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Resumen

The objective of this article is to find the optimal trajectory of a pump-

ing ship, used to clean oil spots in the open sea, in order to pump the

maximum quantity of pollutant on a fixed time period. We use a model

previously developed to simulate the evolution of the oil spots concentra-

tion due to the coupling of diffusion, transport from the wind, sea currents

and pumping process and reaction due to the extraction of oil. The tra-

jectory of the ship is directly modeled by considering a finite number of

interpolation points for cubic splines. The optimization problem is solved

by using a global optimization algorithm based on a hybrid Genetic Al-

gorithm. Finally, we check the efficiency of our approach by solving a

numerical example considering based on real coefficients.
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1. Introduction

Recent oil contamination hazards in the open sea (see [20, 24]), shows the
importance of finding solutions to remove the oil in an efficient way. To do that,
there exist a large number of cleaning technologies [22]. Here, we focus in the use
of a pumping ship to clean the oil contaminated water [2, 21]. More precisely,
given a particular oil contamination scenario during a fixed time interval, we
are interested in finding an optimal trajectory for this pumping ship in order to
find an optimum cleaning process.

In order to solve this complex optimization problem, using mathematical
and computational methods, we need to model first the evolution of the oil
spots concentration resulting from the combined effects of diffusion, transport



(by wind and sea currents) and the action of the pumping ship (that implies
transport and a reaction phenomena). In this paper we use a finite volume
numerical model previously developed [1].

It is also necessary to formulate mathematically our optimization problem.
In particular, we need to model the ship trajectory by the use of a continuous
function generated by cubic spline interpolation, where the position of the finite
number of interpolation points are the optimization variables. The objective
function is designed to maximize the amount of oil pumped during the fixed
time interval.

Since this optimization problem seems to have various local and global min-
ima [8], we solve it by considering an hybrid Genetic Algorithm [3, 8, 12].

To verify the efficiency of our approach, we consider and solve numerically
a particular example based on real coefficient values [20].

In Section 2, we introduce the numerical model considered to simulate the
movement of the oil spots and the effect of the pumping ship. Section 3 presents
the optimal trajectory problem. Finally, in Section 4, we show the numerical
results over the considered example.

2. Mathematical model for oil spots movement

in the open sea

Here, we present a numerical model used to simulate the evolution of the
oil spots concentration, due to the effects of the sea, wind and pumping process
and previously introduced in [1]. First we introduce the continuous equations.
Then, this model is discretized by considering a Finite Volume approach.

2.1. Continuous model

We consider a spatial domain Ω = (xmin, xmax) × (ymin, ymax) ⊂ IR2, large
enough to ensure that the pollutant will stay in Ω during the corresponding
fixed time interval (0, T ).

We assume that the density of the pollutant is smaller than the one of the
sea water (so that it remains at the top) and the layer-thickness of the pollutant
is a known constant h [19].

We denote by c(x, t) the pollutant superficial concentration, measured as
the volume of pollutant per surface area at {x, t} ∈ Ω× (0, T ). We assume that
the evolution of c is governed by five main effects, namely:

Diffusion of the pollutant

Transport due to the wind

Transport due to the sea currents

Transport and sink due to the pumping process



Furthermore, we consider that the pumping ship follows a trajectory γ(t) ∈
C0([0, T ],Ω), t ∈ [0, T ], that remains inside the region Ω and the pump is a
cylinder with a cross section of radius Rp and height hp (we suppose hp ≥ h),
that pumps the fluid at a velocity Q in the radial directions.

Under these assumptions, the space-time distribution of c is governed by
the following reaction-advection-diffusion type system [1, 11] (the existence,
uniqueness and continuous dependence with respect to data of the solution of
this system is mathematically well known [16]):



























∂c

∂t
−∇ · d∇c + ∇ · c w + ∇ · c s

+∇ · c p = −
2Q

Rp

c χB(γ(t),Rp), in Ω × (0, T ),

c = 0, on ∂Ω × (0, T ),
c = c0, in Ω × {0},

(1)

where:

B(γ(t), Rp) is the ball of center γ(t) and radius Rp,

p(ξ, t) =











QRp

−−−→
γ(t)ξ

|
−−−→
γ(t)ξ|2

, if ξ ∈ Ω\B(γ(t), Rp),

0, if ξ ∈ B(γ(t), Rp),

see details in [1].

χB(γ(t),Rp)(ξ) =

{

0, if ξ ∈ Ω\B(γ(t), Rp),
1, if ξ ∈ B(γ(t), Rp),

function c0 : Ω → IR is the initial superficial concentration, which we
assume with compact support in Ω,

d =

(

d1 0
0 d2

)

and d1, d2 >0 are the diffusion coefficients in the west-

east and south-north directions,

w is the horizontal components of the wind velocity multiplied by a suit-
able drag factor,

s is the sea current velocity.

2.2. Numerical approximation model

A Finite Volume numerical method (see [5, 6, 17] for implementation and
convergence results) has been used to approximate numerically the solution of
the continuous model presented in 2.1 [1]. More precisely, given I, J ∈ IN we
divide Ω = (xmin, xmax)×(ymin, ymax) into control volumes Ωi,j . For i = 1, . . . , I;
j = 1, . . . , J , we define

Ωi,j = (xmı́n + (i − 1)∆x, xmı́n + i∆x) × (ymı́n + (j − 1)∆y, ymı́n + j∆y), (2)



with ∆x =
xmáx − xmı́n

I
and ∆y =

ymáx − ymı́n

J
. We define ∆t =

T

N
, where

N ∈ IN is the number of time steps.
Considering a fully implicit time discretization of backward Euler type for

the time discretization of (1) with an upwind scheme for the transport term,
one obtains at t = n∆t on the cell Ωi,j , for i = 1, . . . , I and j = 1, . . . , J , the
following scheme:

C0
i,j = C0(ξi,j), ξi,j being the center of cell Ωi,j ; (3)

for n ≥ 0 we compute {Cn
i,j} (with Cn

i,j ≈ c(n∆t, ξi,j)) from {Cn−1
i,j } using :

Cn
i,j − Cn−1

i,j

∆t
+ 2

(

d1

(∆x)2
+

d2

(∆y)2

)

Cn
i,j

−
d1

(∆x)2
(

Cn
i+1,j + Cn

i−1,j

)

−
d2

(∆y)2
(

Cn
i,j+1 + Cn

i,j−1

)

+
1

∆x
[máx(0, V n

x,i,j− 1
2

)Cn
i,j + mı́n(0, V n

x,i,j− 1
2

)Cn
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−máx(0, V n
x,i−1,j− 1

2
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i−1,j − mı́n(0, V n

x,i−1,j− 1
2

)Cn
i,j ]

+
1

∆y
[máx(0, V n

y,i− 1
2
,j
)Cn

i,j + mı́n(0, V n
y,i− 1

2
,j
)Cn

i,j+1

−máx(0, V n
y,i− 1

2
,j−1

)Cn
i,j−1 − mı́n(0, V n

y,i− 1
2
,j−1

)Cn
i,j ]

+
2πRpQ

∆x∆y
Cn

i,jχ
p,n
i,j = 0,

(4)

where in (4)

Cn
k,l = 0 if k ∈ {0, I + 1} or l ∈ {0, J + 1},

Ωip,n,jp,n
is the cell containing γ(n∆t), χp,n

i,j = 0 if {i, j} 6= {ip,n, jp,n} and
χp,n

i,j = 1 if {i, j} = {ip,n, jp,n} (if γ(n∆t) is in the boundary of several
cells we choose the cell of larger index),

V(ξ, t) = (Vx(ξ, t), Vy(ξ, t)) = w(ξ, t) + s(ξ, t) + p(ξ, t), with ξ ∈ Ω and
t ∈ [0, T ],

V n
x,i,j− 1

2

= Vx((xmı́n + i∆x, ymı́n + (j −
1

2
)∆y), n∆t),

V n
y,i− 1

2
,j

= Vy((xmı́n + (i −
1

2
)∆x, ymı́n + j∆y), n∆t).

The solution of the non symmetric linear system (4) is obtained by using a
stabilized Bi-Conjugate gradient type algorithm [1, 15, 23].



3. Optimal trajectory

As mentioned in Section 1, we address the problem of finding an optimal
trajectory for the pumping ship, for a particular oil contamination scenario
during a fixed time interval (0, T ).

For the given time T , we minimize the concentration c(ξ, T ) of the remaining
pollutant in Ω, which is equivalent to maximize the amount of pumped oil from
the sea. More precisely, we are interested in solving the following optimization
problem:

mı́n
γ∈Dc

Jc(γ) (5)

where Jc(γ) =
∫∫

Ω
c(0, x)dx−

∫ T

0
c(τ, γ(τ))Qdτ is the objective function, Dc =

{γ ∈ C1([0, T ],Ω) such that |γ′(t)| ≤ Vmáx, ∀t ∈ [0, T ]} is the feasible region and
Vmáx is the maximum velocity of the ship when performing the pumping process.
This restriction on the length of γ avoids to consider trajectories implying non
realistic ship velocities.

In order to find numerically a smooth optimal pump trajectory (i.e. without
sharp corners), we consider trajectories built by using cubic spline interpolation
through nnpi ∈ IN 2-D interpolation points.

The set of interpolation points, denoted by Pint, is constructed by using a
polar representation:

Pint = {(r1, θ1), ..., (rnnpi
, θnnpi

)},

where ri ∈ [0, rmáx], with rmáx = Vmáx ∗ (T/nnpi) (modeling the ship velocity
constraint), and θi ∈ [0, 2π), for i = 1, ..., nnpi.

Given an interpolation point expressed in Cartesian coordinates (xint
k , yint

k ),
with k ∈ {1, ..., nnpi − 1}, the next one (xint

k+1, y
int
k+1) is built as:

xint
k+1 = xint

k + rk cos(θk),

yint
k+1 = yint

k + rk sin(θk).

The resulting interpolated trajectory is denoted by γ or (γx, γy) or γ(ri,θi).
Furthermore, we need to avoid the ship leaving the domain of study Ω. To

accomplish this, we project the trajectory γ using an orthogonal projector on
Ω, called PrΩ, defined as:

PrΩ(γ(ri,θi)(τ)) =
(

máx(mı́n(γx(τ), xmax), xmin),

máx(mı́n(γy(τ), ymax), ymin)
)

.
(6)

Thus, the numerical optimization problem that we solve, is of the form:

mı́nJ(ri, θi)
subject to

0 ≤ ri ≤ rmáx , i = 1, ..., nnpi,
0 ≤ θi < 2π , i = 1, ..., nnpi,

(7)



where J(ri, θi) =
∫∫

Ω
c(0, x)dx −

∫ T o

0
c(τ, γ(ri,θi)(τ))Qdτ is the objective func-

tion and {(ri, θi)}
nnpi

i=1 ⊂ D are the discrete optimization variables with D =
[0, rmáx] × [0, 2π) is the feasible region. The total number of optimization vari-
ables is N = 2nnpi.

Since problem (7) has many local and global minima [8], we need to use a
global optimization method capable to find the global solution. Here, we use the
Global Optimization Platform software (GOP), freely available at http://www.
mat.ucm.es/momat/software.html, with a genetic algorithm [9, 10] as the core
algorithm and where the initial population is optimized by using a multi-layer
secant method [12]. The algorithm parameters used during this work are given
in [8]. A complete description and validation of this algorithm can be found in
[4, 13, 14].

4. Numerical experiments

In this section, we check the efficiency of our approach by considering a
particular numerical example.

4.1. Numerical example

We have created a representative example by considering reasonable (al-
though fictitious) values for the model parameters based on literature [2, 18, 19].
The considered parameters are the following:

The computational domain Ω is defined by xmin = 0 m, xmax = 2 × 104

m, ymin = 0 m and ymax = 2 × 104 m.

The constraint rmáx = 1000 m.

The number of interpolation points is nnpi = 10.

The simulation time is equal to one day: T = 86400 s.

We consider a discretization mesh of (I, J)=(50, 50).

The time step is ∆t = 172,8 s (i.e. N =500).

The diffusion coefficients are d1 = d2 = 0,5 m2/s.

The pump parameters are Q = 100 m/s and Rp = 1 m.

We consider two circular spots defined by:

c(ξ, 0) = χB((8000,8000),1200)(ξ) + χB((8000,12000),1200)(ξ). (8)

The wind multiplied by a drag factor plus the sea velocity field, s(ξ, t) +
w(ξ, t), is defined by

( x

4xmax
cos(

πt

3600
),

y

4ymax
sin(

πt

3600
)
)

, (9)
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Example 1− initial spots
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Figura 1: Initial position of the pollutant spots (in black the concentration
value is 1 whereas in white is 0) in the domain Ω for the considered example
introduced in Section 4.1. The initial position (X) of the pump is also shown.

for t ∈ [0, T ] and ξ = (x, y) ∈ Ω.
The initial position of the pump is set to (10000, 14000). The initial pollutant

concentration and initial position of the pump are depicted in Figure 1.
Furthermore, we have designed a fixed trajectory crossing the initial oil spots

at constant velocity, as a reference to compare with the optimal trajectory ob-
tained by using the hybrid Genetic Algorithm. This fixed trajectory is depicted
by Figure 2.

4.2. Results

We have used a quad-core computer 64-Bit PC of 2.8Ghz and 12 GB of local
memory. The code is programmed in Fortran 90. Double precision values were
used in all computations. Each cost function evaluation takes around 1 second.
The total optimization process requires 48000 seconds.

The resulting optimal and fixed trajectories, and their respective final oil
concentration distributions, are depicted in Figure 2 (which can be compared
with the initial concentrations in Figure 1). We point out that the gray-scale has
been modified in order to emphasize the difference between the concentration
distribution for the optimal and for the fixed trajectories.

The final percentage of remaining oil obtained with the optimal and fixed
trajectories is 1.98 and 12.34, respectively. We can observe that the percentage



of the remaining oil for the optimal trajectory is sufficiently lower than the fixed
one. This shows the efficiency of our approach.

5. Conclusions

In this work, we have used a novel model, as reported in [1], to simulate the
evolution of oil spots in the open sea considering the wind and sea currents and
the effect of a pumping ship used to clean it.

We have modeled the trajectories considering cubic spline interpolation tech-
niques. Those interpolation points are used as the independent variables for an
optimization problem designed to maximize the amount of pumped oil during
a fixed time interval. We have used an hybrid Genetic Algorithm to solve our
optimal trajectory problem.

This approach has been validated by considering a numerical example. The
obtained results for simulations show the efficiency of our approach. The devel-
oped tool can then be used for real cases.

A full description of this work can be found in [1, 8].
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