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ABSTRACT
This paper deals with an inverse problem con-

cerning the identification of the heat exchange
coefficient H (assumed to be dependent on the
pressure) between a certain material and the ex-
ternal environment, when only experimental mea-
surements of the temperature are supposed to be
known. The main difficulty is that the experimental
data are affected by error. We set two scenarios for
the inverse problem. For each scenario, knowing
the initial and ambient temperatures, we identify
function H through different methods and we ob-
tain estimates for the error. Finally, we perform
numerical tests.

Keywords: Function identification, Inverse Problems,
Heat transfer.

INTRODUCTION
In this work, we focus our attention on an

inverse problem concerning the identification of
the heat transfer coefficient H (assuming it de-
pends on pressure) between a certain material with
the external environment. Some practical applica-
tions in which this coefficient appears can be seen
in [4], [5], [6] and [7]). The goal is to identify H to
get a solution for the corresponding model, approx-
imating some given temperature measurements.

The physical problem modeled in the refer-
ences mentioned above is the evolution of the
temperature in a homogeneous sample of a material
placed in an equipment capable of compressing it
(which will increase its temperature) and, that is
also warming up (respectively, cooling down) due
to heat exchange with an external environment that
is warmer (respectively, cooler). To describe the
temperature distribution within the sample com-
plex models based on partial differential equations

are often used (see, e.g., [6]). These equations in-
volve functions and parameters that must be known
before computing the solution. These functions
and parameters are usually determined either by
experimentation based protocols ([6]) or by solving
inverse problems posed in an appropriate mathe-
matical framework (see, e.g., [1], [2] and [3]).

In some contexts, and under certain conditions,
it can be assumed that H has a known expression
(e.g., H is constant or a function with a few
real parameters to identify). In these cases, the
least squares method may provide a good tool
to solve inverse problems (see, e.g., [4]). How-
ever, when the goal is to identify a function, the
problem becomes more complicated, especially if
the experimental data are given with measurement
errors, due to measurement equipment accuracy
limitations. The challenge in this work is to identify
function H when continuity and positivity are the
only information available about H .

For simplicity, let us consider an homogeneous
sample and let us assume that the temperature gra-
dient inside it is negligible. The Newton Cooling
Law and the relation describing the change in tem-
perature due to the pressure variation, when isen-
tropic changes of temperature are assumed (see [7]),
provide a simple mathematical model for this phe-
nomenon through the following initial value prob-
lem (direct problem):{
T ′ = H(P )(T e − T ) + αP ′T, t ∈ [t0, tf ]

T (t0) = T0.
(1)

Here T (t) (K) is the temperature of the sample at
time t; P (t) (Pa) is the pressure of the equipment
at time t; T e is the ambient temperature; T0 is
the temperature at the initial time t0; α ≥ 0 is
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a parameter involving thermal expansion, density
and specific heat capacity; and H is the pressure
dependent heat exchange coefficient. In order to
solve problem (1), constants T0, T e ∈ R, pressure
P and function H : [Pmin, Pmax] → R are needed
([Pmin, Pmax] is a suitable range of pressure).

The values of T0 and T e can be obtained by
measuring devices (thermocouples), the coefficient
α is assumed to be known and the pressure is
provided by the equipment. However, function H
cannot be obtained easily. We will design strategies
to enable, from experimental measurements, the
identification of function H (inverse problem); by
doing so, we will be able to approximate the solu-
tion of model (1) for other values of T0, T e and P
(provided it is kept in the initial ranges of pressure
[Pmin, Pmax]) without requiring new measurements.

In order to define a suitable framework to carry
out this identification, we suppose that:
• The ambient temperature T e is constant.
• The initial temperature T0 is higher than T e.
• P is a known, non-decreasing, continuous and
piecewise C1 function on the time interval [t0, tf ].
• H is a positive and continuous function on the
pressure range [P0, Pf ] = [P (t0), P (tf)].

The temperature measurements are assumed to
have been taken during an experiment in which
the entire range of pressures has been covered. In
practice, a linear pressure can be used.

We note that H is not relevant when T is close
to T e. We set a threshold µ to separate it from T e

(H(P ) is not identified when T is too close to T e).

SCENARIOS OF THE INVERSE PROBLEM
Depending on the knowledge one has on the so-

lution T in [t0, tf ], we consider the inverse problem
immersed in various scenarios:
• The first one arises when a function T̃ that rep-
resents the approximate value of the temperature at
any instant of time is assumed known.
•However, the usual situation is that only a discrete
amount of values T̂k approximating the values of T
at the corresponding instants is known.

For these scenarios, we will develop a “sta-
ble” method to approximate T ′ from the data and
thereby obtain a discrete number of approximate
values of H for points of the interval [P0, Pf].
To this end, we must ensure that the temperature
values are sufficiently far from T e, otherwise the
coefficient H would have a negligible influence

in the equation, and its identification could not be
performed. We set a “threshold” as follows:

a) In the first scenario, assuming
∣∣∣∣∣∣T − T̃ ∣∣∣∣∣∣ < δ,

we consider the threshold µ = m̃ − T e, where
m̃ = min

t∈[t0,tf ]
T̃ (t). If µ ≤ δ, we would need to

perform an experiment starting from a higher value
of the initial temperature T0, in order to obtain a
higher approximate temperature.

b) In the second scenario, we assume a set of
measurements T̂k such that |T (τk) − T̂k| < δ̂,

with δ̂ > 0, where {τ0 = t0, τ1, τ2, . . . , τp =
tf} is a sequence of instants, is avalaible. We
will denote by T̃ a function that interpolates the
values {T̂0, T̂1, . . . , T̂p} at points {τ0, τ1, . . . , τp}
and consider δ > 0, a bound of the norm of the
difference between T and T̃ in the interval [t0, tf ],

i.e.,
∣∣∣∣∣∣T − T̃ ∣∣∣∣∣∣ < δ. The threshold µ is defined from

T̃ as in the previous scenario.

AD HOC EXPERIMENT
This section presents a method which identifies

function H on the assumption that we can perform
an experiment designed ad hoc as follows: we
assume measurements of temperature in an even
number of instants {tk}nk=0,which form an equally
spaced partition of [t0, tf ] with step h are known.
We choose the pressure applied by the equipment
as a continuous function that increases linearly
with the same slope in the intervals [t2k−1, t2k]
and remains constant in the rest of the intervals
[t2k, t2k+1], k = 0, 1, . . . , n−12 . Thus P (t2k) =

P (t2k+1) and the values {P (t2k)}
n−1
2

k=0 form a par-
tition of the range of pressures [P0, Pf ].

Denoting by {T̂k}nk=0 the temperature mea-
surements, we can find the approximations H̃k '
H(P (t2k)) through the following methodology:
for each k ∈

{
0, 1, . . . , n−12

}
we consider the in-

terval [t2k, t2k+1]. Here, since pressure is constant,
the solution of problem (1) verifies

T ′(t) = H(P (t2k))(T e − T (t)), t ∈ (t2k, t2k+1).

Then, T (t) = T e + (T2k − T e)e−H(P (t2k))(t−t2k),
t ∈ [t2k, t2k+1], where Tk = T (tk). For t = t2k+1,

H(P (t2k)) =
1

h
ln

(
T2k − T e

T2k+1 − T e

)
.

This suggests to take as an approximation of the
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value of H at P (t2k) the value

H̃k =
1

h
ln

(
T̂2k − T e

T̂2k+1 − T e

)
. (2)

Proposition 1 : Denoting by σk = T̂k−Tk

Tk−T e ,

H̃k −H(P (t2k)) =
1

h
ln

(
1 + σ2k

1 + σ2k+1

)
.

Remark 2 : a) If the temperature measurements
are exact (and, consequently, all σk vanish) then
this method provides the exact values of H .

b) Proposition 1 also shows that the error com-
mitted when approaching function H using this
method only depends on the values of 1 + σk,
i.e., the relative errors of T̂k − T e with respect to
Tk − T e. As these errors are a feature of the equip-
ment, there is the unusual fact that the error in the
approximation of function H by this methodology
is independent of the function.

ITERATIVE ALGORITHM
It may happen that the equipment does not

allow an experiment as described previously. Thus,
another strategies are developed here, in order to
identify coefficient H .

Identifying from a function that approximates
the temperature

In this context, an approximation T̃ ∈ C([t0, tf ])
of T is assumed to be known. More precisely,∣∣∣∣∣∣T − T̃ ∣∣∣∣∣∣ < δ (3)

for 0 < δ < µ = m̃− T e. Since

H(P (t)) =
T ′(t)− αP ′(t)T (t)

T e − T (t)
,

we define function

u(t) =
T ′(t)− αP ′(t)T (t)

T e − T (t)
, t0 < t < tf

and its approximation

ũh(t) =
Rh(T̃ )(t)− αP ′(t)T̃ (t)

T e − T̃ (t)
,

where Rh : C([t0, tf ])→ C([t0, tf ]) is the approx-
imate differentiation operator given by

Rh(v)(t) =



Dh(v)(t) + Ψh(v)(t0),
t ∈ [t0, t0 + h]

v(t+ h)− v(t− h)

2h
,

t ∈ [t0 + h, tf − h]

D−h(v)(t) + Ψh(v)(tf − 3h),
t ∈ [tf − h, tf ],

with

Dh(v)(t) =
−3v(t) + 4v(t+ h)− v(t+ 2h)

2h
,

Ψh(v)(t) =

=
v(t+ 3h)− 3v(t+ 2h) + 3v(t+ h)− v(t)

2h
.

Remark 3 : This approximate derivation opera-
tor provides an error bound slightly worse than
that provided by the standard operator of order 2
(without Ψh(v)). However, with this definition,
Rh (C([t0, tf ])) ⊂ C([t0, tf ]).

Proposition 4 : Let T ∈ C3([t0, tf ]) and T̃ ∈
C([t0, tf ]) verifying (3) with 0 < δ < µ. Then

||u− ũh|| ≤
29M3

6(µ− δ)
h2

+
4δ
(
M̃ − m̃+ 2µ

)
µ(µ− δ)

1

h
+
αP ′MT

eδ

µ(µ− δ)
,

(4)

where M3 = ||T ′′′||, M̃ =
∣∣∣∣∣∣T̃ ∣∣∣∣∣∣ and P ′M = ||P ′||.

In (4) the step h appears (squared) multiplying
one term and dividing another one. Hence, the
optimal estimate is obtained when choosing a value
of h that balances both terms to get the minimum
value. The next result (its proof is straightforward
by using Proposition 4) indicates how to choose
such a value of h and its corresponding estimate:

Proposition 5 : Under the assumptions in Propo-
sition 4, the smallest value of the bound in (4) is
reached when taken as a time step

h∗ =

(
12(M̃ − m̃+ 2µ)

29µM3
δ

) 1
3

. (5)

For this optimal value of time step, we have the
following error bound
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||u− ũh∗ || ≤

(
522M3

(M̃ − m̃+ 2µ)2

µ2(µ− δ)3

) 1
3

δ
2
3

+
αP ′MT

e

µ(µ− δ)
δ.

Let h∗ be as in (5). Let us denote by n the inte-
ger part of tf−t0

h∗ , tk = t0 + kh∗ and T̃k = T̃ (tk).
If we approximate H(Pk) by H̃k = ũh∗(tk), i.e.,

H̃k =
Rh∗(T̃ )(tk)− αP ′(tk)T̃k

T e − T̃k
, (6)

for k = 0, 1, . . . , n, Proposition 5 leads to:

Theorem 6 : Under the assumptions in Proposi-
tion 4 one has

max
k=0,1,...,n

∣∣∣H(Pk)− H̃k

∣∣∣
≤

(
522M3

(M̃ − m̃+ 2µ)2

µ2(µ− δ)3

) 1
3

δ
2
3 +

αP ′MT
e

µ(µ− δ)
δ,

where H̃k, k = 0, 1, . . . , n, are given in (6).

Remark 7 : Theorem 6 provides an estimate
of the error committed when taking the optimum
value h∗ as the time step. The difficulty is that this
value is unknown, since it depends on M3. Next,
we introduce an iterative algorithm in order to com-
pute the values given in (6), from measurements of
temperature, and successive approximations of h∗.

Identifying from a finite number of approxi-
mated values of the temperature

We start from measurements of temperature
{T̂0, . . . , T̂p} corresponding to {τ0 = t0, . . ., τp =

tf} and we assume that the error is of order δ̂. We
consider a function T̃ that interpolates the previous
values and assume that the interpolation method
used is such that the error δ in T is of the order of
the measurement error δ̂, i.e., δ = Cδ̂ (increasing
the number of measurements, if necessary).

Once function T̃ is defined in this way, we are
in the same situation as in the previous section;
hence it suffices to consider the threshold µ = m̃−
T e, take the time step h as in (5), n as the integer
part of tf−t0h and T̃k = T̃ (tk), where tk = t0 + kh

for k = 0, 1, . . . , n. Thus, the values H̃k in (6)
provide an approximation of H as in Theorem 6.

Next, we describe an algorithm to approximate
the values ofH at points Pk ∈ [P0, Pf ], for instants
tk in equally spaced partitions of [t0, tf ]. The time
step of these partitions should be defined, in an
iterative way, in order to approximate h∗.

The input data are: {T̂k}pk=0 and δ̂ > 0. First
of all, we construct a function T̃ (t) interpolating
{T̂k}pk=0. Next, we estimate the error δ > 0 due
to the interpolation. Then, the admissible threshold
µ = m̃ − T e, under the constraint µ > δ, is
obtained.

The algorithm is based on an iterative process
starting from an initial guess h for the optimal
time step h∗. From this value, we consider the
instants tk = t0 + kh, k = 0, 1, . . . , n, where n
is the integer part of tf−t0

h . Therefore, the values
T̃k = T̃ (tk) are obtained. From these values,
an approximation Λ3 of M3 is computed as the
maximum absolute value of quantities

−5T̃k + 18T̃k+1 − 24T̃k+2 + 14T̃k+3 − 3T̃k+4

2h3
,

k = 0, 1

T̃k+2 − 2T̃k+1 + 2T̃k−1 − T̃k−2
2h3

,

k = 2, 3, . . . , n− 2

3T̃k−4 − 14T̃k−3 + 24T̃k−2 − 18T̃k−1 + 5T̃k
2h3

,

k = n− 1, n.
(7)

These formulas are based, respectively, on standard
order two progressive, central and backward ap-
proximate derivative schemes of a regular function.

From Λ3, the next value of the time step is
computed (following (5)) as

h =

(
12(M̃ − m̃+ 2µ)

29µΛ3
δ

) 1
3

, (8)

and so on. The process stops when two consecutive
values of h are close. From the final value of h, the
corresponding instants tk, interpolation T̃ and the
quotients

H̃k = ũh(tk) =
Rh(T̃ )(tk)− αP ′(tk)T̃k

T e − T̃k
, (9)
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are computed. These quantities approximate the
values of H in the pressures Pk = P (tk).

Algorithm

DATA
{T̂k}pk=0: Measurements of {T (τk)}pk=0.
δ̂ > 0: bound of measurements errors.
ε: stopping test precision.
h: guess value for h∗.
Step 1: Determine T̃ and δ according to δ̂ so
that µ = m̃− T e > δ.
Step 2: While the relative error in h is greater
than ε:

a) Determine the new discrete instants {tk}
and compute {T̃k}.

b) Compute Λ3 as the maximum absolute
value of (7).

c) Compute the new value of h as in (8).
Step 3: Obtain the final discrete instants {tk}
and the values {T̃k}.
Step 4: Compute the approximations H̃k

according to (9).

NONDIMENSIONALIZATION OF THE PROB-
LEM

Before performing the numerical experiments
with different sets of data illustrating the behavior
of the methods developed, it is convenient to nondi-
mensionalize the problem. We want the model to
involve as few dimensionless parameters as possi-
ble. Here, it suffices to consider two parameters:
the pressure and a relationship between the initial
and ambient temperature, as discussed below. We
consider the new dimensionless variables t∗ =
t−t0
tf−t0 , T ∗(t∗) = T (t)−T e

T0−T e and P ∗(t∗) =
(
P (t) −

P0

)
α. Problem (1) can be written in these new

variables (see [5, pag. 57]) as
dT ∗

dt∗
(t∗) = −H∗(P ∗(t∗))T ∗(t∗)

+
dP ∗

dt∗
(t∗) (T ∗(t∗) + T ea) , t∗ ∈ (0, 1)

T ∗(0) = 1,

(10)

where
H∗(s) = (tf − t0)H

(
s

α
+ P0

)
T ea =

T e

T0 − T e

(note that H∗(P ∗(t∗)) = (tf − t0)H(P (t))).
We use this approach to identify coefficient H∗

and to find the temperature distribution for several
functions P ∗ and several values of T ea.

Remark 8 : The maximum value that the dimen-
sionless temperature T ∗ can reach is given by

T ∗max =
Tad − T e

T0 − T e
,

where Tad is the maximum temperature that can
be achieved under adiabatic conditions (i.e., when
there is no heat exchange with the external envi-
ronment). To determine this value, it suffices to
consider the initial value problem{

T ′(t) = αP ′(t)T (t), t ∈ (t0, tf)

T (t0) = T0,

whose solution is T (t) = T0e
α(P (t)−P0), t ∈

[t0, tf ]. Since P is an increasing function, Tad =
T0e

α(Pf−P0) = T0e
P∗(1) which leads to

T ∗max =
Tad − T e

T0 − T e
= (1 + T ea)eP

∗(1) − T ea.

Remark 9 : After identifying functionH∗,H can
be obtained by

H(s) =
1

tf − t0
H∗ (α(s− P0)) , s ∈ [P0, Pf ].

(11)
From T ∗ we can express temperature T as

T (t) = T e+(T0−T e)T ∗
(
t− t0
tf − t0

)
, t ∈ [t0, tf ].

Remark 10 : If the order of magnitude of func-
tion H∗ is small compared to

dP ∗

dt∗
(t∗) (T ∗(t∗) + T ea) ,

this term will be dominant. Hence any function H∗

of that order of magnitude would provide values
of temperature with few differences. To avoid this
problem we can modify the original experiment
so that the new one results in a function H∗ of
a higher order of magnitude. If pressure in the
original experiment is given by

P (t) = a(t− t0) + P0, t ∈ [t0, tf ],
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a slower increase of pressure (for a longer time in
order to cover the same range of pressures [P0, Pf ])
could be considered. That is, we can take

P1(t) = ac(t− t0) + P0, t ∈
[
t0, t0 +

tf − t0
c

]
,

with 0 < c ≤ 1. If T1 is the temperature obtained
with this pressure, the changes of variable

t∗1 =
c(t− t0)

tf − t0
, T ∗1 (t∗1) =

T1(t)− T e

T0 − T e

and P ∗1 (t∗1) =
(
P1(t)− P0

)
α, lead to

dT ∗1
dt∗1

(t∗1) = −1

c
H∗
(
P ∗1 (t∗1)

)
T ∗1 (t∗1)

+
dP ∗1
dt∗1

(t∗1) (T ∗1 (t∗1) + T ea) , t∗1 ∈ (0, 1)

T ∗1 (0) = 1.

(12)

Since

dP ∗1
dt∗1

(t∗1) = αa(tf − t0) =
dP ∗

dt∗
(t∗),

the equations of problems (10) and (12) are iden-
tical, except that the new function H∗ is amplified
by the factor 1

c ≥ 1.

Remark 11 : The dimensionless problem is gov-
erned by a different equation than the original one,
and this will be taken into account in the methods
we will use:

a) For the method based on the ad hoc experi-
ment, it suffices to note that, in each interval where
the pressure is constant, the temperature satisfies
the same equation but with T e = 0. We therefore
consider the approximations

H̃k =
1

h
ln

(
T̂2k

T̂2k+1

)
instead of (2).

b) Concerning the iterative algorithm, we can
say that the optimal step expression (8) and the
quantities (7) that are used for the calculation of
Λ3 remain the same (replacing, of course, the roles
of T̃ and T̃ ∗), while the approximation (9) of H̃k

becomes

H̃k = −
Rh(T̃ ∗)(t∗k)− dP ∗

dt∗
(t∗k)(T̃ ∗k + T ea)

T̃k
.

NUMERICAL RESULTS
In this section we perform a comparative study

of the results obtained when using the methods
considered in this paper for the identification of
function H . While working on the nondimensional
problem, the value of T ea and the range of pres-
sures are linked to a real situation. We use the P2
treatment data from [6], i.e., T0 = 313 oK, T e =
295 oK and α = 4.5045×10−5 MPa−1. The choice
of the pressure curve is specified for each method
and in both cases the range is from atmospheric
pressure up to 360 MPa. Thus, the maximum value
of dimensionless pressure is a = 0.0162 in both
cases.

Given a function H , the nondimensional func-
tion H∗ corresponding to the ad hoc experiment
is, accordingly with (11), twice the function H∗

corresponding to the iterative algorithm (the first
method needs a time interval twice as long as the
second).

In what follows, we omit the superscript ∗.
The data for numerical tests have been obtained
as follows: with a given function H , we solve the
direct nondimensional problem (10), obtaining the
temperature T . Then T is evaluated on an equally
spaced partition of instants of time. We assume that
in both experiments, the measurements have been
carried out with the same time step, so that we
will work in the first method with twice as many
as values in the second (in particular, we take 200
in the ad hoc experiment and 100 in the iterative
algorithm). The error measurements T̂k are built by
perturbing Tk by means of random oscillations of
order 1% of Tk. More precisely,

T̂k = Tk

(
1 +

r(tk)

75

)
,

where r(t) = sin(qπt) and q is a random integer
between 1 and 99. Function T̃ is taken as the
piecewise linear interpolation of values T̂k.

To allow an easy comparison, the same seven
perturbations of temperature values have been gen-
erated, corresponding to the values q = 3, 14, 27,
42, 65, 84 and 97. Among them we selected the two
which produces the smallest and the largest error in
infinity norm in H , respectively.

After identifying an approximation of func-
tion H , we compute temperature T solving prob-
lem (10) and we compare it with the known solu-



João Pessoa, Brazil, August 25-27, 2010
Inverse Problems, Design and Optimization Symposium

tion of the direct problem. Also, different values
for dimensionless parameters of the problem (the
pressure curve and T ea) are prescribed and the
corresponding solutions are calculated. In order
to analyze the quality of the identification, these
solutions are compared to the exact temperature.

The different values of the parameters are gen-
erated by multiplying the original value of T ea by
the factors d = 2, d = 1 and d = 1

2 and choosing
as pressure curves the functions P (t) = a sin t,
P (t) = a(e2t−2 − e−2) and P (t) = a

2 t(3− t).
In all the figures and tables “Error” denotes the

maximum norm error in H and “% Error” denotes
the percentage relative error in maximum norm of
T , i.e.,

max
k
|T̃k − Tk|

max
k
|Tk|

× 100.

First method: ad hoc experiment
For this method, the value for the first pa-

rameter of the nondimensional problem is T ea =
295
18 , while the slope of the pressure (where it is

not constant) is 0.0324 (= 2a); what causes the
pressure to take all values in the pressure range
[0, a] when time lies in [0, 1]. We consider the
function

H(s) = 4 exp
( s
a

)
.

Figure 1 shows the identified function H (and cor-
responding computed temperature) for the smallest
and largest error in H .

Table 1 shows the percentage relative error in
temperature (in maximum norm) for each of the
nine data sets considered, both for the smallest and
largest error in H .

Table 1: Ad hoc experiment. Temperature error
(%). Smallest (above) and largest (below) error in

identified H .

Pressure Factor over parameter T ea
d = 2 d = 1 d = 0.5

sinusoidal 0.48 0.48 0.47
exponential 0.87 0.86 0.85
quadratic 0.36 0.36 0.36
sinusoidal 1.37 1.36 3.84

exponential 5.11 5.10 5.09
quadratic 1.06 1.97 2.45
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Figure 1: Ad hoc algorithm (Top: smallest error in
H . Bottom: largest error in H)

The error in this method (we remind that it
provides exact values when there is no measure-
ment error) increases with the frequency of the
oscillatory perturbation: the error in H grows with
the value of q, being smaller for q = 3 (the
smoother perturbation) and larger for q = 97 (more
oscillatory perturbation).

Second method: iterative algorithm
Now, the value T ea = 295

18 is the same as
before, but the pressure increase changes (since
now there is no constant steps); in fact, P (t) =
0.0162t.

As already has been mentioned, H must be a
half of the chosen in the previous method, i.e.,

H(s) = 2 exp
( s
a

)
.

Figure 2 shows the identified function H (and
corresponding computed temperature) for the small-
est and largest error in H .

Table 2 shows the percentage relative error in
temperature (in maximum norm) for each of the
nine data sets considered, both for the smallest and
largest error in H .

This algorithm uses interpolation of approx-
imate values of T at instants that are not from
the original partition. Therefore, their behavior
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Figure 2: Iterative algorithm (Top: smallest error
in H . Bottom: largest error in H)

Table 2: Iterative algorithm. Temperature error
(%). Smallest (above) and largest (below) error in

identified H .

Pressure Factor over parameter T ea
d = 2 d = 1 d = 0.5

sinusoidal 0.17 0.16 0.15
exponential 0.17 0.17 0.17
quadratic 0.14 0.13 0.13
sinusoidal 1.49 1.49 1.49

exponential 4.46 4.44 4.44
quadratic 0.94 0.94 0.94

is not directly linked to frequency of oscillatory
perturbations.

In conclusion, although the size of the error in
H is moderate for both methods, temperatures cal-
culated from approximate identifications are quite
accurate (the error is always of the order of the
measurement error). The first method usually pro-
vides a better approximation of the temperature
when solving for the initial parameters. However,
when the identified temperature for the nine data
sets is considered, the second method is generally
more accurate in the case of largest error in H and
therefore it can be considered more robust.
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