ON THE DUNFORD-PETTIS PROPERTY OF THE TENSOR PRODUCT OF $C(K)$ SPACES

FERNANDO BOMBAL AND IGNACIO VILLANUEVA

Abstract. In this paper we characterize those compact Hausdorff spaces K such that $C(K)\hat{\otimes}C(K)$ (and $C(K)\hat{\otimes}_sC(K)$) have the Dunford-Pettis Property, answering thus in the negative a question posed in [7] which asked if $\ell_\infty\hat{\otimes}\ell_\infty$ and $C[0,1]\hat{\otimes}C[0,1]$ have this property.
1. Introduction

In [7] it is asked if $\ell_\infty \hat{\otimes} \ell_\infty$ and $C[0, 1] \hat{\otimes} C[0, 1]$ have the Dunford-Pettis Property (DPP). The purpose of this paper is to show that this is not the case, and to characterize those $C(K)$ spaces such that $\hat{\otimes}_n C(K)$ or $\hat{\otimes}_{n,s} C(K)$ have the Dunford-Pettis Property, when $n > 1$.

Let us recall that a Banach space E has the DPP if, for any Banach space F, every weakly compact operator from E into F is completely continuous. In this paper we will need the following facts about the DPP; they are all well known, and can be found, for instance, in [9]: (a) $C(K)$ spaces and Schur spaces have the DPP, (b) if a dual Banach space E^* has the DPP, then so does E (but the reciprocal is not true), (c) the DPP is stable under complemented subspaces.

We will now explain our notation. Throughout the paper K will denote a compact Hausdorff space and $C(K)$ the space of continuous scalar functions defined on it. We will write $\mathcal{L}(E; X)$ to indicate the linear operators from E into X, and $\mathcal{L}^n(E_1, \ldots, E_n; X)$ will denote the space of continuous multilinear operators from $E_1 \times \cdots \times E_n$ into X. When $E_1 = \cdots = E_n = E$ we will write this as $\mathcal{L}^n(E; X)$ and in this case $\mathcal{L}^n(E; X)$ will refer to those of the previous operators which are symmetric. In all the cases, if $X = K$, the scalar field, we will not write it. We will write the projective tensor product of E_1, \ldots, E_n as $E_1 \hat{\otimes} \cdots \hat{\otimes} E_n$. We will write $\hat{\otimes}_n E$ to denote the n-fold projective tensor product of E, and $\hat{\otimes}_{n,s} E$ will denote the symmetric n-fold projective tensor product of E. If $n = 2$ we will sometimes also write this as $E \hat{\otimes} E$.

We consider to be well known that $\mathcal{L}^n(E_1, \ldots, E_n; X)$ is naturally isometric to $\mathcal{L}(E_1 \hat{\otimes} \cdots \hat{\otimes} E_n; X)$ and that $\mathcal{L}_n^*(E; X)$ is naturally isometric to $\mathcal{L}(\hat{\otimes}_{n,s} E; X)$.

We will use the convention $[9]$, to indicate that the i^{th} coordinate is not involved.

2. The results

As is well known, every linear operator from any $C(K)$ space into the dual of another $C(K)$ space is weakly compact, and therefore completely continuous. Using that we can prove the following lemma.

Lemma 2.1. Let K_1, K_2 be two compact Hausdorff spaces. Let $(f_n) \subset C(K_1)$ be a weakly null sequence and let $(g_n) \subset C(K_2)$ be a bounded sequence. Then the sequence $(f_n \otimes g_n) \subset C(K_1) \hat{\otimes} C(K_2)$ is weakly null.

Proof. Let $\phi \in (C(K_1) \hat{\otimes} C(K_2))^*$, and let us consider the linear operator $S \in \mathcal{L}(C(K_1); C(K_2)^*)$ associated to it defined by

$$S(f)(g) = \phi(f \otimes g) .$$

Let us suppose without loss of generality that $\sup_n \|g_n\| \leq 1$. Since S is completely continuous, we get that

$$\lim_{n \to \infty} \|\phi(f_n \otimes g_n)\| \leq \lim_{n \to \infty} \|S(f_n)\| = 0 .$$

□

In [4] it can be seen that, if K is scattered, then $(\hat{\otimes}_n C(K))^*$ and $(\hat{\otimes}_{n,s} C(K))^*$ are Schur spaces for every $n \in \mathbb{N}$. With analogous proof it can be proved that, in case K_1, \ldots, K_n are scattered, $(C(K_1) \hat{\otimes} \cdots \hat{\otimes} C(K_n))^*$ is a Schur space.

We state now our main result.
Theorem 2.2. Let K_1, K_2 be two infinite compact Hausdorff spaces. Then $C(K_1)\hat{\otimes} C(K_2)$ has the DPP if and only if both K_1 and K_2 are scattered.

Proof. If both K_1 and K_2 are scattered, then $(C(K_1)\hat{\otimes} C(K_2))^*$ is a Schur space and therefore $C(K_1)\hat{\otimes} C(K_2)$ has the DPP. Now, let us suppose that one of them, say K_2, is not scattered. Since K_1 is infinite, $C(K_1)$ is not Schur, and therefore there exist two sequences $(f_n) \subset B_{C(K_1)}$ and $(\xi_n) \subset B_{(C(K_2))^*}$ such that (f_n) is weakly null and $\xi_n(f_n) = 1$ for every $n \in \mathbb{N}$. Also, since K_2 is not scattered, $C(K_2)$ contains an isomorphic copy of ℓ_1, and therefore there exists a continuous surjective operator $q : C(K_2) \mapsto \ell_2$ ([10, Corollary 4.16]). Then let us consider the trilinear form

$$T : C(K_1) \times C(K_2) \times C(K_2) \mapsto \mathbb{K}$$

defined by

$$T(f, g, h) = \sum_{n=1}^{\infty} \xi_n(f) q(g)_n q(h)_n$$

and let us consider the linear operator

$$\hat{T}^1 : C(K_1)\hat{\otimes} C(K_2) \mapsto (C(K_2))^*$$

canonically associated to it given by

$$\hat{T}^1(f \otimes g)(h) = T(f, g, h) \ .$$

It is clear that $\hat{T}^1 = q^* \circ \psi \circ \phi$ where

$$\phi : C(K_1)\hat{\otimes} C(K_2) \mapsto \ell_2$$

is given by

$$\phi(f \otimes g) = (\xi_n(f) q(g)_n)_n \ .$$

and $\psi \in \mathcal{L}(\ell_2; \ell^2)$ is the canonical linear isometry identifying both spaces. Since ψ, ϕ and q^* are all of them weakly compact, so is \hat{T}^1.

So we now just have to see that \hat{T}^1 is not completely continuous. Let us consider a sequence of bounded functions $(g_n)_n \subset C(K_2)$ such that $q(g_n) = e_n$, where (e_n) is the canonical basis of ℓ_2. Then, according to Lemma 2.1, the sequence $(f_n \otimes g_n)_n \subset C(K_1)\hat{\otimes} C(K_2)$ weakly converges to zero, but, for each $n \in \mathbb{N}$,

$$\|T^1(f_n \otimes g_n)\| \sup_n \|g_n\| \geq |T^1(f_n \otimes g_n)(g_n)| = |T(f_n, g_n, g_n)| = 1$$

a contradiction. \hfill \Box

Remark 2.3. In [2], the following definition is stated: a multilinear form $T \in \mathcal{L}^n(E_1, \ldots, E_n)$ is said to be regular if every one of the associated linear operators

$$T^i_n : E_i \mapsto \mathcal{L}^{n-1}(E_1, [i], E_n)$$

is weakly compact, and this is shown to be equivalent to every one of the associated $(n-1)$-linear operators

$$T^{i-1}_{n-1} : E_1 \times \cdots \times [i] \times E_n \mapsto \mathcal{L}(E_i)$$

being weakly compact. From the proof it is clear that, given an $i \in \{1, \ldots, k\}$, T^i_1 is weakly compact if and only if so is T^{i-1}_{n-1}, but there is not reason to believe that, for not symmetric multilinear forms, the fact that T^i_1 is weakly compact should imply that T^i_1 is weakly compact, too. The main idea behind our proof is to find a trilinear form such that (using the notation of [2]) T^1_1 is weakly compact but T^2_1
is not. In [11], a trilinear form on ℓ_∞ is used, which is a slight modification of a trilinear form defined in [1]. This form does exactly what we want it to do.

Remark 2.4. Although \hat{T}^1 is not completely continuous when considered as a linear operator, its bilinear counterpart

$$T^1 : C(K_1) \times C(K_2) \rightarrow (C(K_2))^*$$

given by

$$T^1(f, g)(h) = T(f, g, h)$$

is completely continuous, according to the usual definition of completely continuous bilinear operator (i.e., if $(f^n_1) \subset C(K_1)$ and $(f^n_2) \subset C(K_2)$ are weakly Cauchy sequences, then $T^1(f^n_1, f^n_2)$ is a norm Cauchy sequence), as follows from [12] (indeed, it follows from [15] that every bilinear continuous operator from $C(K_1) \times C(K_2)$ into $(C(K_2))^*$ is completely continuous). This proves a conjecture of [15] that states that the fact that a multilinear operator from the product of $C(K)$ spaces is completely continuous (considered as a multilinear mapping) does not imply that the same operator, when considered as a linear mapping from the projective tensor product of the spaces, has to be completely continuous.

It is well known that, for every Banach spaces E_1, \ldots, E_n, $(n > 1)$, $E_1 \hat{\otimes} \cdots \hat{\otimes} E_{n-1}$ is complemented in $E_1 \otimes \cdots \otimes E_n$. Using this, the next corollary follows easily.

Corollary 2.5. Let K_1, \ldots, K_n be infinite compact Hausdorff spaces. Then $C(K_1) \hat{\otimes} \cdots \hat{\otimes} C(K_n)$ has the DPP if and only if K_1, \ldots, K_n are all scattered.

The theorem and corollary above remain true for the symmetric projective tensor product.

Theorem 2.6. Let K be a compact Hausdorff space. Then $C(K) \hat{\otimes}_s C(K)$ has the DPP if and only if K is scattered.

Proof. If K is scattered, then $(\hat{\otimes}_{n,s} C(K))^*$ is a Schur space for every $n \in \mathbb{N}$, and therefore $C(K) \hat{\otimes}_s C(K)$ has the DPP. Now, if K is not scattered, we can consider the trilinear form

$$T : C(K) \times C(K) \times C(K) \rightarrow \mathbb{K}$$

defined by

$$T(f, g, h) = \sum_{n=1}^{\infty} \frac{1}{2} \left(\xi_n(f)q(g)_n + \xi_n(g)q(f)_n \right) q(h)_n ,$$

that is, the symmetrized respect to the two first variables of the trilinear form used in Theorem 2.2. Now we can apply analogous reasonings as before to conclude that the linear operator

$$\hat{T}^1 : C(K) \hat{\otimes} C(K) \rightarrow (C(K))^*$$

defined by

$$\hat{T}^1(f, g)(h) = T(f, g, h)$$

is weakly compact and not completely continuous. \hfill \Box

Again, it is well known (see [3]) that, for every Banach space E, $\hat{\otimes}_{n-1,s} E$ is complemented in $\hat{\otimes}_{n,s} E$. So, the following corollary follows.

Corollary 2.7. Let K be a compact Hausdorff space. Then, for every $n > 1$, $\hat{\otimes}_{n,s} C(K)$ has the DPP if and only if K is scattered.
As suggested by J. Gutiérrez, the next theorem can be proved with the same proof as above.

Theorem 2.8. Let E be a Banach space such that
i) Every linear operator from E into E^* is completely continuous,
ii) E is not Schur, and
iii) E has an isomorphic copy of ℓ_1,
then $E \hat{\otimes} E$ and $E \hat{\otimes} s E$ do not have the DPP.

There are several spaces which are not $C(K)$ spaces and verify the conditions of the proposition above, among then, the space H^∞ [5, 6], the disc algebra [8, 13], the space of analytic uniformly convergent Fourier series on the unit circle [14].

The authors want to thank Verónica Dimant and Joaquín Gutiérrez for some clarifying conversations.

References

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, Madrid 28040

E-mail address: bombal@eucmax.sim.ucm.es, ignacio_villanueva@mat.ucm.es