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Facultad de Ciencias Matemáticas, 28040 Madrid, Spain
2 LBE-INRA, Narbonne, France

3 UMR MISTEA and INRA-INRIA MODEMIC

Montpellier, France

September 27, 2011

Abstract

In this paper, we focus on the modeling, simulation and shape opti-
mization of a dispersive bio-reactor in which a substrate is degraded by
a microbial ecosystem in an non homogeneous environment. Two differ-
ent modeling approaches are used in order to obtain a low computational
model to quickly evaluate the behavior of our bio-reactor. The first one is
based on coupled spatial and time dependent EDPs. The second one, ob-
tained by optimization, is based on two interconnected systems of ODEs
with coefficient calibrated using the first PDE model. Preliminary results
assuming a Monod kinetics are presented.

Keywords: Dispersive bioreactors, Shape optimization, Optimal de-
sign, Global optimization, Genetic algorithms.

1 Introduction

The optimal design —the characterization of the main design parame-
ters of a system under performance/economical/footprint constraints—
of biosystems has attracted a lot of attention these last years. Indeed,
the diversity of unitary systems and the large spectrum of optimization
criteria has led to the search for the “best solution” with respect to a
given optimization problem, in particular in the field of catalytic chemical
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reactions. The problem under consideration in most studies can be stated
as follows: given

1. the model of the process,

2. the input and required output reactant concentrations (that is to
say, the conversion rate is specified), and

3. the flow rate to be processed, what are the volumes of N tanks in
series such that the total volume of the whole process be minimal?

A rigorous solution to this problem for catalytic biosystems (i.e., a biolog-
ical reaction in which the activity of the biocatalyst is assumed to be con-
stant) exhibiting Michaelis-Menten kinetics was proposed by [LUY 82],
while the solution for a fairly large class of autocatalytic systems (in-
cluding, in particular, the well-known Monod and Haldane kinetics) was
proposed by [HIL 89]. Recently, these results were revisited and extended
by [HAR 03], [HAR 05] and [NEL 06].

However, these studies suffer of two important drawbacks:

• While the proposed results are valid for small and medium sized
systems, the diffusion phenomena that occur in larger tanks were
not studied;

• The dimensioning parameters were not considered —only the total
volume of the systems were optimized. However, with respect to a
real case, design parameters such as the diameter or the height of
any biological or chemical system will influence its performance.

In the present paper we propose to couple hydrodynamics with biological
phenomena occurring in a diffusive bio-reactor which the main design pa-
rameters (reactor shape and total volume) are optimized with respect to
the output concentration. To do so, we present a particular spatial mod-
eling based on coupled PDEs. We also define a second model, computa-
tionally cheaper, based on two systems of ODEs with coefficient calibrated
using the outputs given by the PDE model. The objective of this second
model is to quickly provide the behavior of the considered bioreactor.

The paper is organized as follows. First, the PDE and ODE models
of the system and the way they are compared are presented. Then, the
optimization problem and the optimization method used to sole it are
give. Finally, some preliminary results are given.

2 Mathematical model

In this Section we present the two models used to describe the behavior
of the considered bio-reactors.

2.1 Device description

The bioreactor under consideration is depicted in Figure 1(a). It contains
a certain amount of biomass that resides in Ω∗ and reacts with a diluted
substrate entering through an inlet Γ∗

in that is located at the top. At the
bottom there is an outlet Γ∗

out allowing the uncontaminated liquid to leave
the container.
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The device’s geometry is that of a solid of revolution and, consequently,
it can be characterized by a 2D model. The symmetry axis Γsym is shown
as a dotted line in Figure 1(b), the container region is denoted by Ω, the
wall is Γwall, and the inlet and outlet are (respectively) Γin and Γout. Note
that ∂Ω = Γin ∪ Γwall ∪ Γout ∪ Γsym.

(a) 3D representation of the
bioreactor

(b) 2D symmetric repre-
sentation of the bioreac-
tor

In the numerical experiments that we performed the length of Γwall

was set to 5 m. and the radius of the inlet and outlet were fixed at
Γin = Γout = 0.5m.

2.2 PDEs based modeling

Background material on a similar device can be found in [GRI 01].
The fluid is modelled using the Incompressible Navier-Stokes equations

{

ρ ∂u

∂t
+ ρ(u · ∇)u = ∇ ·

[

−pI + η
(

∇u + (∇u)T
)]

+ F, in Ω
∇ · u = 0 in Ω

, (1)

where u = (u, v) is the velocity field [m/s], p is the pressure [Pa], ρ is the
density [kg/m3], η is the dynamic viscosity [Pa · s], and F = (0,−g0 · η) is
the volume force [N/m3], with g0 ≃ 9.8 [m/s2] being the standard gravity
constant.

The boundary conditions are:
u · n = 0, in Γsym, t ·

[

−pI + η
(

∇u + (∇u)T
)]

n = 0, in Γsym, u = u0, in

Γin, η
(

∇u + (∇u)T
)

n = 0, in Γout, p = 0, in Γout, u = 0, in Γwall, where
u0 = (0, v0) gives a parabolic velocity condition v0 = Q(x − 1

2
)(x + 1

2
) at

the inlet with Q = 0.2 m/s.
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The process of convection and diffusion of the substrate inside Ω is
modelled by:

∂s

∂t
+ ∇ · (−D1∇s) = −µ(s) x − u · ∇s, in Ω, (2)

where s stands for the concentration of the substrate [mol/m3], and D1 =
2 · 10−8 [m2/s] is the diffusion coefficient. The reaction rate µ is a Monod
(Michaelis-Menten) kinetic function of the form µ(c) = µmax

c
1+c

, with

µmax = 0.05 [s−1].
The boundary conditions are given by −n ·N = N0, in Γin n ·N = 0,

in Γsym ∪ Γwall, n · (−D1∇s) = 0, in Γout, where N = −D1∇s + su, and
the inward flux is given by N0 = Sin v [mol/(m2 · s)] taking Sin = 1 in this
case. The tank starts with a homogeneous value of x set to 0.5 [mol/m3].

For the biomass, the convection and diffusion are governed by equa-
tions similar to (2) (changing the sign of µ(s)x) with a diffusion coefficient
D2 = 3 · 10−8 [m2/s], N0 = 0 [mol/(m2 · s)] and an uniform initial bio-
reactor concentration of 0.5[mol/(m2 s)].

This system of PDEs is solved by using a Finite Element Method
approach described in [IVO 06-b].

2.3 ODE based modeling and comparison with

PDE based model

We have performed a comparison between the PDE model and other
model based on ODEs systems which model two bio-reactors, obtained
by dividing the main bio-reactor in two interconnected sub-volumes: one
volume is α · V , which receive and reject the contaminated flow, and the
other one (1 − α) · V , which is connected with the previous tank.

This model is defined by the following dynamical system







































































ẋ1 = µ(s1) x1 −
Q̄

αV
x1 +

d

αV
(x2 − x1),

ṡ1 = −µ(s1) x1 +
Q̄

αV
(Sin − s1) +

d

αV
(s2 − s1),

ẋ2 = µ(s2) x2 +
d

(1 − α)V
(x1 − x2),

ṡ2 = −µ(s2) x2 +
d

(1 − α)V
(s1 − s2),

x1(0) = x2(0) = Sin,

s1(0) = s2(0) = 0,

(3)

where x1 and x2 correspond to the evolution of the biomass and s1 and
s2 correspond to the evolution of the substrate in the two sub-volumes,
α ∈ (0, 1), d > 0, and Q̄ = 4/3πr3Q with r = 0.5 being the radius of the
inlet and Q having the same value as in Section 2.2.

If we denote by SODE
out the value of s1 when [3] reaches its steady state

then we can construct a mapping

Sin 7→ SODE
out (Sin; α, d).
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The equivalent of the previous mapping for PDE can be defined as a
correspondence between Sin and the concentration of substrate at the
outlet after enough time has passed:

Sin 7→ SPDE
out (Sin) =

∫

Γout
c dΓ

∫

Γout
dΓ

(4)

These two functions SODE
out and SPDE

out provide us with the basis for com-
parison of the two models. We performed the following two numerical ex-
periments for the cylindrical shape described in Section 2.4 for Sin ranging
from 0.25 to 10 mol/m3:

ODE1 For each value of Sin we computed the values of α and d that
minimized (SODE

out (Sin; α, d)− SPDE
out (Sin))2. The resulting values are

shown in Figure 3.2.

ODE2 For the set {Si
in | i = 1, . . . , 5}, we computed the pair α, d that

minimized
∑5

i=1
(SODE

out (Si
in; α, d)−SPDE

out (Si
in))2. The resulting values

are α = 0.304, d = 0.072

2.4 Optimization problem

Once we know how the model behaves, we would like to find a shape that
results in the most efficient bioreactor. This problem amounts to finding

arg mins∈Θ J(s), (5)

where Θ is the set of all admissible shapes, and J is our fitness function
to be defined in the next section. The set of admissible shapes is char-
acterized by the tanks that can be obtained by varying the degrees of
freedom labeled with a, b1, b2, and c in Figure 1. The contour of Γwall re-
sults from interpolation using a shape-preserving piecewise cubic hermite
polynomial.

Each tank is simulated for approximately half an hour (tmax = 2000s.)
and at the end of this period, we compute the flux of the substrate through
the outlet using the formula

Z = −

∫

Γout

s v dΓ.

We denote by Zcyl the result of evaluating Z for the cylindrical bioreactor
whose shape is characterized by the parameters a = c = 1.5, b1 = 2.5,
b2 = 2 (its volume is approximately 66 m3).

The fitness of a given shape is determined according to the expression

J = P max
{

0, Z − Zcyl
}

+ Volume, (6)

where P is a penalty taken as 109 and Z is the result of evaluating (2) for
the current shape. With this choice of fitness function, the optimization
process favors shapes that yield a value of Z smaller than that of the
purely cylindrical bioreactor and, among those, it chooses the ones that
minimize the tank’s volume.

The optimization problems presented in Section 2.4 have been solved
using an hybrid genetic algorithm described in the next section.
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Figure 1: Shape parameterization.

2.5 Optimization algorithm

From a general point of view, the formulation of a global optimization
problem, in its minimization form, is given by:

min
x∈Θ

h(x) (7)

where h : Θ → IR is the cost function and x is the optimization parameter
belonging to an admissible space Θ ⊂ IRN , with N ∈ IN.

In next sub-sections, we describe in detail the optimization method.
First, in Section 2.5.1, we briefly introduce the considered genetic algo-
rithm (GA). Then, we introduce in Section 2.5.2 a method based in the
optimization of the initial population of the GA to improve its perfor-
mances.

2.5.1 Genetic algorithm

Genectic Algorithms (GAs) approximate the solution of the minimiza-
tion problem (7). They are based on principles related to Darwinian
evolution [GOL 89]. GAs are applied in biogenetics, computer science,
engineering, economics, chemistry, manufacturing, mathematics, physics
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and other fields. A genetic algorithm works by repeatedly modifying a
population of artificial structures through the application of genetic oper-
ators. They use techniques such as inheritance, mutation, selection, and
crossover. GAs are typically black-box methods that use fitness informa-
tion exclusively; they do not require gradient information or other internal
knowledge of the problem.

A first family, called population, X0 = {x0
l ∈ Θ, j = 1, ..., Np} of

Np ∈ IN possible solutions of the optimization problem, called individ-
uals, is randomly generated in the search space Θ. Starting from this
population, we build recursively Ng ∈ IN new populations, called gen-
erations, Xi = {xi

l ∈ Θ, j = 1, ..., Np} with i = 1, .., Ng through three
stochastic operators, called selection, crossover and mutation. More pre-
cisely we present here a matrix-form approach for GAs:

Initially, a new population, X0 = {x0
j ∈ Θ, j = 1, ..., Np} of Np ∈

IN candidate solutions is created. Each candidate solution, also called
individual, is randomly generated in the search space Θ. From the initial
population, a new offspring Xi = {xi

j ∈ Θ, j = 1, ..., Np} with i = 1, .., Ng

and Ng ∈ IN is obtained by recursively applying three stochastic steps,
i.e., selection, crossover and mutation. Note that Xi can be rewritten
using the following Np × N -real valued matrix form:

Xi =







xi
1(1) . . . xi

1(N)
...

. . .
...

xi
Np

(1) . . . xi
Np

(N)






(8)

In the following, the components of the GA generation (or iteration)
are briefly described.

Selection: Individuals are selected through a fitness-based process,
where fitter solutions (as measured by a fitness function) are typically
more likely to be selected. To this aim, each individual, xi

j is ranked with
respect to its cost function value h(xi

j), i.e. the lower its h(xi
j) value, the

higher is the ranking and therefore, the higher is its chances to be selected.
Then, Np individuals are randomly selected from Xi to become parents.

Introducing a binary Np × Np matrix Si, generated according to pre-
vious ranking and selection processes, with Si

j,k = 1 if the k-th individual
of Xi is the selected parent number j and Si

j,k = 0 otherwise, we define:

Xi+1,1 = SiXi. (9)

Crossover: Crossover is a genetic operator that combines (mates)
two parents to produce two new individuals called children. The idea
behind crossover is that the new individuals may be better than both
parents if they take the best characteristics from each of the parents.
Crossover occurs during evolution according to a user-definable crossover
probability. More precisely, we determine, with a probability pc ∈ [0, 1],
if two consecutive parents in Xi+1,1 exchange data or if they are directly
copied into the intermediate population Xi+1,2.
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Let us introduce a real-valued Np×Np matrix Ci, where for each couple

of consecutive lines (2j−1, 2j) with 1 ≤ j ≤ ⌊
Np

2
⌋. The coefficients of the

(2j − 1)-th and 2j-th rows are given by:

Ci
2j−1,2j−1 = λ1, Ci

2j−1,2j = 1 − λ1, Ci
2j,2j−1 = λ2, Ci

2j,2j = 1 − λ2

In this expression:

• λ1 = λ2 = 1 if parents are directly copied (with a probability 1−pc).

• λ1 and λ2 are randomly chosen in ]0, 1[ if a data exchange occurs
between the two parents (with probability pc).

Other coefficients of Ci are set to 0. If Np is odd, the Npth parent is
directly copied, i.e Ci

Np,Np
= 1.

This step can be summarized as:

Xi+1,2 = CiXi+1,1. (10)

Mutation: Mutation is a genetic operator that alters one or more
new parameter values for some individuals of the population. With these
new parameter values, the genetic algorithm may be able to increase the
population diversity and then the probability to escape from local minima.
Mutation occurs during evolution according to a user-definable mutation
probability, i.e. each child is modified (or mutated) with a fixed probabil-
ity pm ∈ [0, 1].

Let us consider, for instance, a random perturbation matrix Ei with
an j-th line equal to:

• a random vector ǫj ∈ IRN , according to the admissible space Θ, if a
mutation is applied to the ith child (with probability pm).

• 0 if no mutation is applied to the j-th child (with probability 1-pm).

Therefore, the new population can be written as:

Xi+1 = Xi+1,2 + Ei. (11)

which can be rewritten as:

Xi+1 = CiSiXi + Ei. (12)

The algorithm stops when a maximum number of iterations Ng is
reached, although other termination criteria could be defined based, for
example, on a tolerance ǫ. When the termination criterion is satisfied, the
GA returns an output denoted by GAO(X0; Np, Ng, pm, pc, ǫ) = argmin
{h(xi

j)/xi
j ∈ Xi, i = 1, ..., Np, j = 1, ..., Ng).

As Goldberg stated in [GOL 89], with these three basic evolution pro-
cesses, it is generally observed that the best obtained individual is getting
closer after each generation to the optimal solution of the problem.

Genetic algorithms do not require sensitivity computation, perform
global and multi-objective optimization and are easy to parallelize. How-
ever, their drawbacks remain their weak mathematical background, their
computational complexity, their slow convergence and their lack of ac-
curacy. So, it is recommended, when it is possible, to complete the GA
iterations by a descent method. This is especially useful when the func-
tional is flat around the minimum [DUM 89].
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2.5.2 Hybrid genetic algorithm

In this subsection, we describe a method to improve the performance of the
genetic algorithm based on the optimization of the GA initial population.

From a general point of view, we consider an optimization algorithm
CA : V → Θ, called core optimization algorithm, to solve (7). Here V
is the search space where we can choose the initial condition for CA.
The other optimization parameters of CA (such as the stopping criterion,
number of iteration, etc.) are fixed by the user.

We assume the existence of a suitable initial condition v ∈ V such
that, for a given precision ǫ > 0, |CA(v) − minx∈Θ h(x)| < ǫ. Thus,
solving numerically (7) with the considered core optimization algorithm
means to solve

{

Find v ∈ V such that
CA(v) ∈ argminx∈Θ h(x).

(13)

In the case where the core optimization algorithm is the GA presented
in Section 2.5.1, problem (13) can be rewritten as:

{

Find X0 ∈ V = ΘNp such that
GAO(X0; Np, Ng, pm, pc, ǫ) ∈ argminw∈Θ h(w)

(14)

where Np, Ng, pm, pc and ǫ are the parameters considered to be fixed.
The solution of (14) may be determined, for instance, by using the

following hybrid algorithm based on the secant method and denoted by
HGA (Hybrid Genetic Algorithm):

Algorithm 1 HGA(tℓ, Np, Ng, pm, pc, ǫ)

Input: tℓ ∈ IN, Np, Ng, pm, pc, and ǫ.
Randomly generate X0

1 = {x0
1,j ∈ Θ, j = 1, ..., Np}

for ℓ from 1 to tℓ do

Set ol ∈ argmin{h(x) : x ∈ GAO(X0
l ;Np, Ng, pm, pc, ǫ)}.

for j from 1 to Np do

x0
l+1,j =







x0
l,j if h(ol) = h(x0

l,j),

projΘ(x0
l,j − h(ol)

ol−x0

l,j

h(ol)−h(x0

l,j
)
) otherwise,

where projΘ : IR → Θ is a
projection algorithm over Θ defined by the user.

end for

Construct X0
l+1 = {x0

l+1,j ∈ Θ, j = 1, ..., Np}.
end for

Output: argmin{GAO(X0
m;Np, Ng , pm, pc, ǫ), m = 1, ..., tℓ}.

HGA intends to optimize, individual by individual, the initial popu-
lation of GAO. For each individual in the initial population X0

l , with
l = 1, 2, ..., tℓ−1:
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• If there is a significant evolution of the cost function value between
this individual and the best element found by GAO(X0

l ; Np, Ng, pm,
pc, ǫ), the secant method used in Step 1.2 generates, in the optimized
initial population X0

l+1, a new individual close to this best element.

• Otherwise, the secant method allows to create a new individual
in X0

l+1 far from the current solution given by GAO(X0
l ; Np, Ng

, pm, pc, ǫ).

The numerical experiments in [IVO 06-a] seem to indicate that con-
sidering algorithm GAO reduces the computational complexity of GAs.
In particular, this allows to consider smaller values for Np and Ng than
those required for GAO alone. A complete validation of this algorithm on
various industrial problems can be found in [IVO 06-c, IVO 09, IVO 06-b,
IVO 07, DEB 06].

3 Results

3.1 Optimal shape

In order to solve the optimization problem 5, we have use the particular
MATLAB implementation of the algorithm HGA, described in Section
2.5, included in the Global Optimization Platform software (freely avail-
able at http://www.mat.ucm.es/momat/software.html ). The algorithm
parameters are set to:

• tℓ1 = 20, Ng = 20, Np = 20 and ǫ = 0 (i.e., HGA runs until the
given computational complexity).

• The selection is a roulette wheel type [GOL 89] proportional to the
rank of the individuals in the population.

• The crossover is barycentric in each coordinate with a probability of
pc = 0.55.

• The mutation process is non-uniform with a probability of pm = 0.5.

• A one-elitism principle, that consists in keeping the current best
individual in the next generation, has also been imposed.

• 10 iterations of the steepest descent method are performed at the
end of the HGA starting from the obtained solution.

The number of cost function evaluation is about 6000. Each evalua-
tion of the cost function (6) (implemented using Matlab and COMSOL
Multiphysics 3.5a toolboxes [INF 09]), in both 2D and 3D cases, requires
about 40s on a Intel Quad-core 2.8Ghz 64bits computer with 12GB of
RAM. Thus, the optimization process takes approximatively 67 hours.

After running the optimization procedure described in the preceding
section, we obtain the optimal shape displayed in Figure 2. The total
volume has been reduced by 20% which is a significative improvement of
the bioreactor’s characteristics.
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Figure 2: Bioreactor shape obtained after the optimization process. The nor-
malized substrate concentration distribution and old shape are also presented.
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Figure 3: Dependence of Sout on Sin for the three different models: PDE,
ODE1 and ODE2.

3.2 Comparison between different models

Results are presented in Figure 4. As we can observe on this Figure,
for each Sin there exists a pair (α, d) which fits the PDE and ODE1
models, whose values increase as Sin increases. However, the values of
d present important oscillations when Sin is high. Those oscillations are
due to numerical instabilities which can be mitigated by decreasing the
time steps used in the ODE model. When solving the multi-objective
problem ODE2, we have found values of (α, d) which produce substrate
concentrations with tendencies similar to the PDE model (increasing then
constant). A more in-depth analysis should be conducted in order to
better match the ODE2 and PDE models. For instance, this could be
achieved by increasing the number of ODEs and variables considered.

4 Conclusions

In this work, we have presented two models, based respectively on PDEs
and ODEs, for describing the behavior of a particular bio-reactor. The
PDE model has been used to reduce the bio-reactor volume keeping its
cleaning efficiency. The second model, based on ODE, is computationally
low and has been calibrated to reproduce similar results to the PDE one.
Those first results are encouraging and further studies should contemplate
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Figure 4: Optimal values of α (continuous line) and d (dotted line) for each
value of Sin in ODE1.

a more complex shape optimization (for instance, considering the bio-
reactor height) and a more comple ODE model (involving more ODEs
and coefficients). Among possible extensions, we should consider cases
where the bioreactor is equipped with a system of retention of biomass
(either moving or fixed bed bioreactor).
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