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Abstract

We study an optimal control problem for a semilinear elliptic boundary value
problem giving rise to a free boundary due the fact that the nonlinear reaction
term of the state equation is not differentiable. The new aspect, with respect to
other control problems involving free boundaries, is that here the cost functional
explicitly depends on the location of the free boundary.

The problem is related to a simplified version of a model for the discharge
of brine in the sea by desalination plants.

The main difficulty is to show the continuous dependence (in measure) of
the free boundary with respect to the control function.

1 Introduction

We consider here the optimal control problem

min
u∈Uad

J(u)

where
J(u) =

∫
Ω

χS(y(x;u))∩B(x) dx+
∫

Ω

1
G(y(x;u))

dx, (1)

where χA is the characteristic function of a subset A ⊂ Ω (χA(x) = 1 if x ∈ A
and χA(x) = 0 if x ∈ Ω − A). The state function y(x;u) is the solution of the
boundary value problem{

−Ly(x) + f(y(x)) = u(x)χω in Ω,
y = 0 on ∂Ω, (2)

where L is an elliptic linear operator of the form

Ly =
N∑
ij=1

aij(x)
∂2y

∂xi∂xj
+

N∑
i=1

bi(x)
∂y

∂xi
(3)

with aij , bi ∈ L∞(Ω) such that there exist Λ, λ ≥ 0, for which

λ|ξ|2 ≤
∑

aij(x)ξiξj ≤ Λ|ξ|2, ∀ξ ∈ Rn. (4)



The set Ω ⊂ RN is a bounded domain, ω (an open set) and B (a compact set)
are two subset contained in Ω. The reaction nonlinearity is given by

f(t) = |t|q−1t, for some q ∈ (0, 1) (5)

which is a crucial fact in our study. The function G is a given real continuous
increasing function such that G(0) > 0.

We shall use the following notation: if y : Ω → R, we define N(y) =
{x ∈ Ω : y(x) = 0} the null set of y, S(y) = {x ∈ Ω : y(x) 6= 0}, and if
y(x) is a solution of (2) we set F = ∂S(u) ∩ Ω, the free boundary of y.

Before introducing the set of admissible controls we need to present an im-
portant growth condition property which we shall impose over all the possible
controls. We denote the set

Su(R) = {x ∈ S(u) : dist (x, ∂S(u)) = R}

for any R > 0, R < diam (ω). As we shall show later (see Example 1), if the
control u(x) is very flat near the boundary of its support then the continuous
dependence of the free boundary of the state solution may fails. This is the
reason why we shall suppose that any admissible control satisfies the following
condition: there exist R,C > 0 and γ = 2q

1−q such that for any x1 ∈ Su(R)

u(x) ≥ C(R− |x− x1|)γ if x ∈ BR(x1). (6)

Note that the above condition implicitly implies some kind of constraint on
the weak derivatives of u near the boundary of its support ∂S(u). Indeed, if we
take for instance n = 1, x0 ∈ ∂S(u) and xm ∈ BR(x1) (i.e. |xm−x1| < R) with
|x0 − x1| = R, then (since u1/γ(x0) = 0) (6) implies that

u1/γ(xm)− u1/γ(x0)
|xm − x0|

≥ C.

Passing to the limit, when xm → x0, we get that necessarily d
dx (u1/γ(x0)) ≥ C.

This explains why we shall use, in what follows, some requirements on the
derivatives of the controls in order to be able to ensure that condition (6) remains
true for a control u which is the limit (in some suitable sense) of a sequence of
admissible controls un satisfying each of them the associated property (6).

Given M , M∗, R0, C0 (C0 given by (11)), the set of admissible controls we
shall consider in this paper is defined by

Uad = {u ∈ H1(ω) ∩ L∞(ω) | 0 ≤ u(x) ≤M, ||u||H1(ω) ≤M∗ and
and u satisfies (6) for some R > R0 and C > C0}.

(7)

Theorem 1. Under the above assumptions there exists at least one minimum
of J in Uad.

We have to point out that the first term of the functional J is non trivial. In
fact due to the presence of the non differentiable nonlinearity, it is well known



that a dead core can be formed, and so the intersection S(y) ∩B is not always
equal to B (according to the properties of the control u). The existence of a non-
empty null set of y in Ω, and so of the associated free boundary F , is discussed
in the monograph [12] where the reader can find many references dealing also
with the existence and uniqueness of the state solution y(x).

As mentioned in the abstract, the problem under consideration is related to
desalination plants (see, for instance, Niepelt [18], Bleninger-Jirka [8], and Dı́az,
Sánchez, N. Sánchez, Veneros and Zarzo [14] as well as [7] and [16] for other
discharges problems). The modelling of the state equation usually concerns
with parabolic equations of the type ρ(∂y∂t + v·∇y)−∆y + λ |y|p−1

y = uχω on Ω× (0, T ),
y = 0 in ∂Ω× (0, T ),
y(0, x) = y0(x) on Ω,

where T > 0 is arbitrary and v is assumed to be given (for instance, as solution
of an uncoupled Navier-Stokes system). Here p ∈ [0, 1) is the order of the
chemical reaction produced in the brine discharges to seawater and we suppose
that y0 ∈ L∞(Ω), y0 ≥ 0 and that u ∈ L∞(0, T : L∞(ω)), u(t, x) ≥ 0. Since the
order of the chemical reaction is less than one, it is well known that some free
boundary is formed corresponding to the boundary of the support of y(t, . : u)
(which we shall denote by S(u(t, .)) and corresponds to the plume discharges).
Very often, the brine discharges (depending on the control of the brine flux
u(t, .) on a small open subregion of the spatial domain Ω) must obey to some
regulations protecting some given subregion of Ω (corresponding, for instances
to some beach or protected zones in the sea), reason why we include a cost
functionals as the above mentioned. Notice that the study carried out in the
present communication concerns the associated stationary problem.

Before giving the proof of our main theorem we have to introduce a central
tool in our study: the continuous dependence of the free boundary with respect
to the control. We end this communication with some numerical experiences
concerning two different types of controls.

2 On the continuous dependence of the free
boundary

The aim of this part is to prove the continuous dependence (in some sense to be
determined later) of the support of the solution of (2) with respect to the data
u. Let us recall first some properties of the solutions of (2). According to the
theory of quasilinear elliptic equations, whenever u is bounded and non negative,
the solution y belongs also to L∞(Ω), and due to the comparison principle it is
also a non negative function. Concerning some additional regularity, we recall
that in this case the solution belongs at least to C1,α(Ω̄) for some 0 ≤ α < 1.
For details we refer, for instance, to [12].



A curious property, studied in different papers, is the so called “non-diffusion”
property of the support (see [12], [3], [2] and [4]), which under suitable hypoth-
esis on u guarantees that the support of the solution coincides with that of the
datum u. So, in these special cases, it is clear that we can control exactly the
support of our solution just by considering the support of the data.

But here we are not interested in this very special case. Our aim is to control
the state function under suitable hypothesis ensuring that the support of the
solution is strictly larger than the one of the control.

The strict propagation of the support was studied initially in Álvarez-Dı́az
[3] and Álvarez [2] for the case L = ∆ and later generalized in Álvarez-Dı́az
[4] to the case in which the second order linear operator L is replaced by the
quasilinear operator ∆p. We point out that in [4] the case of the generic linear
elliptic operator L satisfying (4) was considered in the first part of the paper
(the non-diffusion of the support). We present here the extension for the general
operator L (see Theorem 3).

Our main idea in order to control the behavior of F(y) relies on the use of
some non-degeneracy property of the solution near its free boundary in a way
very close to the one followed by Álvarez and Dı́az in [3]. To be more precise
we want to prove the following result:

Theorem 2. Let u, un ∈ Uad, with un → u strongly in L2(ω) and weakly star in
L∞(ω), and let yn and y be the solutions of the associated problems (2). Then
there exists a subsequence (still labeled as yn) such that there exist ε0 > 0 and
h∞ : R+ → R+ continuous, with h∞(0) = 0 such that for all ε < ε0 and for
any element of this subsequence

|{x : 0 < yn(x) < ε}| ≤ h∞(ε). (8)

To prove this result we need to divide the analysis on two different subsets,
S(u) and Ω \ S(u).
On S(u) we use the family of subsolutions built in [4] to show the strict diffusion
of the support of y and the non-degeneracy property (8) for y on this part of
the domain. To do that we introduce the quantity

S = ess sup
Ω

∑
i

aij(x)−
∑
i,j

aij(x)
xixj
r2

+
∑
i

bi(x)xi

 , (9)

which we know to be finite because the coefficients of L are bounded.

Theorem 3. Let u ∈ L1
loc(ω), u ≥ 0, x0 ∈ ∂S(u) ∩ ω and y ≥ 0 such that

−L(y) + yq ≥ u in ω. (10)

Let 1 ≤ δ ≤ 1 + λ(βq + 1)/S, then there exist C,K1,K2,K3 > 0 such that if
ε > 0, x1 ∈ ω satisfy δε > |x1 − x0| ≥ ((δ + 1)/2)ε, Bε(x1) ⊂ ω and

u(x) ≥ C0|x− x0|βq a.e. x ∈ Bε(x1). (11)



Then

y(x) ≥
{
K1ε

β −K2|x− x1|β if 0 ≤ |x− x1| ≤ ε,
K3(δε− |x− x1|)β if ε ≤ ||x− x1| ≤ δε,

in particular, y > 0 in B(δε−|x1−x0|)(x0).

Idea of the Proof of Theorem 3. As in Álvarez-Dı́az [3], [4] (and Álvarez
[2]), it is enough to construct a local subsolution near the boundary of S(u).
In particular, it can be checked that, by choosing suitable constants, such a
subsolution can be built in the form

θ(r) =
{
θ1(r) = K1ε

β −K2r
β 0 ≤ r ≤ ε,

θ2(r) = K3(δ − r)β ε ≤ r ≤ δε.

The details will be given in a next publication by the authors.

Remark 1. A careful study of the influence of the convection velocity v(x) in the
formation of the free boundary for the stationary problem (but with y = 1 at
∂Ω and without any control u ≡ 0) was carried out in Pinsky [22] and [23]. His
results, when particularized to a ball, show the important difference between
inward and outward pointing convection vector fields.

With Theorem 3 we obtain property (8) on S(u) for all u ∈ Uad, which is
the statement of the following theorem.

Theorem 4. Let y be the solution of (2), and assume that u satisfies (6) for
suitable R,C > 0. Then for any compact K ⊂ Ω there exist ε0, k > 0 such that

|{x ∈ K ∩ S(u) : 0 < y(x) < εβ}| ≤ kε (12)

for any ε < ε0, with β = 2
1−q .

Proof. It is similar to Lemma 2.2 of [2] and so we drop it.

Now we pass to analyze the behavior of the solution on Ω \ S(u).

Theorem 5. Let D be an open subset of Ω, y ∈ W 1,p(D), for some p ≥ 1,
y ≥ 0, such that y(x) satisfies −Ly+ yq = 0, with q ∈ (0, 1), in a weak sense on
D. Then there exist ε0 and h : R+ → R+ continuous, with h(0) = 0 such that
for all ε < ε0

|{x ∈ D : 0 < y(x) < ε}| ≤ h(ε). (13)

Proof. By the Fleming-Rishel-Federer formula (see, e.g., Rakotoson [24] Propo-
sition 6.2.2) we know that if we define the function of distribution of y by

my(t) := |{x ∈ D : t < y(x)}|

and if we define

mo,y(t) := |{x ∈ D : t < y(x),∇y(x) = 0}|



then the function
m1,y(t) := my(t)−mo,y(t) (14)

is absolutely continuous on R. But, thanks to the assumptions on the coeffi-
cients of L, and since q ∈ (0, 1), we know (by the Agmon-Douglas -Nirenberg
regularity result) that y ∈ W 2,p

loc (D) and so, by Lemma A.4 of Kinderlehrer-
Stampacchia [17], if the subset {x ∈ D : ∇y(x) = 0} has a positive measure
then Lu = 0 a.e. on this set. Thus, since Ly = yq a.e. on D, we deduce that
necessarily {x ∈ D : ∇y(x) = 0} ⊂ {x ∈ D : y(x) = 0}. In other words,
mo,y(t) := |{x ∈ D : y(x) < t,∇y(x) = 0}| = 0 for any t ≥ 0. Thus, (14)
implies that my(t) is absolutely continuous on [0,+∞) and so

m1,y(t+ ε)−m1,y(t) =
∫ t+ε

t

(
∫
{u=s,∇y(x)6=0}

dLN−1

|∇y(x)|
)ds, for any t ∈ [0,+∞).

Finally, it suffices to note that

|{x ∈ D : 0 < y(x) < ε}| = m1,y(ε)−m1,y(0)

and to take

h(ε) :=
∫ ε

0

(
∫
{u=s,∇y(x)6=0}

dLN−1

|∇y(x)|
)ds.

Remark 2. Notice that the conclusion (13) is ensured merely on the subset
where the control vanishes.
Remark 3. The above theorem extends (in different senses) many previous re-
sults in the literature. For instance, in the special case of L = ∆, a stronger
property was obtained firstly in Caffarelli [10] for the obstacle problem (q=0)
and then in Phillips [21] and Alt-Phillips [5] for 0 < q < 1: it was shown there
that the property holds with h(ε) = ε2/(1−q). Notice that this is equivalent
to say that the function of distribution of y, my(t), is Hölder continuous near
t = 0. Our results is weaker in this sense (although it is enough for our pur-
poses) but it is more general since it applies to the general operators L under
the assumptions indicated above. We point out that the deep local study made
in Phillips [21] and Alt-Phillips [5] leads to many other qualitative information
on y, but it requires sharp properties on the elliptic operator and so it seems
difficult to extend this approach to the case of a general operator L.

Theorem 6. Let un → u in L2(Ω) and weakly star in L∞(ω), un ≥ 0, and
let yn and y the solutions of the associated problems (2). Then there exists
a subsequence (still labeled as yn) such that yn → y in W 2,p(Ω) for any p ∈
[1,+∞), y is a co-area regular function in N(u) ∩ S(y) (in the sense of [1])
and, in particular, there exist ε0 and h̄ : R+ → R+ continuous, with h̄(0) = 0
such that for all ε < ε0 and for any n of this subsequence

|{x ∈ N(un) : 0 < yn(x) < ε}| ≤ h̄(ε). (15)



Proof. Since un(x)χω−f(yn(x)) are uniformly bounded, by the Agmon-Douglas-
Nirenberg regularity result for linear operators (as L) we know that yn → y in
W 2,p(Ω) (the inverse of the operator L, with zero Dirichlet boundary condi-
tions, is a compact operator from Lp(Ω) into W 2,p(Ω) ∩W 1,p

0 (Ω)). Moreover,
from the monotonicity of the nonlinear term yq and Sobolev inequalities we
know that we know yn → y in L∞(Ω) and so y is the solution correspond-
ing to the limit control u. As in the previous Theorem, yn and y are co-area
regular functions in N(un) ∩ S(yn) and N(u) ∩ S(y) respectively (since, e.g.
|{x ∈ N(u) ∩ S(y) : y(x) = t and ∇y(x) = 0}| = 0). Then we know (see
[1] and the presentation made in [24]) that length of {yn(x) = t} →length of
{y(x) = t}, once t ∈ (0, ε0), and since |∇yn(x)| → |∇y(x)| uniformly in any
compact of Ω and

∫ ε
0

(
∫
{u=s,∇y(x)6=0}

dLN−1

|∇y(x)| )ds <∞, for any ε < ε0, we deduce
that ∃ h̄ : R+ → R+ continuous, with h̄(0) = 0 such that

hn(ε) =
∫ ε

0

(
∫
{un=s,∇yn(x) 6=0}

dLN−1

|∇yn(x)|
)ds ≤ h̄(ε).

for all ε < ε0 and for any n of this subsequence.

We want to give now a simple example showing how the non-degeneracy
condition (6) is, in some sense, optimal if we want to be able to have the
continuous dependence of the support with respect to the data. In other words,
we cannot expect it without a condition of the type (6).
Example 1. Let us consider the one dimensional case −ϕ

′′(r) + ϕq(r) = u(r) r ∈ (−2, 2),
ϕ(−2) = ϕ(2) = 0.

We set

ϕε(r) =


0 r ∈ (1, 2)
e−

1
1−r r ∈ (1− ε, 1)

C2 − C1 r ∈ (0, 1− ε)

and define ϕε(r) by reflection on the interval (−2, 0). The constants C1 and C2

have to be chosen so as to make ϕε ∈ C1(−2, 2), which means

C1 = e−
1
ε

1
2ε2(1− ε)

, C2 = e−
1
ε + e−

1
ε

1− ε
2ε2

.

We want to check now that these functions satisfy

−ϕ′′ε + ϕqε ≥ 0. (16)

On the interval [0, 1− ε) the functions are concave and positive and the result
follows. On (1− ε, 1) the behavior is the same of e−

1
1−r . In this case

−ϕ′′ε (r) + ϕqε(r) = e−
1

1−r

[
2

(1− r)3
− 1

(1− r)4

]
≥ 0



for 1 − r < 1 − r0 for some r0 > 0. So if we take ε < r0 we obtain (16) on
the whole interval. Now it easy to check that uε := −ϕ′′ε + ϕqε → 0 uniformly
as ε ↓ 0, and that ϕε → 0. Nevertheless S(ϕε) = (−1, 1), for any ε < r0, and
so there is not continuous dependence of the free boundary. We point out that
condition (12) is not satisfied by the family ϕε.

Let us show now how we can prove that the support depends continuously
(in measure) on u by using this kind of non-degeneracy property.

Lemma 1. Let {yn} converging in L∞(Ω) to y. Suppose that the following
non-degeneracy property holds uniformly for all n ∈ N: there exist ε0 > 0 and
h : R+ → R+ with limt→0h(t) = 0 and

|{x ∈ Ω : |yn(x)| < ε}| ≤ h(ε) ∀ε < ε0. (17)

Then |N(yn)÷N(y)| → 0, where ÷ stands for the symmetric difference of two
sets, i.e.

N(yn)÷N(y) = (N(yn) \N(y)) ∪ (N(y) \N(yn)) .

Proof. Let us consider the case of N(y)\N(yn) = N(y)∩S(yn), and let ε < ε0.
For n sufficiently large we know that |yn(x) − y(x)| < ε, for a.e. x ∈ Ω, and
hence |yn(x)| < ε a.e on N(y). But due to the non-degeneracy property (17)
we have that |{|yn < ε|}| ≤ h(ε), and so, we conclude that

|N(y) ∩ S(yn)| ≤ |{|yn| < ε}| < h(ε) ∀n ≥ n(ε).

Hence, letting ε → 0 and using the convergence to zero of h we obtain that
|N(y) ∩ S(yn)| → 0 as n→∞.

The proof that |N(yn) \N(y)| goes to zero follows similar arguments.

It is clear that we can divide the study of the continuous dependence in
measure of the support in two different cases: we are just interested in the
support of the solution restricted to a compact subset of Ω; we are interested
to its behavior on the whole Ω. The first case is the simplest one and we have
already all the instruments to state a result. The second one is much more
difficult. We need some further hypothesis on the data.

Proof of Theorem 2. By well known results on the continuous dependence of
the solution with respect to the data we obtain that yn → y in L∞(D).
Combining Theorem 6 and Theorem 4 and applying Lemma 1 with h∞(t) =
sup(h̄(t), kε1/β), we obtain for a subsequence of yn (still denoted with yn) that
(N(yn)÷N(y)) ∩D → 0 in measure.

To handle the case with the whole Ω, we know that all the solutions of
problem (2) related to the family of control Uad satisfy ||y||L∞(Ω) ≤ Y for some
Y > 0 (take, for instance, Y = M1/q). If we assume Y to be sufficiently small
we can suppose that all the supports are contained in the same compact in Ω.
In fact from Dı́az [12] we have that if ||y||L∞(Ω) ≤ Y , then



N(y) ⊃ {x ∈ N(u) : dist (x, S(u)) ≥ ε+W (ε) : for some : ε > 0} (18)

where the constante W (ε) depends on the L∞ norm of y. Of course this condi-
tion makes sense when

dist (∂S(u), ∂Ω) > ε+W (ε). (19)

At this point we apply Theorem 2 with the set D given by the one which
contains all the supports of the sequence of solutions and we obtain, in this
way, the global continuity in measure of the support.

Now we are ready to give the proof of Theorem 1.

Proof of Theorem 1. Let {un} ⊂ Uad be a minimizing sequence for J . As Uad

is bounded in H1(ω)∩L∞(ω) there exists a subsequence (which we still denote
with {un}) which converges weakly in H1(ω) and weakly star in L∞(ω) to a
function u, and hence (passing to another subsequence) also strongly in L2(ω).
Hence, from the convergence a.e. we obtain that u satisfies the condition (6).
Hence u belongs to Uad.

We will check now the continuity of J with respect to the L2(ω) norm. The
function 1

G(y) is uniformly bounded for all 0 ≤ y ∈ L2(Ω) because G(0) > 0
and it is increasing. So, using the Lebesgue dominate convergence theorem, the
functional

u 7→
∫

Ω

1
G(y(x;u))

dx

is continuous in L2(ω). From the previous results we already know that∫
Ω

χS(y(x;u))∩B(x) dx

is continuous in L2(ω) (again passing to a subsequence) and so, finally, we obtain
that

J(un)→ J(u) = min .

We point out that if we let q = 0 we end up with a variational inequality
of the type of the obstacle problem. In this case the nonlinearity must be
understood in the sense of multivalued maximal monotone operators i.e.

f(x) =

 1 x > 0,
x = 0,

0 x < 0.

The associated problem is relevant in many applications and have been inten-
sively studied in the literature (see, e.g. [10]). Also many associated optimal
control problems have been considered by many authors but in most of them



for other kinds of cost functionals which do not involve explicitly the location
of the free boundary (see, for instance, [6], [26], [25] and their references).

3 On some numerical experiences

We present here some numerical experiences: a research direction which is under
the present consideration by the authors. Here we shall limit ourselves to a
starting step of our study in which we get the comparison of the cost functional
to different indicative controls. A deeper numerical approach of the optimal
control requires more sophisticated tools due to the presence of the location of
the free boundary at the cost functional (for some alternative techniques on the
study of the approximate controllability of some related problems see [13]).

We start by simplifying the formulation of the problem in several ways. As
spacial domains we shall take Ω = (0, 4) and. B = (3, 4). As usual in the
numerical approximation of free boundary problems (see, e.g., [9], [20] and,
specially [19]) we approximate the reaction term f(y) by a C1 function fδ(y),
with f ′δ(y) ↗ +∞ if δ ↘ 0, and such that f(y) = fδ(y) if δ ≤ y. In our case,
we simply take δ = 1/1000 and

fδ(y) = arctan(1000y)

(a closer approximation of the function f(t) = |t|q−1t, for some q ∈ (0, 1) does
not modify strongly our qualitative commentary below).

We want to obtain some insights about the optimal control

min
u∈Uad

Jλ(u),

where
Jλ(u) = J1(y(u)) +

1
λ
J2(y(u)),

with

J1(u) =
∫

Ω
χS(y(x;u))∩B(x)dx and J2(u) =

∫
Ω

1
G(y(x;u))dx.

Note that the role of λ > 0 is to give some different relative weight to the penalty
term (obeying to some regulations protecting subregion B of Ω) represented by
J1(y(u)) in comparison to the pure economic losses represented by J2(y(u)).We
shall consider the special case of

G(s) = s+ 1.

Concerning the state equation we shall take ω = (1, 2) and consider the equation
associated to the numerical approximation on an original one (which is not
relevant in our case):{

−y”(x) + fδ(y(x)) = u(x)χω in Ω,
y = 0 on ∂Ω. (20)



As in the above mentioned references, we shall formally identify the support
of the solution y(x;u) with the set of points in which it is sufficiently small: for
instance

S(y(x;u)) ≈ Sδ(y(x;u)) := {x ∈ Ω : δ ≤ y(x;u)},

(since we know that under suitable conditions Sδ(y(x;u))→ S(y(x;u)) as δ ↘ 0
in some sense).

Before to study the cost functional for two different families of controls, let
us mention that, J1(u) is increasing (as Sδ(y(x;u)) ∩B increases) and that

0 ≤ J1(u) ≤ 1.

Analogously, at least formally, J2(u) is decreasing (as y(x;u) increases) and that

0 ≤ J2(u) ≤ 4.

Experience 1. Controls very concentrated near its support (coinciding with
ω).

Let us consider

u(x)χω(x) =
{
k if x ∈ (1, 2),
0 if x /∈ (1, 2),

for different values of k > 0. The numerical results have been obtained with
COMSOL Multiphysics: in particular, for k very large the set Sδ(y(x;u)) is
practically the whole domain Ω which explains the approximate value J1 = 1
in that case ). The results are shown in the following table for λ = 1 (it is quite
easy to play with different values of λ but we shall not do that here).

J1 J2 J (λ = 1)
k = 2 0 1.978173132097462 1.978173132097462
k = 6 0.388888885000000 1.321929984523549 1.710818869523549
k = 400 1 0.039256384523821 1.039256384523821

The numerical approximations of the state solutions (for k = 2, k = 6, and
k = 400) are presented in Figure 1 where we have pointed the dilatation of the
support of the solution with respect the support of the control.

(a) k=2 (b) k=6 (c) k=400

Figure 1: Experience 1



We remark that, curiously, the cases in which J1 = 0 (no penalty at all)
does not correspond with slower values of the total cost functional J and that
a larger invasion of the protected zone B may leave to a smaller value of J.
Experience 2. Controls moderately concentrated near its support (strictly in-
cluded in ω).

We consider now the case of controls of the form

u(x)χω(x) =
{
K(1, 5− x)(x− 1) if x ∈ (1, 1.5),

0 if x /∈ (1, 1.5),

for different values of K > 0. The results are shown in the following table for
λ = 1 .

J1 J2 J (λ = 1)
K = 100 0 1.943898475546399 1.943898475546399
K = 400 0.644444438000000 1.077663516211982 1.722107954211982
K = 4000 1 0.133968214033650 1.133968214033650

The numerical approximations of the state solutions (for K = 100,K = 400,
and K = 4000) are presented in Figure 2, where we have pointed the dilatation
of the support of the solution with respect the support of the control.

(a) K=100 (b) K=400

(c) K=4000

Figure 2: Experience 2

As before, the cases in which J1 = 0 does not correspond with slower values
of the total cost functional J . Moreover for K = 4000 the invasion of the
pollution is total (J1 = 1).
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