Hyperbolicity in the Gromov sense of the strong product of two graphs.

Amauris de la Cruz Rodriguez / PhD. student - UC3M

Workshop of Young Researchers in Mathematics 2013

Abstract

If X is a geodesic metric space and $x_1, x_2, x_3 \in X$, a geodesic triangle $T = \{x_1, x_2, x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the other two sides, for every geodesic triangle T in X. In this paper we characterize the strong products of two graphs $G_1 \boxtimes G_2$ which are hyperbolic, in terms of G_1 and G_2: the strong product graph $G_1 \boxtimes G_2$ is hyperbolic if and only if one of the factors is hyperbolic and the other one is bounded. We also prove some sharp relations between $\delta(G_1 \boxtimes G_2)$, $\delta(G_1)$, $\delta(G_2)$ and the diameters of G_1 and G_2.