC with 512 Mb Memory. One
functional evaluation takes around 4 seconds (real-time).

For each algorithm, optimized controls and associated solutions are pre-
sented in Figure 2. Optimization data are summarized in Table 1. Conver-
gence histories for SDA and HGA are shown in Figure 3. As it can be seen
on Table 1, as α decreases the iteration number of SDA increases. This is
due to the de-convexification of the cost function resulting on the apparition
of local minima and thus on the diminution of recomputed points during
SDA optimization process.

As we can observe on Figure 2 and Table 1:

• For α = 1, SDA, HGA and L-BFGS lead to the same result.

• For α = 0.1 and α = 0.01, SDA cost function value is lower than HGA
and L-BFGS ones. Difference between SDA and L-BFGS is short.
However, SDA results are better in term of optimal control. This is
visible on Table 1 on respective control values.

• For α = 0, SDA and HGA over-perform the L-BFGS algorithm. SDA
is faster than HGA and found a better solution.

As we can observe, for large values of α the use of a global optimization
methods seems to be not necessary. On the other hand, for small values of
α, the choice of a global method seems a better option because the problem
becomes highly non-linear. In addition, in all cases, SDA has given better
results, and in a lower time, than HGA.

4 Conclusions

A new class of optimization method has been introduced. A particular
algorithm, based on the steepest descent algorithm, has been presented and
applied to a pointwise control problem of the burgers equation.
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Results have been compared to those obtained with a L-BFGS and a
Hybrid GA method. The use of the global method has been justified for
small balances of the control norm. Otherwise, a local method is efficient.
This is an intuitive result as the control term increases the convexity of the
considered cost function.

The presented algorithm has also been validated on several other numer-
ical examples involving local minima. The algorithm provides an affordable
approach for the solution of problems where no classical method is available
[7, 1, 9, 10, 15, 8, 16, 17].
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L-BFGS HGA SDA

α = 1

Final Cost Function Value 6.6 6.6 6.6

Iteration Number 200 4000 600

Computational Time (mn) 13 266 42

α = 0.1

Final Cost Function Value .95 1.1 .94

Control Value .4 .44 .37

Iteration Number 200 4000 1200

Computational Time (mn) 13 266 80

α = 0.01

Final Cost Function Value .15 .16 .14

Control Value .045 .049 .04

Iteration Number 200 4000 2000

Computational Time (mn) 13 266 133

α = 0

Final Cost Function Value 3 × 10−2 8 × 10−3 5 × 10−3

Iteration Number 200 4000 2000

Computational Time (mn) 13 266 133

Table 1: Optimization data: From Top to Bottom α = 1, α = 0.1, α = 0.01,
and α = 0. Cost function values, control value in the cost function (only for
α = 0.1 and α = 0.01), Iteration number and computational time (real-time
in minutes) after optimization algorithm are reported.

Figure 1: Left: Predefined control uT (t) = 9+sin(t ∗ 0.2 ∗ π), t ∈ [0, 1].
Right: Associated target solution yT .

13



Figure 2: From (Top) to (Bottom): Results for α = 1, α = 0.1, α = 0.01
and α = 0. (Left) Optimized control. (Right) Zoom on the three optimized
solutions in order to precise visual differences.
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Figure 3: SDA (left), HGA (right) Convergence histories: Best element
(solid line) and convergence history (dashed line). From top to bottom:
α = 1, α = 0.1, α = 0.01, α = 0.
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