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ABSTRACT 
An Artificial Neural Network (ANN) has been used to predict two parameters of interest 

for high-pressure food processing: the maximum or minimum temperature reached in the sample 
after pressurization and the time needed for thermal re-equilibration in the high-pressure system. 
The ANN was training using 14 different algorithms and then the best one was selected. 
Afterwards, an experimental design carried out in order to optimize the ANN. The Levenberg-
Marquard as training function, topology of 5,12,2, learning coefficient of 0.001 and learning 
coefficient decrease of 1 appears to be the most suitable for such application. The prediction 
errors and the correlation coefficients are 0.4, 0.9994 and 0.62, 0.998 % to time and temperature, 
respectively. Therefore, the neural networks become now an accuracy method alternative to 
physical-based models in the prediction of the thermal behavior of food under pressure. 
 
1. INTRODUCTION 

The artificial neuronal networks are mathematical algorithms that learn to solve a problem 
with a set of known questions-answers, i.e., they do not require any phenomenological 
knowledge. They have already been employed successfully to predict properties of substances or 
to solve physically-based models where the almost total lack of appropriate thermal properties of 
foodstuffs (Torrecilla, Otero & Sanz, 2004; Torrecilla, Otero & Sanz, 2005). Nowadays, the 
interest in applying this technology is to control the microbiological and/or enzymatic activity of 
food products. 

From a thermodynamic point of view it is very interesting the coupled pressure-
temperature effect due to any high-pressure treatment. By one side, the pressure effect could be 
considered as instantaneous phenomena as it is regulated by the Pascal principle. By the other 
side, the temperature variations due to the corresponding applied pressure is regulated by the heat 
and mass transfer phenomena and acquire a transient behavior. Some attempts have been made 
by different authors to model the thermal behavior of food during high-pressure treatments, but a 
number of difficulties are met (Denys et al., 2000a; Denys, Van Loey and Hendrickx, 2000b; 
Schlüter, Heinz and Knorr, 1998; Schlüter, George, Heinz and Knorr, 1999; Otero & Sanz, 
2003). The main problem of physically-based models is the almost total lack of appropriate 
thermal properties of foodstuffs and pressurizing fluids at elevated pressure.  

The aim of this work is obtain a model that predicts with an error comparable to other 
commercial methods. This is reached by the selection and optimization the most adequate 
training function of the ANN. This modelization would be very useful to design and optimize 
pressure food processes because the temperature and time variables provide together with the 
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programmed pressure a proper notion about the thermal evolution of the sample during the 
pressure treatment (Ting et al, 2002). 
 
2. MATERIALS AND METHODS 
2.1. Sample 

 Usually the ANN uses a huge amount of data to optimize its parameters. The 
sample data must be characteristic of the problem to be simulated. The data have been obtained 
from a physically-based corresponding to a high-pressure simulation model as described in 
Torrecilla, Otero & Sanz (2005). 

Two independent data sets were used to optimize the ANN: a training set made up of 300 
sets of input and output data and a validation set made up of 50 sets, both have the same format 
and using the processing conditions shown in Table 1. All of these are composed of seven 
columns in each one is pressure applied (MPa), pressure increase rate (MPa/s), set point 
temperature (ºC), high-pressure vessel temperature (ºC) and temperature of the air surrounding 
the high-pressure system or ambient temperature (ºC), the maximum or minimum temperature 
(ºC) reached in the sample after compression and one representing the time (s) needed to re-
equilibrate the temperature in the sample after pressurization and each run is classified in rows  
 

Table 1.- Range of processing conditions used as input variables in the ANN model. 
VARIABLES POSSIBLE VALUES 

Applied pressure (MPa) 250, 350, 450 
Pressure increase rate (MPa/s) 1, 1.5, 2 

Set point temperature (ºC) 40, 50, 60, 70, 80 
High-pressure vessel temperature (ºC) Between set point temperature and ambient 

temperature (10ºC intervals) 
Ambient temperature (ºC) 10, 20, 30 

 
2.2. ANN description 

The ANN used is a Multilayer Back propagation Perceptron. It is formed by several 
artificial neurons arranged in two layers (an output layer and one or more hidden layers) 
connected to each other by weighted links, figure 1. An artificial neuron consists of two 
mathematical algorithms, transfer function and activation function. Each one receives inputs from 
all neurons of the previous layer in proportion to their connection weights and calculates a single 
output which will be propagated to all other neurons of the following layers (Sreekanth et al., 
1999). 

The ANN is able to interpolate the input values with a small prediction error without a 
prior knowledge of the relationships between the process variables (Palancar, Aragón, Torrecilla, 
1998). In this, the weights are optimized by iterative calculations. 

In this study a standard feed-forward back-propagation algorithm with a prediction 
horizon, and supervised learning function with the sigmoid transfer function was applied. From 
an ANN topology (neurons for each layer) point of view, the ANN was designed with one hidden 
layer (Torrecilla, Otero, Sanz, 2005). Therefore, the ANN is composed of three layers: input, 
hidden and output. The input layer consists of equal number of nodes and variables necessary to 
characterize the problem to be simulated. This layer had five nodes that corresponded to five 
input variables: pressure applied (MPa), pressure increase rate (MPa/s), set point temperature 
(ºC), high-pressure vessel temperature (ºC) and temperature of the air surrounding the high-
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pressure system or ambient temperature (ºC). In order to give a proper idea of thermal evolution 
of the sample during the pressure treatment, the maximum or minimum temperature (ºC) reached 
in the sample after compression and one representing the time (s) needed to re-equilibrate the 
temperature in the sample after pressurization (Ting et al., 2002) were predicted by the ANN. 
Therefore, the output layer consisted of two neurons. 

Matlab version 7.01.24704 (R14) Service Pack 1 and QuickBasic software, version 5.4 
were used to ANN modeling and training function selection and Statgraphics Plus version 5.1 
was used to carry out the statistical tests in order to select the most adequate training function and 
develop the experimental design. 

 

 
Figure 1 Training data ser and structure of the neural network model schematically shown. 

A weight optimization with different training functions. 
 

3. RESULTS AND DISCUSSION 
The characteristics of the first ANN used in this study were optimized in Torrecilla, Otero & 

Sanz (2005), i.e., the topology consists of five nodes in the input layer, seven neurons in the 
hidden layer and two neurons in the output layer. The learning coefficient was set to 0.5. These 
parameters were used in this study to the selection of the better training function, and then, the 
new characteristics of the second ANN (using the optimized training function) were optimized. 

The selection of the training function was carried out in two basic steps: Training step is 
applied to the ANN with the parameters mentioned above and the weights are optimized used 
different training functions, mentioned in table 2. In each case, the prediction error and optimized 
weights are saved. With these weights a verification step is applied. 

 

3.1. Training and verification step 
The training function was selected from among the 14 training functions shown in table 2. 

At the beginning of the training step, the weights of the ANN were initialized randomly between 
0 and 1. Afterwards, the weights were adjusted to reduce the prediction error (eq 1) in each 
neuron from the output to the input layer using the training algorithms summarised in table 2.  
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Table 2.- Summary of training function used (Demuth; Beale; Hagan, 2005) 
Training Function Description 

Gradient descendent BP 
(traingd) 

Slow response, can be used in incremental mode training. 

Gradient descendent with 
momentum BP (traingdm) 

Generally faster than traingd. Can be used in incremental 
mode training. 

Gradient descendent with 
momentum & adaptive 

linear BP (traingdx) 
Gradient descendent with 
adaptive learning learning 

rate BP (traingda) 

Adaptive learning rate. Faster training than traingd, but can 
only be used in batch mode training. 

Random order incremental 
update (trainr) 

Resilient PB (Rprop) 
(trainrp) 

Simple batch mode training algorithm with fast convergence 
and minimal storage requirements 

Fletcher Powell conjugate 
gradient BP (traincgf) 

The algorithm has the smallest storage requirement of the 
conjugate gradient algorithms. 

BFGS Quasi-Newton 
Backpropagation (trainbfg) 

BFGS quasi-Newton method Requires storage of approximate 
Hessian matrix and has more computation in each iteration 
than conjugate gradient algorithms, but usually converges in 
less iteration. 

One step secant BP 
(trainoss) 

Compromise between conjugate gradient methods and quasi-
Newton methods. 

Levenberg-Marquard BP 
(trainlm) 

The fastest training algorithm for networks of moderate size. It 
has memory reduction feature for use when the training set is 
large. 

Bayesian Regularization 
(trainbr) 

Modification of the Levenberg-Marquardt training algorithm 
to produce networks that generalizes well. It reduces the 
difficulty of determining the optimum network architecture. 

Polak-Ribiere conjugate 
gradient BP (traincgp) 

Slightly larger storage requirements than traincgf. Faster 
convergence on some problems. 

Powell-Beale conjugate 
gradient Backpropagation 

(traincgb) 

Slightly larger storage requirements than traincgp. Generally 
faster convergence. 

Scaled conjugate gradient 
BP (trainscg) 

The only conjugate gradient algorithm that requires no line 
search. A very good general purpose training algorithm. 

 
The prediction error (eq 1) was calculated again and back distributed across the network 

for the next modification. It was used by each training function to optimize the weights using the 
training data. 
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For the given training data of inputs to the network, the response of each neuron in the 
output layer (yk) was then calculated by the ANN and compared with the corresponding real 
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output response (rk). Then the error associated with the output response (Ek) was computed and 
back distributed to the previous layers across the network. The weights were modified once for 
each row of the training set, that is, from the beginning to the end of the training set the weights 
were optimized 300 times, and then, the input data set was fed to the ANN once more, and a new 
estimation was made. This process was repeated while the prediction error decreased, and at this 
moment the weights are assumed as optimized. 

In the verification step the competence of the trained network was evaluated. This second 
step consists of the input to the ANN of a new data set never shown before, and predicts time and 
temperature values without updated of the weights. The most optimal training function was 
selected from among algorithms mentioned in table 2. The criterion used to select the training 
function adequate is based on final error (error at the end of the learning process) the number of 
iterations needed to end the learning process and several statistical tests applied to the predicted 
and real values. 
 

3.1.1. Training function selection 
Training and verification steps were carried out for each fourteen different training 

functions shown in table 2. The data predicted in the verification step using all training functions 
were compared with the real values data, i.e., the fourteen predicted data set were compared with 
the same real data one by one. It was carried out by the application of several statistical tests, 
these could be classified as follow: non-parametric methods were applied based either on 
measures of central tendency (Kolmogorow-Smirnov test, Mann-Whitney-Wilcoxon test and 
Kruscal-Wallis test), on the variance (Kruscal-Wallis test, Cochran’s test, Barllet’s test, and 
Levene test) and inferential parametric test for significance (F-Test and t-test).  

All of these statistical analyses (at 95% confidence level) were performed to determine if 
there were significant statistical differences between temperature and time data provided by the 
physically-based model (real data) and those predicted by the ANN. The null hypothesis assumes 
that statistical parameters of both series are equal. Otherwise, an alternative hypothesis is defined. 
P-value was used to check each hypothesis. Its threshold value was 0.05. If p value is greater than 
this value the null hypothesis is fulfilled. If P-value is closer to 1, the null hypothesis is fulfilled 
with more confidence. Figure 2 shows every calculated statistical tests versus p-values for every 
training function to time and temperature prediction and from a p-value point of view, all 
statistical tests confirm that real and predicted temperature and time data have a similar 
distribution. Taking into account that a training function has been considered as better as its p-
value is closer to 1. In figures 3 is shown the two training function closer to 1 for the time and 
temperature. Given that the ANN is used to predict the time and temperature values, was 
necessary select only one training function. As can be seen in figure 3 (time and temperature 
predictions) the best training function in both cases is the Levenberg-Marquard Back propagation 
because the mean p-value is higher than the others functions in both cases. Therefore, the training 
function selected was Levenberg-Marquard Back propagation. 
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Figure 2 Statistical analyses versus p-value for all training functions studied; (a) time; (b) 

Temperature. 
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Figure 3 Selected statistical analyses versus p-value for all training functions studied; (a) 

time; (b) Temperature. 
 

3.2. ANN topology and learning coefficients optimization 

The training function of the ANN has changed from characteristics mentioned above to 
Levenberg-Marquard Back propagation. Therefore, its parameters (topology, Learning 
Coefficient (µ), Learning coefficient decrease (µd)) must be optimized. This optimization was 
carried out by an experimental design. It was a Screening Factorial, the factors were Topology 
(from 1 to 12 neurons in the hidden layer), Learning coefficient (from 0.001 to 1) and learning 
coefficient decrease (from 0.1 to 1). These ranges were taken from Vacic, 2005. The responses 
were the number of iteration, final prediction error, correlation coefficient to time and 
temperature (real versus predicted one), mean prediction error of the time and the temperature, 
and the number of weights of the ANN. For every conditions of factor (topology, learning 
coefficient and learning coefficient decrease) training and verification steps were carried out. 
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The aim of this experimental design was to find out the adequate parameters values of the 
ANN in order to predict the temperature and time with the lesser error as possible, and the 
correlation coefficients (real vs. prediction) must be as close to unity as possible. As can be seen 
in figure 4, the responses mainly depend on the topology. Bear in mind the prediction error and 
the correlation coefficient values; the number of hidden neurons was fixed 12. On the other hand, 
the lowest value of learning coefficient produce less prediction error and correlation coefficient 
closer to 1, figure 4. Given that the ANN was set to 12 neurons and the learning coefficient is 
0.001, the ANN prediction with the least error was developed to learning coefficient decrease 
equal to 1, therefore the learning coefficient decrease was fixed to 1 

As can be seen in figure 4, the topology has the biggest influence in the prediction error 
and correlation coefficient. Therefore, it was optimized carefully. Different training and 
verification steps were carried out to eight different topologies tested (7 to 13 neurons in the 
hidden layer). From an experimental design point of view, this range of topologies were selected 
because an ANN with a higher number of hidden neurons predict with lesser error, but more than 
13 hidden neurons involves the optimization of more than 93 weights values and the amount of 
memory used by the algorithm is too many and the compute time of the PC used is too long. 

 

 

 

Figure 4 Dependence study by experimental design 

 

The minimum prediction error and number of learning runs required to finish the learning 
process corresponded to 12 neurons. The correlation coefficients were low for topologies lesser 
than 12 neurons in the hidden layer. For 13 neurons in the hidden layer, the correlation 
coefficient decreased, Figure 5. Thus, the topology 5, 12, 2 (5 nodes in the input layer, 12 
neurons in the hidden layer and 2 neurons in the output layer) was selected as the optimal 
topology. 
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Figure 5 Optimization of hidden neurons using the Levenberg-Marquard. 

 
In order to evaluate the competence of the optimised ANN. Fifty independent test data 

sets were employed. In this step, the selected topology (5, 12, 2), the optimised learning 
coefficient (µ=0.001) and learning coefficient decrease (1) were used with the adjusted weights 
previously. Now, no corrections of these weights were made and the ANN was only used to 
predict the maximum or minimum temperature reached in the sample after pressure loading and 
the time needed to reach the thermal equilibrium. The real time and temperature values versus the 
predicted ones and the line fitting are shown in figure 6. The correlation coefficient (R2) values 
were higher than 0.999 and 0.998 for time and temperature, respectively. On the other hand, the 
mean error values are about 0.62% for temperature predictions and 0.40% for time ones. The 
improving in the modelation process respect the last study is shown in table 3. These prediction 
errors and correlation coefficient values can be considered as accurate enough to predict and 
model. 

 
Table 3.- Improvement of the ANN predictions 

 Torrecilla, Otero & Sanz, 2005 Actual Study 
 Mean Prediction 

error (%) 
Correlation 
Coefficient 

Mean Prediction 
error (%) 

Correlation 
Coefficient 

Time  0.95 0.996 0.4 0.9994 
Temperature 1.6 0.98 0.62 0.998 
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Figure 6 Competence evaluation of the optimization of the ANN; (a) Time; (b) 

Temperature. 
 

4. CONCLUSIONS 
A back propagation perceptron with Levenberg-Marquard as training function, topology 

of 5 input nodes, 12 hidden neurons and 2 neurons in the output layer, learning coefficient of 
0.001 and learning coefficient decrease of 1 provide a very accurate notion about the thermal 
evolution of a sample during a pressure treatment. The prediction error in this work (0.4% and 
0.62% to time and temperature, respectively) was lesser than the previous (0.95% and 1.6% to 
time and temperature, respectively), the correlation coefficient was also improved in this work 
(0.9994 and 0.998 to time and temperature, respectively) was closer to 1 than the last one (0.996 
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and 0.98 to time and temperature, respectively), this improvements were reached by the selection 
of training function. By using this simulation, the influence of the pressure level, the 
pressurization rate, the ambient and target temperatures or the initial high-pressure vessel 
temperature can be easily determined and the values of the process variables therefore adjusted to 
obtain the desired thermal evolution.  
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