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Abstract

The objective of this article is to discuss the modeling and simulation

of the motion of oil spots in the open sea, and the effect on the pollutant

concentration when a polluted water pumping ship follows a pre–assigned

trajectory to remove the pollutant. We assume here that the oil spots mo-

tion is due to the coupling of diffusion, the transport from the wind, sea

currents and pumping process and the reaction due to the extraction of

oil, implying that the mathematical model will be of advection-reaction-

diffusion type. Our discussion includes the description of a parallelization

of the selected numerical procedure. We present some results of numeri-

cal experiments showing that indeed the parallelization makes the model

evaluation more efficient.

Keywords: Modelling; dvection-reaction-diffusion equation; Upwind

scheme; Finite volume scheme; Parallelization; Sea pollution
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1 Introduction

Sea pollution by oil spills has become a major environmental issue nowadays.
Today it is commonly accepted by the various concerned communities that mod-
elling and simulation can provide a significant help in the understanding of these
catastrophic events and in ways to remediate their environmental consequences.
In this article, which is a contribution to the understanding of the cleaning of
sea pollution, we investigate the following issues:

i) The modelling of the motion of oil spots resulting from the combined effects
of diffusion and of transport by wind and sea currents

ii) The modelling of the physical phenomena associated with the action of the
pumping ship, assuming that it follows a pre-assigned trajectory (in a
following article we will discuss the identification of a trajectory optimizing
the efficiency of the pumping).

iii) The construction of a numerical model for the simulation of the propagation
of the oil spots under the pumping.

iv) The parallelization of the numerical algorithms.

The results of numerical experiments are presented. They validate the com-
putational methodology discussed here.

2 A mathematical model for oil spills

In this article we address the pollution cleaning problem assuming information
on the wind and sea currents velocity fields in a time interval (0, T ). We consider
a spatial domain Ω = (x1,min, x1,max) × (x2,min, x2,max) ⊂ IR2, large enough to
ensure that the pollutant will stay in Ω during the corresponding time interval.
We assume for simplicity that the density of the pollutant is smaller than the
one of the sea water (so that it remains at the top) and the layer-thickness
of the pollutant is a constant h. The office of response and restoration of the
U.S. National Ocean Service (see http://response.restoration.noaa.gov)
provides the estimation of the values of h, given in Table 1, depending on the
color of the oil in the water. We denote by c(x, t) the pollutant superficial
concentration, measured as the volume of pollutant per surface area at {x, t} ∈
Ω × (0, T ). We assume that in the absence of pumping, the evolution of c is
governed by three main effects, namely:

(i) Diffusion of the pollutant

(ii) Transport due to the wind

(iii) Transport due to the sea currents
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Oil Color Layer-Thickness Interval (µm)
Silver 0.04 - 0.30

Rainbow 0.30 - 5.0
Metallic 5.0 - 50

Transitional Dark 50 - 200
Dark ≥ 200

Table 1: Layer-thickness interval of the oil spot in metric unit for each of the
oil codes. Data from the office of response and restoration of the U.S. National
Ocean Service: http://response.restoration.noaa.gov

Under these assumptions, the space–time distribution of c is governed by
the following advection-diffusion type equation:











∂c

∂t
+ ∇ · J = 0 in Ω × (0, T ),

c = 0 on ∂Ω × (0, T ),
c(x, 0) = c0(x), x ∈ Ω.

(1)

In (1), c0(.) is the initial superficial concentration in Ω and the flux J can be
decomposed as

J = Jd + Jw + Js, (2)

where

• Jd is the diffusion flux, given by

Jd = −k∇c, (3)

with k =

(

k1 0
0 k2

)

and k1, k2 two positive constants.

• Jw is the wind flux, given by

Jw = c w, (4)

where w is the wind velocity multiplied by a suitable drag factor.

• Js is the flux associated with the transport due to sea currents, given by

Js = c s, (5)

where s is the current velocity.
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Combining (1) with (2)–(5), we obtain











∂c

∂t
−∇ · k∇c+ ∇ · cw + ∇ · cs = 0 in Ω × (0, T ),

c = 0 on ∂Ω × (0, T ),
c(x, 0) = c0(x), x ∈ Ω.

(6)

Remark 1 The homogeneous boundary condition in (1)and (6) follows from
that fact that Ω has been assumed large enough to contain the oil spills during
the time interval (0, T ) (of course this assumes that k is small enough so that
the positive values of c on ∂Ω resulting from diffusion can be neglected). In
a forthcoming publication we will replace the linear diffusion term in (6) by a
nonlinear one producing a diffusion propagating with finite velocity.

Remark 2 The Coriolis effect, is actually included in the sea current Js.

3 Modelling of the pumping process

Among the various techniques which have been employed to remediate oil spills
related pollution, we will focus on the one based on a pumping process carried on
by a ship (see http://apgdepollution.free.fr for details). From a modelling
point of view an important step is the inclusion of the reacting effect in system
(7). Concerning the pumping process, we are going to assume that:

• The pumping ship follows a pre–assigned trajectory γp(t), t ∈ [0, T ], that
remains inside the region Ω.

• The pump is a cylinder with a cross section of radius Rp and height hp

(we suppose hp ≥ h) that pumps the fluid at a velocity Q in the radial
directions. Therefore, the pumped oil volume per unit time is 2πRpQc

corresponding to a pump density of
2πRpQc

πR2
p

.

From the above assumptions, the variant of (1) including the pumping effect
reads as follows:



























∂c

∂t
−∇ · k∇c+ ∇ · c w + ∇ · c s

+∇ · c p = −
2Q

Rp

c χB(γp(t),Rp)(x), in Ω × (0, T ),

c = 0, on ∂Ω × (0, T ),
c(x, 0) = c0(x), x ∈ Ω,

(7)

with

p =











QRp

−−−−→
γp(t)x

|
−−−−→
γp(t)x|2

, ∀x ∈ Ω\B̄(γp(t), Rp),

0, ∀x ∈ B(γp(t), Rp),

(8)
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and

χB(γp(t),Rp)(x) =

{

0, ∀x ∈ Ω\B̄(γp(t), Rp),
1, ∀x ∈ B(γp(t), Rp),

(9)

where B̄(γp(t), Rp) is the ball of center γp(t) and radius Rp.

Remark 3 System (7) is an advection-reaction-diffusion problem, the reaction
term being associated with the right hand side of the first equation in (7) and
with (8).

Remark 4 We could approximate (8) by

p = ψ(|
−−−−→
γp(t)x|)

−−−−→
γp(t)x

|
−−−−→
γp(t)x|2

(10)

with

ψ(r) =











0, if 0 ≤ r < Rp,
QRp

r
if Rp ≤ r ≤ R̄,

0, if r > R̄,

(11)

where R̄ is large enough to ensure that the velocity field generated by the pump,
at a distance R̄ of the pump, can be neglected.

Remark 5 If the wind and the see currents velocity field w + s depend only
on time we can perform a change of variables (t, x) → (t, x̄) where x̄(t, x) =

x+
∫ t

0
(w(z)+ s(z))dz. This transforms the first equation of (7) into a new one

without the terms with w and s on a domain Ω that is moving in time, in the
(t, x) variable,with the vector

∫ t

0
(w(z) + s(z))dz. This is interesting in order

to reduce the size of the domain to be considered, since in the new problem, we
only need to compute the effects of the diffusion and the transport/reaction due
to the pump.

4 Numerical approximation

The Finite Volume method is well suited for the space-time discretization of
problem (7).

For the numerical approximation of (7), given I, J ∈ N we divide the spatial
domain Ω = (x1,min, x1,max) × (x2,min, x2,max) into control volumes Ωi,j . For
i = 1, . . . , I; j = 1, . . . , J , we define

Ωi,j = (x1,min + (i− 1)∆x1, x1,min + i∆x1)
×(x2,min + (j − 1)∆x2, x2,min + j∆x2),

(12)

with ∆x1 =
x1,max − x1,min

I
, ∆x2 =

x2,max − x2,min

J
. We define ∆t =

T

N
,

where N ∈ IN is the number of time steps.
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Considering a fully implicit time discretization of the backward Euler type
for the time discretization of (7) and an upwind scheme for the transport term,
one obtains at t = n∆t on the cell Ωi,j , for i = 1, . . . , I and j = 1, . . . , J , the
following scheme:

C0
i,j = C0(ξi,j), ξi,j being the center of cell Ωi,j ; (13)

for n ≥ 0 we compute {Cn
i,j} from {Cn−1

i,j } using :

Cn
i,j − Cn−1

i,j

∆t
+ 2

(

k1

(∆x1)2
+

k2

(∆x2)2

)

Cn
i,j

−
k1

(∆x1)2
(

Cn
i+1,j + Cn

i−1,j

)

−
k2

(∆x2)2
(

Cn
i,j+1 + Cn

i,j−1

)

+
1

∆x1
[max(0, V n

1,i,j− 1

2

)Cn
i,j + min(0, V n

1,i,j− 1

2

)Cn
i+1,j

−max(0, V n
1,i−1,j− 1

2

)Cn
i−1,j − min(0, V n

1,i−1,j− 1

2

)Cn
i,j ]

+
1

∆x2
[max(0, V n

2,i− 1

2
,j
)Cn

i,j + min(0, V n
2,i− 1

2
,j
)Cn

i,j+1

−max(0, V n
2,i− 1

2
,j−1

)Cn
i,j−1 − min(0, V n

2,i− 1

2
,j−1

)Cn
i,j ]

+
2πRpQ

∆x1∆x2
Cn

ip,jp
χp,n

i,j = 0,

(14)

where in (14)

• Cn
k,l = 0 if k = 0 or I + 1 (respectively, l = 0 or J + 1),

• Ωip,n,jp,n
is the cell containing γp(n∆t) and χp,n

i,j = 0 if {i, j} 6= {ip,n, jp,n},
χp,n

i,j = 1 if {i, j} = {ip,n, jp,n},

• V(x, t) = (V1(x, t), V2(x, t)) = w(x, t) + s(x, t) + p(x, t), where x ∈ Ω and
t ∈ [0, T ].

• V n
1,i,j− 1

2

= V1((x1,min + i∆x1, x2,min + (j −
1

2
)∆x2), n∆t),

• V n
2,i− 1

2
,j

= V2((x1,min + (i−
1

2
)∆x1, x2,min + j∆x2), n∆t).

System (13)-(14) can be rewritten in the form:

Ax = b, with x = Cn, b = Cn−1, (15)

where A is a IJ × IJ-matrix and Cn and Cn−1 are vectors of dimension IJ
corresponding to the concentration matrices (Cn

i,j) and (Cn−1
i,j ) stored column

wise.
The solution of the linear system (15) is obtained by using a Bi-Conjugate

gradient type algorithm (Bi-CG), well suited for non-symmetric matrices such
as A. A particular parallel implementation of this algorithm is presented in
Section 5.
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Remark 6 : In Section 6.2.1, we will discuss the advantages of using the im-
plicit instead of explicit schemes.

Remark 7 : To space discretize the advecting term ∇ · cV we have employed
a first order upwinding scheme.

Remark 8 : For a thorough discussion of finite volume methods for the solution
of partial differential equations see [2].

5 Parallel Bi-Conjugate Gradient type method

In order to choose the numerical method appropiate to solve system (15), we
have taken into account the fact that A is a non-symmetric matrix, that the
sea region under consideration may be quite large and thus that the space
discretization might produce a large dimensional problem that requires large
storage space, and that the time step necessary for stability might increase the
computational time.

The generalized minimal residual method GMRES, is a suitable method for
nonsymmetric systems, but it generates long recurrences in order to keep all
residuals orthogonal, at the cost of increasing storage demand.

The biconjugate gradient method (Bi-CG) first developed by Lanczos [10]
and further studied by Fletcher [4], takes another approach, replacing the or-
thogonal sequence of residuals by two mutually orthogonal sequences, at the
price of no longer providing a minimization of the residuals as the GMRES.
However, it has theoretical properties similar to the CG method, and returns
the exact solution in at most IJ iterations (for exact computations) and can be
seen as a direct method. If A is symmetric, it produces the same iterates xk as
CG but at twice the computational cost.

In terms of number of iterations, the Bi-CG method is comparable to GM-
RES [5] and attains similar accuracy. The generation of the basis for Bi-CG
is cheap and thus it requieres low memory. Considering that Bi-CG needs to
compute two matrix-vector multiplications (instead of one with GMRES), an
efficient way to perform the matrix-vector products has to be designed to make
the method efficient. (See also ([16])).

Taking into account the above considerations, we have chosen the Bi-CG
method to use in our problem, and to make it efficient we have implemented on
a Distributed Parallel computer. In fact, to get smooth convergence and better
accuracy, a stabilization method called Bi-CGSTAB developed by Van der Vost
[13, 12], was employed.

5.1 Bi-CG and Bi-CGSTAB methods

The induction relations used to update the residuals are constructed so that the
original residuals rj = b−Axj are bi- orthogonal with respect to the residuals of

another system AT x̃ = b̃, r̃j = b̃−AT x̃j. This bi-orthogonality of the residuals
can be accomplished by two 3-term update or induction relations. There are
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also relations to update xj and x̃j and the new directions pj and p̃j, which are
also orthogonal to the residuals, p̃T

i rj = 0 and r̃Tj pk = 0.

The two directions are conjugate, that is p̃T
i A pj = 0, i 6= j and the

residuals are orthogonal, that is r̃Tj rj = 0, i 6= j. Choosing p0 = r0 and
p̃0 = r̃0, the method terminates in at most IJ steps.

To get smooth convergence, better precision and a faster method, the Bi-
CGSTAB method was used. We derive it now.

The residuals can be written as rj = Pj(A) r0 and r̃j = Pj(A
T ) r̃0. The

polynomial Pj(A) should reduce r0, (that depends on the initial x0), but it
might not reduce any other vector, including Pi(A) r0, which is needed to
obtain

(Pi(A) r0, Pj(A
T ) r̃0) = (Pj(A) Pi(A) r0, r̃0) = 0, for i < j.

To avoid this possible irregularity, the residuals can be written as

rj = Qj(A) Pj(A) r0 where Qi(x) = (1 − ω1 x)(1 − ω2 x) . . . (1 − ωi x)

Constants ωj are chosen to minimize the residuals rj, in the j-iteration. Due
to the orthogonality property (Pi(A) r0, Qj(A

T ) r̃0) = 0, if j < i, we get finite
termination in at most IJ steps. The Bi-CGSTAB algorithm follows:

- given x0 (the initial approximation), compute r0 = b − Ax0;

- take an arbitrary vector r̃0 such that (r̃0, r0) 6= 0, like r̃0 = r0;

- take ρ0 = α = ω0 = 1 and v0 = p0 = 0;

for i=1 until convergence

- ρi = (r̃0, ri−1);

- β = (
ρi

ρi−1
)(

α

ωi−1
);

- pi = ri−1 + β(pi−1 − ωi−1vi−1);

- vi = Api;

- α =
ρi

(r̃0,vi)
;

- s = ri−1 − αvi;

- norm= (s, s);

If norm ≤ tol1 set xi = xi−1 + αipi, stop ;

− t = As;

− ωi =
(t, s)

(t, t)
;

− xi = xi−1 + αipi + ωis;

If ‖xi − xi−1‖ ≤ tol2, stop ;

- set r̃i = s− ωit;

end for

- xi is the approximation to the solution.
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In this algorithm two stopping conditions have been used, with two toler-
ances tol1 and tol2 that depend on the desired accuracy for the solution.

With Bi-CGSTAB, besides the two matrix vector products also needed in Bi-
CG, four inner products have to be computed,instead of two as in the original
method. However, this extra work will be compensated by the decrease in
the number of iterations and the smoother convergence behavior. In addition,
four additional IJ-vectors have to be stored r̃0,p,v and t. Some break down
situations may occur when either ρi or (r̃0, vi) become very small, and this
situation has to be checked in the algorithm. Eventually, another initial r̃0 has
to be chosen.

5.2 Parallelization of the Bi-CGSTAB

In this paper, we are presenting results from a straight forward parallelization
method, testing both row and column wise algorithms to perform the matrix-
vector multiplications and the inner products. A more complex parallelization
alternative, based on the very recent work of Tong et al.2009, [8], is now in
progress and will be reported in a future paper.

In order to parallelize Bi-CGSTAB, we consider the following methodology:
The IJ rows (or columns, depending on the selected parallelization method)

of matrix A are distributed equally to the Nproc number of processors. If IJ
is not a multiple of Nproc, the Nf = (IJ modulus IJproc) remaining rows will
be send to the first Nf processors. We use a coordinate system to store the
structured matrix A.

To generate the initial x0 for the Bi-CGSTAB algorithm, the polluted areas
in the discretized space are assumed to be circular spots with predefined center
and radius. The vector b0 = C0

i,j represents the concentration of oil in the
rectangular grid at the initial time. In this case, it will take values 0 or 1
depending on whether the point (i, j) in the grid is polluted or not and every
processor will need to update its components of the right hand side bn = Cn−1

i,j

(the current concentration), at every time step.
To test the best alternative, the computation of the two matrix-vector prod-

ucts (of the form Ax) needed in the Bi-CGSTAB algorithm, will be performed
Column and Row wise.

Column wise method: The matrix vector multiplication can be expressed
as a linear combination of the columns Ai of matrix A, with the coefficients
being the elements xi of vector x. The result of this linear combination, is the
sum of vectors xiAi where Ai is the i-th column of A. However as the columns
are stored in different processors, the computation of the linear combination
needs to be done among processors, with communication of the partial sums
of the IJ-vectors xiAi. The complete sum can be performed using a Fan-in
process (see for instance [7]) or the MPI-Allreduce ( see for instance [11]) and
they had two different computing times. The final vector Ax will be stored in
the root processor and needs to be redistributed for further operations. The
lenght of the vectors to be send to the processors is IJ .
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Row wise method: Each processor has only part of xi and the entire vector
is needed to compute Ax. Then, this information has to be communicated to all
processors. However, the length of this information depends on the number of
rows per proccessor, and is then much smaller than the one used in the column
wise communicated data. Therefore as the number of processors increases the
length of the data to be communicated decreases. This is main reason why
this alternative is more efficient. Thus the matrix vector multiplication Ax is
performed in perfect parallelism, where Ax remains distributed without any
further communication.

The four inner products of the Bi-CGSTAB algorithm (of the form (y, z))
are performed using a row wise method and communication is again needed to
compute the final sum, and to send the result back to the processors.

The tests performed using both alternatives will be presented in Section
6.2.2, and they show clearly the superiority of the row wise method, which will
then be used to perform the numerical simulations presented in Section 6.2.3.

6 Numerical experiments

6.1 Parameters

The model parameters are set in the following way (using the SI unit system):
The modeling domain Ω is defined by x1,min = 0, x1,max = 2×104, x2,min = 0

and x2,max = 2 × 104.
The simulation time is equal to one day, T = 86400.
We consider 4 alternative spatial discretization meshes (I, J): (50, 50), (100,

100), (200, 200) or (300, 300).
The time step is ∆t = 86.4 (i.e. N =1000). This choice is discussed in

Section 6.2.1.
The diffusion coefficients are k1 = k2 = 0.5.
The wind plus sea velocity field s(x, t) + w(x, t) is defined by

( x1

4x1,max
cos(

πt

3600
),

x2

4x2,max
sin(

πt

3600
)
)

, (16)

for t ∈ [0, T ] and x = (x1, x2) ∈ Ω.
The pump parameters are Q = 100 and Rp = 1. We consider two different

trajectories of the pumping ship:

• Trajectory T1: The initial position of the pumping ship is (600, 1400)
and its trajectory is given by

γp(t) = (x1,max(0.5+0.2 cos(
πt

86400
)), x2,max(0.3+0.1 sin(

πt

86400
))). (17)

• Trajectory T2: The initial position of the pumping ship is 800, 1400) and
its trajectory is given by

γp(t) = (x1,max(0.5+0.2 cos(
πt

21600
)), x2,max(0.4+0.1 sin(

πt

86400
))). (18)
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The two pumping ship trajectories T1 and T2 are depicted in Figures 5 and 6.
The initial pollutant concentration, presented in Figure 1, is given by

c(x, 0) = χB((8000,8000),1200)(x) + χB((8000,12000),1200)(x), (19)

where χB(b,a) is defined in (9).
The stopping conditions used for the Bi-CGSTAB Method is tol1 = tol2 =

10−6.
For all computations, we have used the BlueGene/L System from the Dares

-bury Laboratory in England. We have used up to Nproc = 32 bi-cores pro-
cessors. Each processor has a 32-Bit architecture and 1 GB of local memory.
The code is programmed in Fortran 90 and uses the MPI standard protocol.
Double precision values were used in all computations. All runs were performed
using the row wise method. For the mesh 200 × 200 we have also tested the
Fan-in and reduced column wise methods to illustrate the comparison between
the parallelization methods.

6.2 Results

In this Section, we first present a comparison between the implicit scheme (14)
and its corresponding fully explicit version. Then we report the results related
to the parallelization schemes. Finally, we analyze and discuss the behavior of
our model when modifying the time and space discretization steps.

6.2.1 Comparison between implicit and explicit schemes

In order to check the efficiency of the implicit scheme (14) and the corresponding
explicit one, we compare their stability. To do this, we consider the trajectory
T2 (similar results have been obtained with T1), the meshes 50×50, 100×100,
200× 200 and 300× 300 and the time steps ∆t = 8640, 1728, 864, 345.6, 172.8,
115.2, 86.4, 17.28, and 8.64 (i.e. N =10, 50, 100, 250, 500, 750, 1000, 5000 and
10000, respectively). The quantity of pollutant pumped during the simulation
processes are shown in Table 2 for the implicit scheme.

When N ≥ 250, the implicit scheme was stable. Furthermore, the time step
∆t = 86.4 (i.e. N =1000) gives a good compromise between computational
complexity and precision. Indeed, the solutions obtained with this time step
and ∆t = 8.64 (i.e. N =10000) exhibit a difference on the quantity of pollutant
pumped inferior to 0.6%, which is quite acceptable. This time step value is used
in all computations in Sections 6.2.2 and 6.2.3.

On the other hand, the explicit scheme is always unstable for those values
of the discretization. It is well known that the explicit schemes demand time
step restrictions of CFL type (see [6, 9]). More precisely, for all t ∈ [0, T ] and
x ∈ Ω, ∆t should satisfy

∆t <
∆x1∆x2

∆x2|V1(x, t)| + ∆x1|V2(x, t)|
. (20)
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In the considered numerical tests, for all t ∈ [0, T ] and x ∈ Ω we have

|V1(x, t)| + |V2(x, t)| < (Q+
1

4
)(sin(

π

4
) + cos(

π

4
)) < 142. (21)

Hence, we should set ∆t <2.80, 1.40, 0.70 and 0.46 (i.e. N > 30858, 61715,
123429 and 187827, respectively), when using the 50× 50, 100× 100, 200× 200
and 300 × 300 meshes, respectively.

Thus, the explicit scheme needs time steps much smaller than the implicit
one, especially for the most refined meshes, and it is then less interesting from
a computational point of view.

Remark 9 The reaction term added on the right hand side of the first equation
of (7), i.e. −(2QcχB(γp(t),Rp)(x))/Rp, also impose a restriction on ∆t when
considering the explicit scheme. Indeed, the explicit discrete version of this term,
i.e. (2πRpQC

n−1
ip,jp

χp
i,j)/(∆x1∆x2) (using the same notations as in (14)), needs

time steps satisfying ∆t < (∆x1∆x2)/(2πRpQ) in order to ensure the positivity
of the solution and the stability of the scheme. More precisely, we must set
∆t < 254, 63, 15 and 7 (i.e. N > 341, 1371, 5760 and 12343, respectively)
when considering the 50 × 50, 100 × 100, 200 × 200 and 300 × 300 meshes,
respectively. Similar results have been obtained for other advection-reaction-
diffusion equations, see for example [14, 1].

N 50 × 50 100 × 100 200 × 200 300 × 300
10 55.37 54.54 unstable unstable
50 64.68 66.87 64.90 unstable
100 67.15 69.04 68.87 unstable
250 69.74 71.11 70.11 69.99
500 70.32 71.76 70.78 70.40
750 70.75 71.99 70.92 70.50
1000 70.82 72.10 71.00 70.54
5000 71.15 72.39 71.17 70.64
10000 71.2 72.42 71.19 70.65

Table 2: Quantity of pollutant pumped, expressed in % with respect to the
initial pollutant quantity, observed during the simulation process considering
the trajectory T2, the meshes 50× 50, 100× 100, 200× 200 and 300× 300 and
the time steps associated to the given values of N for the implicit discretization
scheme. We also report in this table the unstable results.

6.2.2 Parallelization schemes

As described in Section 5.2, the matrix-vector multiplication of the Bi-CGSTAB
has been performed using column (combined with Fan-in or All-Reduced sum-
mation method) and row wise schemes. The comparison of these methods, when
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applied to our model, is reported in Table 3 and in Figure 2 only for trajectory
T1, results for T2 being similar.

Nproc Fan-In Col. All-Reduced Col. Row
1 178.2 178.0 164.0
4 98.4 79.5 57.7
8 94.4 62.7 39.3
16 100.8 54.0 30.4
32 110.1 49.9 26.1

Table 3: Time, in seconds, needed to solve the model considering trajectory
T1 and using Fan-In, All-Reduced column and row wise methods in function of
Nproc for mesh 200 × 200.

These results show the advantage of using the row wise scheme, and if column
wise is used, they indicate the clear advantage of the All Reduced algorithm.
From now on, all results reported were performed in the row wise mode.

An important issue is the degree of discretization and the computational
time needed to accomplish a given accuracy in the model solution. Therefore, we
report and compare the total time, in seconds, needed to perform the simulation
in the prefixed time interval (here, one day), for all selected discretization meshes
and for Nproc = 1, 4, 8, 16, 32. These results are presented in Table 4 and in
Figure 3.

Nproc 50 × 50 100 × 100 200 × 200 300 × 300
1 32.3 78.9 164.0 377.4
4 10.6 27.5 57.7 120.9
8 7.6 19.1 39.3 76.9
16 5.9 15.0 30.4 55.4
32 5.3 12.9 26.1 45.0

Table 4: Time, in seconds, needed to solve the model with respect to Nproc

(line) and the discretization mesh (column).

The computational time is reduced from six up to eight times when using
from 1 to 32 processors. As we can observe in Figure 3, the largest gain is
obtained from 1 to 16 processors.

6.2.3 Model analysis

In Table 5, we report the percentage of the pollutant pumped for the three
meshes considered and for T1 and T2. To be able to determine which mesh
is the most efficient (in computational time and precision) for the trajectories
considered here, we compute the average and maximum difference (in time)
between the amount of pumped pollutant obtained with the finest mesh (300×
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300) and the other meshes. We observe that the accuracy increases with the
level of discretization. However, we point out, that the final concentrations
obtained with the two finest meshes show similar amount of pumped pollutant
(with a mean and maximum difference less than 1.0% and 2.4%, respectively).
This makes clear that we need to use fine meshes only up to certain degree (as
200 × 200 is numerically close to 300 × 300 and is four times faster).

Part of the previous differences between the amount of pumped pollutant
obtained with the finest mesh and the other meshes, is due to the artificial
diffusion of the numerical scheme (14). This can be observed in Figure 4 that
depicts the final concentration, for each mesh, considering the trajectory T2
(results are similar using T1). This artificial diffusion phenomena increases
with the spatial block size.

In Figures 5 to 6, we show the evolution of the concentration of the pollutant
considering the trajectories T1 and T2 at different times for the mesh 300×300.
These figures and Table 5 show the impact of the trajectory in the amount of
pumped pollutant, pointing out the need to find optimal trajectories to pump
a maximum quantity.

Traj. Poll. pump. 50 × 50 100 × 100 200 × 200 300 × 300

T1
Poll. pump. 84.06 93.01 97.54 98.59
Mean Diff. 9.99 4.09 0.89 —
Max Diff. 19.50 9.33 2.32 —

T2
Poll. pump. 70.81 72.09 71.00 70.54
Mean Diff. 2.27 1.40 0.35 —
Max Diff. 6.90 3.00 1.20 —

Table 5: Quantity of pollutant pumped (Poll. pump.) (expressed in % re-
specting to the initial pollutant quantity), Mean difference (Mean Diff.) and
maximum difference (Max Diff.) (in % with respect to the solution obtained
with the mesh 300 × 300) observed during the simulation considering the tra-
jectories (Traj.) T1 and T2 and the meshes 50 × 50, 100 × 100, 200 × 200 and
300 × 300.

7 Conclusions and future work

In this paper we have presented a two dimensional mathematical model of the
motion of oil spots in the open sea, taking into account the velocity and direction
of the sea currents, the wind, and the advection and reaction due to a pumping
process, carried out by a ship with a fixed trajectory.

The implicit and explicit numerical schemes used in this article to perform
the simulation of the model, are finite volume schemes, implemented in parallel
on a cluster with up to 32 processors. The results obtained, show clearly that
the row wise method used to solve the linear systems associated with the discrete
model, is highly superior to the column wise method.
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Also, the efficiency obtained in the parallelization is improved when increas-
ing the number of processors, showing the parallel code we developed has the
expected scaling properties.

The results presented in this paper show the importance of four features to
be considered:

• The need to use an implicit scheme to get a computationally efficient
algorithm.

• The need to control the propagation of the diffusion (avoiding infinite
speed and artificial diffusion) by replacing the linear diffusion term in (3)
by a nonlinear one.

• The need to use fine meshes only up to certain degree in the simulation.

• The need to find the optimal trajectories of the pumping ship, so that
the amount of pollutant pumped in a fixed period of time is maximized.
The optimization process will require a large number of evaluations of the
model and thus the necessity to develop robust and efficient simulators.
The results in this article are a first step in that direction.

Another important issue to be investigated is the possibility of combining
explicit and implicit schemes for speeding-up the computational time. We will
investigate splitting and un-split schemes and this might lead us to use other
upwinding scheme like superbee [17] to discretize the advection terms in the
model.
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Figure 1: Initial position of the pollutant spots (in black) in the domain Ω for
the 300 × 300 mesh.

18



4 8 12 16 20 24 28 32
0

85

170

N. of processors

T
im

e 
(s

)

 

 

Col. Fan−In
Col. Reduced
Row

Figure 2: Total time, in seconds, using Fan-In (–) and Reduced (..) Column
Wise and Row Wise (-.) methods Vs number of processors for mesh 200× 200.
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Figure 3: Total time (s) vs number of processors for meshes (Top-Left) 50 ×
50, (Top-Right) 100 × 100, (Bottom-Left) 200 × 200 and (Bottom-Right)
300 × 300.
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Figure 4: Final concentration obtained considering the trajectory T2 for the
meshes (Top-Left) 50×50, (Top-Right) 100×100 , (Bottom-Left) 200×200
and (Bottom-Right) 300 × 300.
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Figure 5: The evolution of the concentration considering the trajectory T1
for the mesh 300 × 300 at times (Top-Left) 21600 s, (Top-Right) 43200 s,
(Bottom-Left) 64800 s and (Bottom-Right) 86400 s. The initial position
(X), current position ( o) and trajectory (—) of the pump are also shown.
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Figure 6: The evolution of the concentration considering the trajectory T2
for the mesh 300 × 300 at times (Top-Left) 21600 s, (Top-Right) 43200 s,
(Bottom-Left) 64800 s and (Bottom-Right) 86400 s. The initial position
(X), current position ( o) and trajectory (—) of the pump are also shown.
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