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Resumen

In this work, we describe a model to simulate the spread of within-
and between- farms transmission of Classical swine fever virus (CSFV). It
is a spatial hybrid model, based on the combination of a stochastic indi-
vidual based model for between-farm spread with a Susceptible-Infected
model for within- farm spread. An important characteristic of this model
is the use, as an input, of the information available in real databases. The
aim of this model is to quantify the magnitude, duration and risk zones
of potential CSFV epidemics to provide support for the decision making
process in future CSFV outbreaks. Model parameters and assumptions
are provided and an illustration of the model’s results is performed by
using available data from the Spanish region of Segovia. The outputs are
also compared with those given by another model.

Keywords: Epidemiological modeling; Individual Based model; Risk An-
alysis; Classical Swine Fever.

1. Introduction

Modeling and simulation are important tools to fight diseases [1]. Each dis-
ease has its own characteristics and, therefore, most of them need a well-adapted
mathematical model in order to be able to tackle real-life situations.

In this article, we consider the Classical Swine Fever (CSF). CSF is a highly
contagious viral disease of domestic and wild pigs caused by the Classical Swine
Fever Virus (CSFV) [7]. It generates important economical losses (as infected
pigs cannot be commercialized) in the affected regions [10]. Despite the efforts
to control and eradicate CSF, this disease remains endemic in many countries
of America, Africa and Asia and sporadic outbreaks have been affecting half of
the European countries from 1996 to 2007 [8, 3]. Due to the different ways of
CSFV spread (airborne, contact with infected animals, etc.) [3], it is difficult to
extrapolate the routes of infection and consequences of a CSF epidemic from one
region to another. Furthermore, the magnitude and duration of a CSF epidemic



change depending on the epidemiological and demographic characteristics of the
infected region and the timing and effectiveness of the applied control measures
[5, 7, 11].

The study of the potential spread patterns of CSFV into a region may help
to identify risk areas to improve the prevention and management of future
outbreaks. In CSF-free areas, a good way to quantify the magnitude of potential
CSF epidemics and evaluate the efficiency of different control measures is to use
mathematical models. Recently, some models have been developed to simulate
CSFV spread into CSF-free regions such as Germany, Netherlands and Spain
[5, 6, 8]. However, most of those models only focus on the between-farm spread
of the CSFV, with poor assumptions regarding the within-farm spread and
do not explicitly consider the specific farm to farm contact patterns (such as
commercial network, shared vehicles, etc.) into the studied region.

In this work, we consider a spatial hybrid model, called Be-FAST (Between-
Farm-Animal Spatial Transmission), used to simulate both within-farm and
bet-ween-farm CSFV spreads and to provide CSFV risk maps of the consid-
ered region. This model is based on the combination of a stochastic Individ-
ual Based model [5], simulating the between-farm spread, with a Susceptible-
Infected model [1, 6], simulating the within-farm spread. It has been previously
described from the veterinarian point of view (i.e., choice of the CSFV trans-
mission routes to be modeled or neglected, interpretation of the results, etc.) in
[9].

Here, after recalling in Section 2 the main characteristics of the CSF, we give
an extended description of the Be-FAST model from the mathematical perspec-
tive (i.e., detailed equations, numerical schemes, etc.) in Section 3. Finally in
Section 4, in order to validate our model, we consider numerical experiments,
based on real databases (i.e., farms description, commercial network, etc.) of
the Spanish region of Segovia provided by the Regional Government of Castilla
and Leon and the Spanish Ministry of the Environment and Rural and Marine
Affairs [2]. We compare the results given by our model with those obtained
with another model, namely InterSpread Plus, considering the same simula-
tions. Moreover, we also take into account real data observed during a real CSF
outbreaks in this region [8].

2. Classical Swine Fever characteristics

In order to help in the understanding of the Be-FAST model, described in
Section 3, we briefly explain the CSF evolution process, the routes of trans-
mission and present some control measures used to fight CSFV. A complete
justification of the assumptions and simplifications described in this Section,
and considered in our model, can be found in [9].



2.1. CSF evolution

CSF results from infection by CSFV, a member of the genus Pestivirus and
family Flaviviridae [7]. CSFV affects both domestic and wild pigs. When a pig
is not infected by CSFV, it is categorized in the Susceptible state (denoted by
Sp). Once it is infected, it passes successively through the following states [10]:

Infected (denoted by Ip): The pig is infected by CSFV but cannot infect
other pigs and have no visible clinical signs (fever, lesion, etc.). The mean
duration of a pig in this state is 7 days and it is called latent period. Then,
it passes to be infectious.

Infectious: The pig can infect other pigs but does not have clinical signs.
The mean duration from infectious to the development of clinical sign is
21 days and it is called incubation period. Then, the pig has clinical signs.

Clinical Signs: The pig develops visible clinical signs and still infect other
pigs. After a period between two weeks and three months the pig can be
recovered or died due to the disease.

We note that, the CSF death and recuperation of pigs are assumed to be ne-
glected, because the time period considered in our simulation is short (≤ one
year) and the slaughter of infected animals is considered.

Those four states can be also applied at the farm level by considering that
a farm is [5]: If all pigs in the farm are in the susceptible state the farm is
classified as Susceptible (denoted by Sf ); If at least one pig is in the infected,
infectious or clinical signs state tje farm is classified as Infected (denoted by
If ), Infectious (denoted by Tf ) or Clinical Signs (denoted by Cf ), respectively.
A farm either in the state If , Tf or Cf is assumed to be a contaminated farm.
Moreover, a farm in the state Tf or Cf is considered as a spreading farm.

2.2. Routes of transmission

The main ways of CSFV spread (i.e., that a susceptible pig becomes infected)
are the following [3]: by contact with an infected animal (this way of spreading
is called direct contact and, by opposition, all the other routes of spreading are
referred to as indirect contacts); by contact with contaminated fomites such as
vehicles, materials or peoples (in particular, veterinarians, visitors or neighbor-
hood farmers); by airborne spread.Other alternative routes have been neglected
here [3].

2.3. Control measures

Once an animal becomes infected, another important concept in epidemi-
ology is its detection and application of control measures by the authorities
[10].

When an infected pig is detected in a farm, this farm is classified as De-
tected. Generally, in a zone free of CSFV (i.e., before the detection of the first



contaminated farm, called index case), the detection occurs when pigs present
clinical signs and is due to the awareness of the own farmers or private veteri-
narians [7]. When the first farm is detected, the awareness of the farmers and
authorities is widely increased and the detection delay decrease [5]. Moreover,
the detection can be also due to the control measures presented below.

Finally, in order to control a potential CSF epidemic, some measures defined
by the European and Spanish legislation, described in [2] and in Section 3.6,
are considered here:

Movement restrictions: Outgoing or incoming movements in farms inside
the considered region are limited during a specified time interval.

Zoning: Zones, called control and surveillance zones, are defined around a
detected farm. Surveillance activities are applied within those zones during
a fixed time period.

Depopulation: All the animals of a detected farm are slaughtered.

Tracing: Tracing activities involve the process of determining contacts that
have left or entered a detected farm during a time interval preceding the
detection.

3. Mathematical description of the model

In this Section, we describe in detail the Be-FAST model. First, we present
the general structure of our model. Then, one by one, we introduce the math-
ematical formulation of all the Be-FAST processes related to the input pa-
rameters, the within-farm and the between-farm CSFV spread and the control
measures.

3.1. General description

The Be-FAST model is used to evaluate the daily spread of CSFV within
and between farms into a specific region.

At the beginning of the simulation, the model parameters are set by the user.
Those referring to farms and transport of pigs are described in detail in Sec-
tion 3.2. The other ones are described in Sections 3.3-3.6. Furthermore, control
measures, presented in Section 2.3, are also implemented and can be activat-
ed/deactivated, when starting the model, in order to quantify their effectiveness
to reduce the magnitude and duration of the CSF epidemic.

The Be-FAST model is based on a Monte Carlo approach that generates
NS ∈ IN possible epidemic scenarios (i.e., evolution of the CSFV). More pre-
cisely, at the beginning (i.e., at time t = 0) of each scenario, denoted by (SCEm)
with m = 1, 2, ..., NS , all the farms are in the susceptible state except one ran-
domly selected farm, which is assumed to have one infectious pig and is classified
as infectious. Then, during a time interval [0, Tmax], with Tmax ∈ IN a maxi-
mum simulation day number, the within-farm and between-farm daily spread



routines, described in Sections 3.3 and 3.4, respectively, are applied. Moreover,
a daily process simulating the detection of contaminated farms by authorities
and a daily process modeling the activated control measures, presented in Sec-
tions 3.5 and 3.6, respectively, are also run. If, at the end of a simulation day,
the CSF epidemic disappears, the scenario (SCEm) is stopped and we start the
next scenario (SCEm+1).

When the simulation is over (i.e., the scenario (SCENS
) is finished), many

kind of outputs can be generated (see Section 4.1 fro some examples).

3.2. Farm and transport of pigs inputs

We consider a study region containing Nfr ∈ IN farms. For each farm, iden-
tified as farm number i (also called, in order to simplify the notations, farm i),
with i = 1, ..., Nfr, the following data are given: the geographical location (i.e.,
latitude and longitude) of the farm centroid; the number of pigs at the first day
of the simulation (t = 0), denoted by SDAi ∈ IN; the type of production of
the farm denoted by Ti ∈ IN: Farrowing (young pigs), Fattening (adult pigs)
or Farrow-to-Finish (mixed pigs) [6]. the integrator group (i.e., groups of farms
who share material and vehicles) identifier; the Sanitary Defense Association
(SDA) group (i.e., groups of farms who share veterinarians) identifier.

Furthermore, the following information of all farm to farm pig shipments,
occurring during a specific time interval (here, in Section 4.1, the year 2008),
are also provided: the number of pigs shipped; the date of the shipment; the
farms of origin and destination of the shipment.

3.3. Within-farm CSFV spread

The daily CSFV spread within a particular contaminated farm i is modeled
by using a discrete time stochastic Susceptible-Infected (SI) model [1, 6]. The
pigs in this farm are characterized to be in one of those two states: Susceptible
or Infected, described in Section 2.1. In order to reduce the computational com-
plexity of our model, the Infectious and Clinical Signs states are simulated only
at the farm level (more details are given in Section 3.4). Because the time period
considered is shorter than one year, the natural pig mortality is also neglected.

Under those assumptions, the evolution of Sp,i(t) and Ip,i(t), denoting the
number of susceptible and infected pigs in farm i at time t, respectively, is given
(in a continuous version) by

dSp,i(t)

dt
= −βi

Sp,i(t)Ip,i(t)

Sp,i(t) + Ip,i(t)
,

dIp,i(t)

dt
= βi

Sp,i(t)Ip,i(t)

Sp,i(t) + Ip,i(t)
, (1)

where βi ∈ IR is the daily transmission parameter set to βfar =0.66, βfat =0.40
or βftf =0.53 depending of the farm type Ti: Farrowing, Fattening or Farrow-
to-Finish pig farms, respectively [6].

System (1) is discretized by considering a time step of one day.



3.4. Between-farm CSFV spread

The CSFV spread between farms is modeled by using a spatial stochastic
Individual Based model [5]. In this model, farms are classified in one of those
four states: Susceptible (Sf ), Infected (If ), Infectious (Tf ) and Clinical signs
(Cf ). Those states are described in Section 2.1.

The daily transition from a particular farm state to other state is modeled
by considering direct contacts, indirect contacts and the natural evolution of the
CSF presented in Sections 2.1 and 2.2. Those transition processes are described
in detail in Sections 3.4.1-3.4.3.

3.4.1. State transition due to direct contacts

The CSFV spread by direct contacts is assumed to occur due to the move-
ments of infected pigs between farms. Those movements are estimated by using
the data of the shipment of pigs introduced in Section 3.2. Since the transports of
pigs are similar from one year to another [2], we generate random movements,
respecting the database behavior (with data from previous years), instead of
using the exact ones.

More precisely, at each simulation day t, we simulate those shipments by
performing this process:

We compute ENM(t), the estimated number of movements occurring during
the simulation day t, by considering a Poisson distribution with mean NM(t),
where NM(t) ∈ IN is the number of movements occurring at day t in our
database. Then, for each simulated movement:

We select randomly the farm of origin of the movement i ∈ [1, ..., Nfr] and
the farm of destination of the movement j ∈ [1, ..., Nfr], with j 6= i, by consid-
ering the discrete probability IPM , computed once before the simulations and
only each time we get a new database (we note that other parameters related
to the database may be calculated once before running the model), defined by:

IPM ((i, j) = (k, l)) =
Mmov(k, l)

∑Nfr

m=1

∑Nfr

n=1,n 6=m Mmov(m,n)
, (2)

where k ∈ [1, ..., Nfr], l ∈ [1, ..., Nfr], k 6= l and Mmov(k, l) ∈ IR is the number
of movements from farm k to l in the database plus 10−6 (to take into account,
with a low probability, possible movements not occurring in our database).

The, we compute np(i,j)(t) ∈ IN, the number of pigs moved during this
movement from farm i to farm j, by considering:

np(i,j)(t) = mı́n

{

Ceil

(

np(i,j)
Sp,i(t) + Ip,i(t)

Ni(0)

)

, Sp,i(t) + Ip,i(t)

}

, (3)

where np(i,j) ∈ IR is the mean number of pigs moved between those farms in
our database and Ceil(x) returns the nearest integer greater or equal to x ∈ IR.
In the case of no movement from farm i to farm j in the database, np(i,j) is set
to the mean number of moved pigs, considering all the database movements.



Finally, we move np(i,j)(t) pigs from the origin farm i to the destination
farm j. Those pigs are selected randomly in Sp,i(t) and Ip,i(t), considering that
each pig has the same probability to be selected than the other ones. We denote
by np(i,j),S(t) ∈ IN and np(i,j),I(t) ∈ IN the number of susceptible and infected
pigs that are moved during the simulated shipment, respectively. In addition, if
np(i,j),I(t) > 0, the state of farm j is set to the state of farm i in the following
cases: the state of farm j is Sf ; the state of farm j is If and the state of farm
i is Tf or Cf or ; the state of farm j is Tf and the state of farm i is Cf . In all
other cases, the state of farm j remains unchanged.

3.4.2. State transition due to indirect contacts

As specified in Section 2.2, the CSFV spread due to indirect contacts is
assumed to occur by either movements of vehicles transporting pigs, movements
of vehicles transporting products, movements of SDA persons or the so called
’local’ spread (i.e., spread due to contacts with the neighborhood which include:
airborne spread and contacts with contaminated persons and fomites in the
vicinity).

In Paragraphs A-D, we describe in detail those four kinds of indirect contacts
and the way they contribute to the CSFV spread from farm to farm. Then, in
Paragraph E, we show how this spread affects farms at the level of pig number
and state.

A- Movements of vehicles transporting pigs:

We consider the same movements as the ones generated in Section 3.4.1. If
the farm of origin of the transport is either in the state Tf or Cf , the truck
transporting pigs is considered as contaminated and, thus, can infect the farm
of destination. In that case, we assume that the probability of CSFV infection in
the farm of destination due to contact with the contaminated vehicle is modeled
by using a Bernoulli distribution with mean 0.011 [11].

B- Movements of vehicles transporting products:

Contacts with vehicles transporting products from farm to farm (also called
integrator vehicles) are assumed to occur only among the farms belonging to
the same integrator group and with the following assumptions:

The daily number of contacts with integrator vehicles per farm is assumed
to be Poisson distributed with a mean of 0.4 [5].

An integrator vehicle can visit a maximum of 4 farms per day [2].

An integrator vehicle is contaminated if, previously, it has visited a spread-
ing farm (i.e., a farm either in the state Tf or Cf , see Section 2.1) [5, 11].

The probability of CSFV infection in a farm per contact with a contami-
nated integrator vehicle is modeled by using a Bernoulli distribution with
mean 0.0068 [11].



Thus, for each simulation day, we build the routes of those integrator vehicles
and simulate the way they spread CSFV by considering the following process:

For each integrator groups INT , we perform those steps:

For each farm in INT , we compute the number of integrator vehicles
visiting it by using a Poisson distribution with mean 0.4.

Then, we list the farms that are visited by integrator vehicles and we
rearrange this list, denoted by LINT , randomly (taking into account that
a same farm cannot be visited two times consecutively).

Next, a first vehicle is sent to visit the first four farms in LINT , following
the list order. Each fourth farm, until the end of LINT , we consider a
new integrator vehicle (non contaminated) starting from the next farm in
LINT .

During each simulated trip, a vehicle becomes contaminated at the mo-
ment it visits a spreading farm and can infect other farm by considering
a Bernoulli distribution with mean 0.0068.

C- Movements of SDA persons:

The CSFV spread by contact with SDA persons visiting farms is assumed to
occur only between farms belonging to the same Sanitary Defense Association
(SDA) group.

The same process used in Paragraph B, to model the movements of integrator
vehicles, is applied to simulate those contacts with the following parameters:
The daily number of SDA people contacts per farm is assumed to be Poisson
distributed with a mean of 0.3 [5]; a SDA person can visit a maximum of 3
farms per day [2]; a SDA person can only be contaminated if, previously, he
has visited a spreading farm [5, 11]; the probability of CSFV infection in a farm
per contact with a contaminated SDA person is modeled by using a Bernoulli
distribution with mean 0.0065 [11].

D- Local spread:

The CSFV local spread is assumed to occur to farms in the proximity of a
farm either in the state Tf or Cf . It is mainly due to the airborne spread and
contacts with contaminated neighborhood persons and fomites.

In our case, the daily probability of CSFV infection in a farm j due to the
local spread from a spreading farm i at simulation day t is modeled by con-
sidering a Bernoulli distribution with mean (Ip,i(t)/N(0))LSM(d(i, j)), where

N(0) = (
∑

i Ni(0))/Nfr is the mean number of pigs per farm at day 0, d(i, j)
is the distance between farms i and j and LSM(x) ∈ [0, 1] is the mean daily
probability of CSFV infection due to local spread between two farms at a dis-
tance of x > 0 (in meter). Moreover, LSM(x) is build by interpolating the data
presented in Table 1 [5].



Cuadro 1: Interpolation points used to compute LSM(x) in function of the
farms distance x (in meter) [5].

Distance in meter 0 150 250 500 1000 2000

LSM 0.02 0.014 0.009 0.0038 0.0019 0

E- New infection and state transition:

For each new CSFV infection occurring in farm j during the processes de-
scribed in Paragraphs A to D, if Sp,j(t) ≥ 1, we infect one new pig in farm j.
Furthermore, if the state of farm j is Sf , we change it to If .

3.4.3. State transition due to CSF natural evolution

According to the characteristics of the CSF evolution described in Section
2.1, we consider the following changes in the farm state [5]: when a farm reach
the state If , it will pass at state Tf after a latent period that follows a Poisson
distribution with mean 7 days; when a farm reach the state Tf , it will pass
at state Cf after an incubation period that follows a Poisson distribution with
mean 21 days.

3.5. Contaminated farm detection

As specified in Section 2.3, a contaminated farm is generally detected by
the observation of the clinical signs of its pigs (i.e., the farm is in state Cf ) [7].
Before detecting the index case, for each farm in the state Cf , the probability of
detection per day is modeled by using a Bernoulli distribution with mean 0.03
[5]. After detecting the index case, as the awareness of the farmers and private
veterinarians increase, the daily probability of detection of a farm in the state
Cf is increased and is simulated by considering a Bernoulli distribution with
mean 0.06 [5]. Furthermore, a contaminated farm can be also detected due to
the control measures presented in Section 3.6.

3.6. Control measures

We now describe the control measures, introduced in Section 2.3, implement-
ed in our model.

3.6.1. Movement restrictions

A drastic restriction on movements (outgoing or incoming on farms) is ap-
plied to detected farms. Restrictions on transports of animals, integrator vehicle
movements and SDA people movements in the detected farms are assumed to
be Bernoulli distributed with a mean of 0.99, 0.95 and 0.8, respectively (i.e.,



movements are reduced by 99 %, 95 % and 80 %, respectively). Furthermore, af-
ter each detection, a general movement restriction, considering the three kinds
of movements, is applied to all farms during a period of 90 days and following
a Bernoulli distribution with mean 0.4 [2].

3.6.2. Zoning

The farms at a distance of less than 3 km of a detected farm are set in a
control zone, whereas the farms at a distance between 3 km and 10 km of a
detected farm are set in a surveillance zone [2].

A movement restriction is applied during 30 days to farms in control zones
and 40 days to farms in surveillance zones [2]. In both cases, pig transports,
movements of SDA persons and movements of integrator vehicles are random-
ly reduced by considering a Bernoulli distribution with mean 0.95, 0.9 and 0.7,
respectively [2]. Overlapping of the movement restrictions of control and surveil-
lance zones is allowed (i.e, if a farm has an active movement restriction, we add
the days of the new restriction to those of the old restriction).

Furthermore, we apply another surveillance process to the farms within those
zones, in addition to the one described in Section 3.5. The daily probability
detection of a farm j in the state Cf due to this surveillance is assumed to be
dependent of the proportion of infected animals and modeled by considering [2]

a Bernoulli distribution with mean α
Ip,j(t)

Sp,j(t) + Ip,j(t)
where α is set to 0.98 or

0.95 if the farm j is within a control zone or within a surveillance zone and is
not within a control zone, respectively.

3.6.3. Depopulation

The depopulation (i.e., the slaughter of all animals) of a detected farm i oc-
curs after a random time period, generated by using the data provided by Table
2 [3], starting from the day of its detection. However, the maximum number
of farms to be depopulated per day is assumed to follow a Poisson distribution
with mean 20 [2]. Thus, if this limit is reached, the farm is depopulated the fol-
lowing days. When the farm i is depopulated, its number of pigs is set to 0 and
it is not considered anymore by the model. Then, after a time period following
a Poisson distribution with mean 90 days [2], the farm is repopulated (i.e., new
pigs are introduced): the number of susceptible pigs is Ni(0), the farm state is
set to Sf and the farm is again taken into account by the model.

Number of days 0 1 2 3 4 5 6 7

Probability 0.11 0.58 0.2 0.06 0.04 0.004 0.003 0.0030

Cuadro 2: Probability distribution of the number of days to wait before depop-
ulating a detected farm [3].



3.6.4. Tracing

The objective of tracing is to identify infectious contacts which may have
introduced CSFV into a detected farm or spread CSFV to other farms. We
include the tracing of all contacts (i.e., farms sending or receiving animals,
sharing SDA persons or sharing integrator vehicles)of a detected farm occurring
60 days before the detection [2]. However, due to failures in the administrative
system (error in databases, lack of personnel, etc.) tracing all the contacts is
not always possible.

More precisely, when a farm i is detected, we list all the farms who have
shared, 60 days before the detection, at least one integrator vehicle, one SDA
person or one transport animal vehicle with farm i . Then, for each farm in
this list, we decide if it is traced or not according to following probabilities:
the probability of tracing a farm due to animal transport, integrator vehicle
movement or SDA people movement is assumed to be Bernoulli distributed
with a mean of 0.99, 0.7 and 0.4, respectively [2]. Next, for each farm to be
traced, we select the day of tracing, taking into account, as in Section 3.6.3,
that the maximum number of farms to be traced per day is assumed to follow
a Poisson distribution with mean 60. Finally, we perform a detection process to
the traced farms, the day of their tracing, by considering that the probability
of detecting a contaminated traced farm follows a Bernoulli distribution with
mean 0.95 [2].

4. Model Validation

In order to validate the Be-FAST model, we perform various numerical ex-
periments, described in Section 4.1. Those experiments are also run by con-
sidering a commercial epidemiological model, called InterSpread Plus, briefly
introduced in Section 4.2. Finally, in Section 4.3, the results obtained by both
models are compared between them and with data observed during a real CSF
outbreaks occurring in Spain [8].

4.1. Numerical experiments

We consider the province of Segovia, one of the most important areas of pig
production in Spain, which have a surface of 6796 km2. A real database, provided
by the Spanish Regional Government of Castilla and Leon and the Spanish
Ministry of the Environment and Rural and Marine Affairs [2], corresponding
to the inputs, described in Section 3.2, of the year 2008 is used.

In the experiments considered in this paper, all the control measures de-
scribed in Section 3.6 are activated and the model is running with NS = 1000
scenarios during a maximum period of Tmax = 1095 days, which is large enough
to ensure the end of the CSF epidemic [9].

After each experiment (i.e., the scenario (SCENS
) is over), many kinds of

outputs can be obtained. Here, we consider a typical output referring to risk
management [5]. More precisely, for each farm i, we compute its risk of CSFV



introduction, denoted by RI(i). It is defined as the number of times that farm i
becomes contaminated during the whole Monte-Carlo simulation. In particular,
in order to identify the risk zones in the studied region, we are interested in
obtaining the geographical distribution of RI. Typically [8], the risk zones are
classified in three categories: high, medium and low risk. This is useful, for
instance, to design preventive control measures to fight CSFV (see Section 5
for more details). To do so, and to compare the values of RI given by the
models presented in Section 4.2, we first normalize RI(i) by considering R̄I(i) =

R̂I(i)

máxi R̂I(i)
where R̂I(i) = RI(i)/

(

∑

i RI(i)
)

. Then, we obtain the spatial

distribution of R̄I, in Segovia, by interpolating the values of R̄I(i) considering
an Inverse Distance Weighted method. Finally, the identification of the three
risk zones is done by considering the Jenks Natural Breaks (JNB) classification
method [4].

4.2. Considered models

In order to validate the BE-FAST model, we perform the experiments, pre-
sented in Section 4.1, by using the two models:

A MatLab Ver. 2009.a (http://www.mathworks.com/) script implementa-
tion of the Be-FAST model. This model is denoted by BF.

We also consider the InterSpread Plus software Ver. 1.0.49.5 (http://www.
interspreadplus.com/). InterSpread Plus is a commercial C++ implementa-
tion of a state transition model [12]. It is one of the most popular epidemiolog-
ical model software used in the world. However, in our opinion, it has several
drawbacks, as, for instance, the low transparency of the code (it is a black-
box program) and the difficulty to incorporate complex databases with real
movements or contacts from farm-to-farm. We intend to reproduce the same
processes as the one used by the Be-FAST model. The main differences between
both model were: InterSpread Plus does not allow to model the within-farm
transmission (it is a purely between-farm spread model), the model coefficients
cannot be expressed in function of the number of infected or susceptible pigs;
the real commercial networks (i.e., pig shipments, SDA groups and integrator
groups) cannot be integrated directly in InterSpread Plus. It has been simplified
by creating random routes taking into account the distance between farms.

4.3. Results

The R̄I risk maps generated by models BF and IS, for the considered exper-
iment, are presented in Figure 1. The considered Jenks Natural Breaks (JNB)
classification, containing (for a better understanding of the maps) 9 intervals
corresponding to 9 gray colors, is also reported in this Figure: the first three
intervals [0-0.07] correspond to the low risk areas; the intervals [0.07-0.15] corre-
spond to the medium risk areas; and the last three intervals [0.15-1] correspond
to the high risk areas.



In order to compare the results given by models BF and IS, we have consid-
ered the data of the CSF epidemic in Segovia occurring in 1997-98 provided by
[2]. Here, we consider the geographical position of the infected farms to validate
the risk maps generated by BF and IS models. In Figure 1, we incorporate
those farms to the BF and IS risk maps and we detail the zone where most of
the farms are included.

We can see that, in the BF case, most of the infected farms are situated in
a dark (high risk) zone and other farms in medium or low risk zones. In the IS

case, the high risk zone does not include those farms, and the farms are mainly
located in low risk areas. The mean R̄I value of the 1998-97 infected farms given
by BF model is 0.201, which corresponds to the highest risk in the considered
JNB classification. In the IS model, the mean risk value of those farms is 0.032,
which is included in the low risk area. This result tends to show that the maps
generated by model BF are more consistent with real data than those generated
with model IS. This can be explained by the fact that our model uses the real
commercial network (i.e., transport of animals, SDA and integrator groups)
between farms, whereas this information is not suitably processed by IS. This
shows the importance of the use of this database to obtain a fine representation
of the risk areas, and one should use this input in an epidemiological model as
soon as it is available. We point out the fact that 10 years separate the used
databases and the 1997-98 outbreak in Segovia, explaining why some farms
could be included in low risk zones, even in the BF map. However, this also
shows the robustness of the BF risk maps, which seem to be valid for years
different from those generating the database.

5. Conclusions

During this work, we have given an extended mathematical description of
the spatial model called Be-FAST, used for the study of CSFV spread into a
region. The principal originality of this model is that it combines a Susceptible-
Infected model, for the within-farm spread process, with an Individual Based
model, for the between-farm spread process. The proportion of infected animals
given by the Susceptible-Infected model is used to calibrate some coefficients
of the Individual Based model. Another important feature of the model, is the
possibility of using of a real database of the commercial network between farms.
We have seen, when comparing the results given by the model Be-FAST with
those obtained by real outbreaks data, that these new characteristics are very
important for the identification of the risk zones.

One of the next steps will be to include the economical aspects (for instance,
the prices of pigs, control measures, etc.) and to use the risk map distribution
to design CSF preventive campaigns, in order to reduce the economical impact
and the risk of possible future outbreaks.



Figura 1: Interpolated R̄I maps obtained by models (LEFT) BF and
(RIGHT) IS for the considered experiment. We also report, with white spots
(◦), the location of the farms infected during the 1997-98 CSF epidemic in
Segovia. Furthermore, we present, in the square region, a zoom of the zone
where most of those farms are situated (except two of them). The considered
JNB classification is also reported.
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and stochastic model to evaluate the within and between farm transmission of classical
swine fever virus: 1. general concepts and description of the model. Vet. Microbiol.,
147(3):300–309, 2011.

[10] V. Moennig. Introduction to classical swine fever: virus, disease and control policy. Vet.

Microbiol., 73(2):93–102, 2000.

[11] A. Stegeman, A.R.W. Elbers, A. Bouma, and M.C.M. De Jong. Rate of inter-farm
transmission of classical swine fever virus by different types of contact during the 1997-8
epidemic in the netherlands. Epidemiol. Infect., 128:285–291, 2002.

[12] M. Stern. InterSpread Plus User Guide. Institute of Veterinary, Animal, and Biomedical
Sciences, Massey University, Palmerston North, New Zealand., 2003.


