Laminations by Riemann surfaces in Kähler surfaces

Memoria presentada para obtener el grado de Doctor

Carlos Pérez Garrandés Dirigida por: John Erik Fornæss y Luis Giraldo Suárez

Universidad Complutense de Madrid

February 21, 2014

UNIVERSIDAD COMPLUTENSE MADRID

Table of Contents

- Laminations and Foliations
- Currents
- 2 Unicity Theorem
 - Intersection Theory
 - Statement and Proof
- Corollaries and Applications
 - Corollaries
 - Applications

Table of Contents

Intro

- Laminations and Foliations
- Currents
- - Intersection Theory
 - Statement and Proof
- - Corollaries
 - Applications

∃ ▶ ∢

Lamination (by Riemann surfaces transversely \mathcal{R} -regular)

Let X be a topological space, endowed with an atlas $\mathcal{U} = \{U_i, \phi_i\}$ with $\phi_i : \mathbb{D} \times \mathcal{T}_i \to U_i$ such that:

A B > A B >

< 同 ▶

э

Lamination (by Riemann surfaces transversely \mathcal{R} -regular)

Let X be a topological space, endowed with an atlas $\mathcal{U} = \{U_i, \phi_i\}$ with $\phi_i : \mathbb{D} \times \mathcal{T}_i \to U_i$ such that:

- $\phi_i^{-1} \circ \phi_j(z,t) = (f_{ij}(z,t), h_{ij}(t)),$
- *f_{ij}* holomorphic in the first variable and *R*-regular in the second one,
- *h_{ij}* is *R*-regular.

(E)

A ►

Lamination (by Riemann surfaces transversely \mathcal{R} -regular)

Let X be a topological space, endowed with an atlas $\mathcal{U} = \{U_i, \phi_i\}$ with $\phi_i : \mathbb{D} \times \mathcal{T}_i \to U_i$ such that:

•
$$\phi_i^{-1} \circ \phi_j(z,t) = (f_{ij}(z,t), h_{ij}(t)),$$

- *f_{ij}* holomorphic in the first variable and *R*-regular in the second one,
- *h_{ij}* is *R*-regular.
- If X is a manifold we say it is a foliation

< ∃⇒

・ロト ・回ト ・モト ・モト

æ

Laminations and Foliations Currents

Example I. Reeb foliation

C. Pérez Garrandés Laminations in Kähler surfaces

э

Consider $S = \mathbb{D} \setminus \{p_1, p_2\} = \mathbb{D}/\Gamma$ for $\Gamma \subset Aut(\mathbb{D})$ Deck transformations.

э

- 4 同 2 4 回 2 4 U

Consider $S = \mathbb{D} \setminus \{p_1, p_2\} = \mathbb{D}/\Gamma$ for $\Gamma \subset Aut(\mathbb{D})$ Deck transformations.

 $\Pi: \pi_1(S) \approx \Gamma \to G \qquad \qquad \subset Aut(\mathbb{P}^1)$ $\alpha_{p_1} \mapsto g_1$ $\alpha_{p_2} \mapsto g_2$

- 4 同 2 4 回 2 4 U

3

Consider $S = \mathbb{D} \setminus \{p_1, p_2\} = \mathbb{D}/\Gamma$ for $\Gamma \subset Aut(\mathbb{D})$ Deck transformations.

 $\Pi: \pi_1(S) \approx \Gamma \to G \qquad \qquad \subset Aut(\mathbb{P}^1)$ $\alpha_{p_1} \mapsto g_1$ $\alpha_{p_2} \mapsto g_2$

The trivial fibration, $\mathbb{D}\times\mathbb{P}^1$ carries the trivial horizontal foliation.

3

Consider $S = \mathbb{D} \setminus \{p_1, p_2\} = \mathbb{D}/\Gamma$ for $\Gamma \subset Aut(\mathbb{D})$ Deck transformations.

 $egin{array}{ll} \Pi: \pi_1(S) pprox \Gamma o G & \subset \operatorname{Aut}(\mathbb{P}^1) \ & lpha_{p_1} \mapsto g_1 & \ & lpha_{p_2} \mapsto g_2 \end{array}$

The trivial fibration, $\mathbb{D} \times \mathbb{P}^1$ carries the trivial horizontal foliation. The quotient manifold $M_G = \mathbb{D} \times \mathbb{P}^1/(\Gamma, \Pi(\Gamma))$ is a \mathbb{P}^1 fibration over S endowed with a foliation transversal to the fibration

・ 戸 と ・ ヨ と ・ モ と …

Consider $S = \mathbb{D} \setminus \{p_1, p_2\} = \mathbb{D}/\Gamma$ for $\Gamma \subset Aut(\mathbb{D})$ Deck transformations.

$\Pi:\pi_1(S)pprox \Gamma ightarrow G$	$\subset {\sf Aut}({\mathbb P}^1)$
$\alpha_{p_1} \mapsto g_1$	
$\alpha_{p_2} \mapsto g_2$	

The trivial fibration, $\mathbb{D} \times \mathbb{P}^1$ carries the trivial horizontal foliation. The quotient manifold $M_G = \mathbb{D} \times \mathbb{P}^1/(\Gamma, \Pi(\Gamma))$ is a \mathbb{P}^1 fibration over *S* endowed with a foliation transversal to the fibration whose dynamical transversal behavior is codified by *G*.

高 と く ヨ と く ヨ と

Consider $S = \mathbb{D} \setminus \{p_1, p_2\} = \mathbb{D}/\Gamma$ for $\Gamma \subset Aut(\mathbb{D})$ Deck transformations.

$\Pi:\pi_1(S)pprox \Gamma ightarrow G$	$\subset {\sf Aut}({\mathbb P}^1)$
$\alpha_{p_1} \mapsto g_1$	
$\alpha_{p_2} \mapsto g_2$	

The trivial fibration, $\mathbb{D} \times \mathbb{P}^1$ carries the trivial horizontal foliation. The quotient manifold $M_G = \mathbb{D} \times \mathbb{P}^1/(\Gamma, \Pi(\Gamma))$ is a \mathbb{P}^1 fibration over *S* endowed with a foliation transversal to the fibration whose dynamical transversal behavior is codified by *G*. *G* is a Kleinian group hence Λ is its limit set (smallest invariant closed set), if it is a Schottky group Λ is a Cantor set.

- 4 同 ト 4 回 ト -

Consider $S = \mathbb{D} \setminus \{p_1, p_2\} = \mathbb{D}/\Gamma$ for $\Gamma \subset Aut(\mathbb{D})$ Deck transformations.

$\Pi:\pi_1(S)pprox \Gamma ightarrow G$	$\subset {\sf Aut}({\mathbb P}^1)$
$\alpha_{p_1} \mapsto g_1$	
$\alpha_{p_2} \mapsto g_2$	

The trivial fibration, $\mathbb{D} \times \mathbb{P}^1$ carries the trivial horizontal foliation. The quotient manifold $M_G = \mathbb{D} \times \mathbb{P}^1/(\Gamma, \Pi(\Gamma))$ is a \mathbb{P}^1 fibration over *S* endowed with a foliation transversal to the fibration whose dynamical transversal behavior is codified by *G*. *G* is a Kleinian group hence Λ is its limit set (smallest invariant closed set), if it is a Schottky group Λ is a Cantor set. We can extract a Λ fibration over *S*, carrying a lamination which is not a foliation.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Laminations and Foliations Currents

æ

Minimal lamination

If every leaf is dense.

<ロ> <部> < 部> < き> < き> <</p>

æ

Minimal lamination

If every leaf is dense.

Foliations by Riemann surfaces transversely holomorphic on manifolds are locally orbits of a holomorphic vector field.

< A >

A B M A B M

э

Minimal lamination

If every leaf is dense.

Foliations by Riemann surfaces transversely holomorphic on manifolds are locally orbits of a holomorphic vector field. Every polynomial vector field of \mathbb{C}^2 induces a foliation on \mathbb{P}^2 with singularities.

< A >

A B M A B M

Minimal lamination

If every leaf is dense.

Foliations by Riemann surfaces transversely holomorphic on manifolds are locally orbits of a holomorphic vector field. Every polynomial vector field of \mathbb{C}^2 induces a foliation on \mathbb{P}^2 with singularities.

Lamination with singularities (X, E, \mathcal{L})

Let X be a compact topological space, $E \subset X$ and a lamination \mathcal{L} on $X \setminus E$.

- 4 同 6 4 日 6 4 日 6

Laminations and Foliations Currents

æ

Hyperbolic Singularities

Let (X, \mathcal{L}, E) in a compact complex surface M. We say that $p \in E$ is a hyperbolic singularity if we can find $U \subset M$ a neighborhood of p and some holomorphic coordinates (z, w) centered at p such that the leaves are invariant varieties for the holomorphic 1-form $\omega = zdw - \lambda wdz$, with $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

ヘロン 人間と 人間と 人間と

Summary

We will study singular laminations:

- minimal
- transversely Lipschitz
- embedded in complex surfaces
- with at most hyperbolic singularities

A 10

A B M A B M

э

・ 同 ト ・ ヨ ト ・ ヨ ト

3

The operators d, d^c, ∂, ∂̄ can be defined by duality for currents. For instance, dT(φ) = T(dφ).

・ 同 ト ・ ヨ ト ・ ヨ ト

- The operators d, d^c, ∂, ∂̄ can be defined by duality for currents. For instance, dT(φ) = T(dφ).
- A differential form α of bigrade (p, q) can be considered as a current T_α of bidimension (n − p, n − q) defined as T_α(φ) = ∫_M α ∧ φ.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The operators d, d^c, ∂, ∂̄ can be defined by duality for currents. For instance, dT(φ) = T(dφ).
- A differential form α of bigrade (p, q) can be considered as a current T_α of bidimension (n − p, n − q) defined as T_α(φ) = ∫_M α ∧ φ.
- An analytic subvariety Y of dimension m can be seen as a current [Y] of bidimension (m, m) defined as [Y](φ) = ∫_Y φ.

ヘロト ヘヨト ヘヨト

Laminations and Foliations Currents

Closed Directed Positive (1,1)-Currents (CDPC). dT = 0

 $T = \int [V_{\alpha}] d\mu(\alpha)$

 $[V_{\alpha}]$ integration currents on plaques, μ an invariant transversal measure. Do not always exist.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Laminations and Foliations Currents

Closed Directed Positive (1,1)-Currents (CDPC). dT = 0

 $T = \int [V_{\alpha}] d\mu(\alpha)$

 $[V_{\alpha}]$ integration currents on plaques, μ an invariant transversal measure. Do not always exist.

Harmonic Directed Positive (1,1)-Currents (HDPC). $\partial \overline{\partial} T = 0$

$$T = \int h_{\alpha}[V_{\alpha}]d\mu(\alpha)$$

 $[V_{\alpha}]$ integration currents on plaques, h_{α} positive harmonic functions, μ a (not invariant) transversal measure. Do always exist.

直 と く ヨ と く ヨ と

Laminations and Foliations Currents

Construction of Directed Currents

HDPCCDPC
$$\phi : \mathbb{D} \to L$$
 with L leaf. $\phi : \mathbb{C} \to L$ with L leaf. $\tau_r := \frac{\phi_*(\log^+ \frac{r}{\xi}[(\Delta)])}{\|\phi_*(\log^+ \frac{r}{\xi}[(\Delta)])\|} \Rightarrow \tau_{r_n} \stackrel{\text{weak*}}{\to} T.$ $T.$ $\tau_r := \frac{\phi_*[(\Delta_r)]}{\|\phi_*[(\Delta_r)]\|} \Rightarrow \tau_{r_n} \stackrel{\text{weak*}}{\to} T.$

글 🖌 🖌 글 🕨

Table of Contents

Intro

- Laminations and Foliations
- Currents

2 Unicity Theorem

- Intersection Theory
- Statement and Proof

3 Corollaries and Applications

- Corollaries
- Applications

∃ ▶

Intersection Theory [FS05]

Fornæss and Sibony defined a geometrical self-intersection \wedge_g .

$$\lim_{\epsilon \to 0} \int \sum_{\boldsymbol{p} \in J_{\alpha,\beta}^{\epsilon}} h_{\alpha}(\boldsymbol{p}) h_{\beta}^{\epsilon}(\boldsymbol{p}) \psi(\boldsymbol{p}) d\mu(\alpha) d\mu(\beta)$$

 $J_{\alpha,\beta}^{\epsilon}$ is the set of intersection points between Γ_{α} and $\Phi_{\epsilon}(\Gamma_{\beta})$ for Φ_{ϵ} family of automorphism such that $\Phi_{\epsilon} \xrightarrow{\epsilon \to 0} Id$.

- 4 同 2 4 回 2 4 回 2 4

Intersection Theory [FS05]

Fornæss and Sibony defined a geometrical self-intersection \wedge_g .

$$\lim_{\epsilon \to 0} \int \sum_{\boldsymbol{p} \in J_{\alpha,\beta}^{\epsilon}} h_{\alpha}(\boldsymbol{p}) h_{\beta}^{\epsilon}(\boldsymbol{p}) \psi(\boldsymbol{p}) d\mu(\alpha) d\mu(\beta)$$

 $J_{\alpha,\beta}^{\epsilon}$ is the set of intersection points between Γ_{α} and $\Phi_{\epsilon}(\Gamma_{\beta})$ for Φ_{ϵ} family of automorphism such that $\Phi_{\epsilon} \xrightarrow{\epsilon \to 0} Id$.

Theorem. Fornæss-Sibony[FS05]

For a lamination (X, \mathcal{L}, E) transversely Lipschitz with E finite and no compact leaves in a Kähler surface (M, ω) , if $T \wedge_g T = 0$ for every HDPC,

- either there are CDPC
- or there is only one HDPC of mass one ($T \wedge \omega = 1$).

・ロト ・四ト ・モト・ モー

-

Sufficient condition for the geometric self-intersection to vanish. Condition 1

If there exist:

- \bullet a family of automorphisms close to the identity $\Phi_{\varepsilon},$
- a covering by flow boxes $\mathcal{U} = (U_i, \varphi_i)$,
- a positive number $\epsilon_0 > 0$ and
- a positive integer $N \in \mathbb{N}$

such that if $|\epsilon| < \epsilon_0$, for every pair of plaques Γ_{α} , Γ_{β} in the same flow box U_i , the number of intersection points between Γ_{α} and $\Phi_{\epsilon}(\Gamma_{\beta})$ (i.e. $\sharp J_{\alpha,\beta}^{\epsilon}$) is smaller than *N*. Then $T \wedge_g T = 0$ for every HDPC.

(日)

Unicity [PG13a],[PG13b]

Theorem

Let X be a minimal transversely Lipschitz lamination by Riemann surfaces with only hyperbolic singularities in a homogeneous compact Kähler surface M satisfying the hypothesis below. Then $T \wedge_g T = 0$ for every HDPC.

Hypothesis on the lamination depending on the surface

- **P**²: no compact leaves (Fornæss- Sibony),
- $\mathbb{P}^1\times\mathbb{P}^1\colon$ no compact leaves,
- $\mathbb{P}^1 \times \mathbb{T}^1$: no compact leaves,
- \mathbb{T}^2 : no compact leaves nor invariant complex segments.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

Sketch of the proof on $\mathbb{P}^1\times\mathbb{P}^1$

WLOG ([1:0], [1:0]) is not vertical or horizontal.

3
Sketch of the proof on $\mathbb{P}^1\times\mathbb{P}^1$

WLOG ([1 : 0], [1 : 0]) is not vertical or horizontal. Charts of $\mathbb{P}^1 \times \mathbb{P}^1$:

- $\varphi_1(z, w) = ([1 : z], [1 : w])$
- $\varphi_2(z, w) = ([z:1], [1:w])$
- $\varphi_3(z, w) = ([1 : z], [w : 1])$
- $\varphi_4(z, w) = ([z:1], [w:1]).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Sketch of the proof on $\mathbb{P}^1\times\mathbb{P}^1$

WLOG ([1 : 0], [1 : 0]) is not vertical or horizontal. Charts of $\mathbb{P}^1\times\mathbb{P}^1$:

- $\varphi_1(z, w) = ([1:z], [1:w])$
- $\varphi_2(z, w) = ([z:1], [1:w])$

•
$$\varphi_3(z, w) = ([1 : z], [w : 1])$$

•
$$\varphi_4(z,w) = ([z:1], [w:1]).$$

We can assume as well that all the singularities are contained in the image of $\varphi_{\rm 4}.$

Sketch of the proof on $\mathbb{P}^1 \times \mathbb{P}^1$

WLOG ([1 : 0], [1 : 0]) is not vertical or horizontal. Charts of $\mathbb{P}^1\times\mathbb{P}^1$:

- $\varphi_1(z, w) = ([1:z], [1:w])$
- $\varphi_2(z, w) = ([z:1], [1:w])$

•
$$\varphi_3(z, w) = ([1 : z], [w : 1])$$

•
$$\varphi_4(z,w) = ([z:1], [w:1]).$$

We can assume as well that all the singularities are contained in the image of $\varphi_{\rm 4}.$

We will consider a family

$$\Phi_{\epsilon}([z_0:z_1],[w_0:w_1]) = ([z_0 + \epsilon v_1 z_1:z_1],[w_0 + \epsilon v_2 w_1:w_1]).$$

Intersection Theory Statement and Proof

Expressions of $\varphi_i^{-1} \circ \Phi_\epsilon \circ \varphi_i$

$$i = 1$$

$$(z, w) \mapsto \left(\frac{z}{1 + \epsilon v_1 z}, \frac{w}{1 + \epsilon v_2 w}\right)$$

$$i = 2$$

$$(z, w) \mapsto \left(z + \epsilon v_1 - \frac{w}{1 + \epsilon v_2 w}\right)$$

 $(z,w)\mapsto \left(z+\epsilon v_1, \frac{1}{1+\epsilon v_2 w}\right)$

i = 3

$$(z,w)\mapsto\left(\frac{z}{1+\epsilon v_1 z},w+\epsilon v_2\right)$$

i = 4

$$(z, w) \mapsto (z + \epsilon v_1, w + \epsilon v_2)$$

・ロト ・回ト ・ヨト ・ヨト

Intersection Theory Statement and Proof

Behavior at ([1:0], [1:0]) $p = ([1:0], [1:0]) \in U_0$

(a)

э

Intersection Theory Statement and Proof

Behavior at
$$([1:0], [1:0])$$

 $p = ([1:0], [1:0]) \in U_0$
 $\Gamma_p = \{(z, f_p(z)), z \in \Delta_\delta\}, \ \Gamma_p^{\epsilon} = \left\{ \left(z, \frac{f_p(\frac{z}{1-\epsilon_{V_1z}})}{1+\epsilon_{V_2}\frac{z}{1-\epsilon_{V_1z}}}\right), z \in \Delta_\delta \right\}$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Intersection Theory Statement and Proof

Behavior at
$$([1:0], [1:0])$$

 $p = ([1:0], [1:0]) \in U_0$
 $\Gamma_p = \{(z, f_p(z)), z \in \Delta_\delta\}, \ \Gamma_p^\epsilon = \left\{ \left(z, \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}}\right), z \in \Delta_\delta \right\}$
 $\operatorname{dist}_z(\Gamma_p, \Gamma_p^\epsilon) = \left| f_p(z) - \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}} \right|$

Figure : dist_z($\Gamma_p, \Gamma_p^{\epsilon}$)/ ϵ for $\epsilon = 1$

イロン イロン イヨン イヨン

Intersection Theory Statement and Proof

Behavior at
$$([1:0], [1:0])$$

 $p = ([1:0], [1:0]) \in U_0$
 $\Gamma_p = \{(z, f_p(z)), z \in \Delta_\delta\}, \ \Gamma_p^\epsilon = \left\{ \left(z, \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}}\right), z \in \Delta_\delta \right\}$
 $\operatorname{dist}_z(\Gamma_p, \Gamma_p^\epsilon) = \left| f_p(z) - \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}} \right|$

Figure : dist_z($\Gamma_p, \Gamma_p^{\epsilon}$)/ ϵ for $\epsilon = 0.8$

・ロト ・回ト ・モト ・モト

Intersection Theory Statement and Proof

Behavior at
$$([1:0], [1:0])$$

 $p = ([1:0], [1:0]) \in U_0$
 $\Gamma_p = \{(z, f_p(z)), z \in \Delta_\delta\}, \ \Gamma_p^\epsilon = \left\{ \left(z, \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}}\right), z \in \Delta_\delta \right\}$
 $\operatorname{dist}_z(\Gamma_p, \Gamma_p^\epsilon) = \left| f_p(z) - \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}} \right|$

Figure : dist_z($\Gamma_p, \Gamma_p^{\epsilon}$)/ ϵ for $\epsilon = 0.6$

<ロ> <同> <同> < 回> < 回>

Intersection Theory Statement and Proof

Behavior at
$$([1:0], [1:0])$$

 $p = ([1:0], [1:0]) \in U_0$
 $\Gamma_p = \{(z, f_p(z)), z \in \Delta_\delta\}, \ \Gamma_p^\epsilon = \left\{ \left(z, \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}}\right), z \in \Delta_\delta \right\}$
 $\operatorname{dist}_z(\Gamma_p, \Gamma_p^\epsilon) = \left| f_p(z) - \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}} \right|$

Figure : dist_z($\Gamma_p, \Gamma_p^{\epsilon}$)/ ϵ for $\epsilon = 0.5$

・ロト ・回ト ・モト ・モト

Intersection Theory Statement and Proof

Behavior at
$$([1:0], [1:0])$$

 $p = ([1:0], [1:0]) \in U_0$
 $\Gamma_p = \{(z, f_p(z)), z \in \Delta_\delta\}, \ \Gamma_p^\epsilon = \left\{ \left(z, \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}}\right), z \in \Delta_\delta \right\}$
 $\operatorname{dist}_z(\Gamma_p, \Gamma_p^\epsilon) = \left| f_p(z) - \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}} \right|$

Figure : dist_z($\Gamma_p, \Gamma_p^{\epsilon}$)/ ϵ for $\epsilon = 0.3$

・ロト ・回ト ・モト ・モト

Intersection Theory Statement and Proof

Behavior at
$$([1:0], [1:0])$$

 $p = ([1:0], [1:0]) \in U_0$
 $\Gamma_p = \{(z, f_p(z)), z \in \Delta_\delta\}, \ \Gamma_p^\epsilon = \left\{ \left(z, \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}}\right), z \in \Delta_\delta \right\}$
 $\operatorname{dist}_z(\Gamma_p, \Gamma_p^\epsilon) = \left| f_p(z) - \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}} \right|$

Figure : dist_z($\Gamma_p, \Gamma_p^{\epsilon}$)/ ϵ for $\epsilon = 0.1$

・ロト ・回ト ・モト ・モト

Intersection Theory Statement and Proof

Behavior at
$$([1:0], [1:0])$$

 $p = ([1:0], [1:0]) \in U_0$
 $\Gamma_p = \{(z, f_p(z)), z \in \Delta_\delta\}, \ \Gamma_p^\epsilon = \left\{ \left(z, \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}}\right), z \in \Delta_\delta \right\}$
 $\operatorname{dist}_z(\Gamma_p, \Gamma_p^\epsilon) = \left| f_p(z) - \frac{f_p(\frac{z}{1-\epsilon v_1 z})}{1+\epsilon v_2 \frac{z}{1-\epsilon v_1 z}} \right|$

Figure : dist_z($\Gamma_p, \Gamma_p^{\epsilon}$)/ ϵ for $\epsilon = 0.01$

・ロト ・回ト ・モト ・モト

Intersection Theory Statement and Proof

([1:0], [1:0])

 \mathbb{P}^1

・ロト ・回ト ・ヨト ・ヨト

 \mathbb{P}^1

 \mathbb{P}^1

 \mathbb{P}^1

Control on the local behavior

Singular flow boxes

The motions were chosen such that we can apply the local study carried out in Fornaess-Sibony [FS10].

< 6 >

A B > A B >

Control on the local behavior

Singular flow boxes

The motions were chosen such that we can apply the local study carried out in Fornaess-Sibony [FS10].

Flow boxes transversal to the motions

If Γ_{α} and Γ_{β} are plaques on the flow box, there exist $C_1, C_2 > 0$ such that $\max d(\Gamma_{\alpha}, \Gamma_{\beta}^{\epsilon}) < C_1 |\epsilon| \Rightarrow \min d(\Gamma_{\alpha}, \Gamma_{\beta}) > C_2 |\epsilon|$

・ロト ・回ト ・ヨト ・

Control on the local behavior

Singular flow boxes

The motions were chosen such that we can apply the local study carried out in Fornaess-Sibony [FS10].

Flow boxes transversal to the motions

If Γ_{α} and Γ_{β} are plaques on the flow box, there exist $C_1, C_2 > 0$ such that $\max d(\Gamma_{\alpha}, \Gamma_{\beta}^{\epsilon}) < C_1 |\epsilon| \Rightarrow \min d(\Gamma_{\alpha}, \Gamma_{\beta}) > C_2 |\epsilon|$

Flow boxes along the motions

If Γ_{β} is a plaque on the flow box, then, for $|\epsilon|$ small enough,

$$\Gamma_{\beta} \cap \Gamma_{\beta}^{\epsilon} \neq \emptyset.$$

・ロト ・同ト ・ヨト ・ヨト

• Start with a f.b.t. to the motion and $\#(\Gamma_{\alpha} \cap \Gamma_{\beta}^{\epsilon}) > N$.

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Start with a f.b.t. to the motion and $\#(\Gamma_{\alpha} \cap \Gamma_{\beta}^{\epsilon}) > N$.
- If N large enough, for certain c < 1,

 $\max d(\Gamma_lpha,\Gamma^\epsilon_eta) < c^N |\epsilon| < C_1 |\epsilon|$

- 4 同 ト - 4 目 ト - 4 目 ト

э

- Start with a f.b.t. to the motion and $\#(\Gamma_{\alpha} \cap \Gamma_{\beta}^{\epsilon}) > N$.
- If N large enough, for certain c < 1,

 $\max d(\Gamma_{\alpha}, \Gamma_{\beta}^{\epsilon}) < c^{N}|\epsilon| < C_{1}|\epsilon| \Rightarrow \min d(\Gamma_{\alpha}, \Gamma_{\beta}) > C_{2}|\epsilon|.$

- 4 同 2 4 回 2 4 U

э

- Start with a f.b.t. to the motion and $\#(\Gamma_{\alpha} \cap \Gamma_{\beta}^{\epsilon}) > N$.
- If N large enough, for certain c < 1,
 - $\max d(\Gamma_{\alpha}, \Gamma_{\beta}^{\epsilon}) < c^{N} |\epsilon| < C_{1} |\epsilon| \Rightarrow \min d(\Gamma_{\alpha}, \Gamma_{\beta}) > C_{2} |\epsilon|.$
- Continue Γ_{α} and Γ_{β} up to a f.b.a. the motion.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Start with a f.b.t. to the motion and $\#(\Gamma_{\alpha} \cap \Gamma_{\beta}^{\epsilon}) > N$.
- If N large enough, for certain c < 1,

 $\max d(\Gamma_{\alpha}, \Gamma_{\beta}^{\epsilon}) < c^{N} |\epsilon| < C_{1} |\epsilon| \Rightarrow \min d(\Gamma_{\alpha}, \Gamma_{\beta}) > C_{2} |\epsilon|.$

- Continue Γ_{α} and Γ_{β} up to a f.b.a. the motion.
- Their continuations satisfy

• min
$$d(\Gamma'_{\alpha}, \Gamma'_{\beta}) > \frac{C_2|\epsilon}{M_2}$$

•
$$\max d(\Gamma'_{\alpha}, \Gamma^{'_{\epsilon}}_{\beta}) < M_1 c^N |\epsilon|$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Intersection Theory Statement and Proof

End of the proof

- Start with a f.b.t. to the motion and $\#(\Gamma_{\alpha} \cap \Gamma_{\beta}^{\epsilon}) > N$.
- If N large enough, for certain c < 1,

 $\max d(\Gamma_{\alpha}, \Gamma_{\beta}^{\epsilon}) < c^{N} |\epsilon| < C_{1} |\epsilon| \Rightarrow \min d(\Gamma_{\alpha}, \Gamma_{\beta}) > C_{2} |\epsilon|.$

- Continue Γ_{α} and Γ_{β} up to a f.b.a. the motion.
- Their continuations satisfy

• min
$$d(\Gamma'_{\alpha}, \Gamma'_{\beta}) > \frac{C_2|\epsilon}{M_2}$$

• max
$$d(\Gamma'_{\alpha}, \Gamma'_{\beta}) < M_1 c^N |\epsilon|$$

• Applying the triangular inequality,

$$\begin{split} \min d(\Gamma'_{\beta}, \Gamma^{'\epsilon}_{\beta}) &\geq \min d(\Gamma'_{\alpha}, \Gamma^{'\epsilon}_{\beta}) - \max d(\Gamma'_{\alpha}, \Gamma^{'\epsilon}_{\beta}) \geq \\ &\geq \frac{C_2 |\epsilon|}{M_2} - M_1 c^N |\epsilon| > 0 \end{split}$$

if N big enough.

伺 ト く ヨ ト く ヨ ト

Intersection Theory Statement and Proof

End of the proof

- Start with a f.b.t. to the motion and $\#(\Gamma_{\alpha} \cap \Gamma_{\beta}^{\epsilon}) > N$.
- If N large enough, for certain c < 1,

 $\max d(\Gamma_{\alpha}, \Gamma_{\beta}^{\epsilon}) < c^{N} |\epsilon| < C_{1} |\epsilon| \Rightarrow \min d(\Gamma_{\alpha}, \Gamma_{\beta}) > C_{2} |\epsilon|.$

- Continue Γ_{α} and Γ_{β} up to a f.b.a. the motion.
- Their continuations satisfy

• min
$$d(\Gamma'_{\alpha}, \Gamma'_{\beta}) > \frac{C_2|\epsilon}{M_2}$$

• max
$$d(\Gamma'_{\alpha}, \Gamma'_{\beta}) < M_1 c^N |\epsilon|$$

• Applying the triangular inequality,

$$\begin{split} \min d(\Gamma'_{\beta}, \Gamma^{'\epsilon}_{\beta}) &\geq \min d(\Gamma'_{\alpha}, \Gamma^{'\epsilon}_{\beta}) - \max d(\Gamma'_{\alpha}, \Gamma^{'\epsilon}_{\beta}) \geq \\ &\geq \frac{C_2 |\epsilon|}{M_2} - M_1 c^N |\epsilon| > 0 \end{split}$$

if N big enough.

• Contradiction with the local behavior inside f.b.a. the motions.

Table of Contents

Intro

- Laminations and Foliations
- Currents

2 Unicity Theorem

- Intersection Theory
- Statement and Proof

3 Corollaries and Applications

- Corollaries
- Applications

글 > - < 글 >

A minimal transversely Lipschitz lamination in a compact homogeneous Kähler surface with at most hyp. singularities and without CDPC admits only one HDPC of mass 1.

э

A minimal transversely Lipschitz lamination in a compact homogeneous Kähler surface with at most hyp. singularities and without CDPC admits only one HDPC of mass 1.

Reason: No CDPC \Rightarrow no compact leaves. If $M = \mathbb{T}^2$, No CDPC \Rightarrow no complex segments.

A minimal non singular transversely Lipschitz lamination which is not a single leaf in $\mathbb{P}^1\times\mathbb{P}^1$ does not admit CDPC.

Remark: the same is true on \mathbb{P}^2 (Hurder-Mitsumatsu [HM91])

A ►

A B M A B M

A minimal non singular transversely Lipschitz lamination which is not a single leaf in $\mathbb{P}^1\times\mathbb{P}^1$ does not admit CDPC.

Remark: the same is true on \mathbb{P}^2 (Hurder-Mitsumatsu [HM91])

Corollary

Let X be a transversely Lipschitz lamination by Riemann surfaces in $\mathbb{P}^1 \times \mathbb{P}^1$ with at most hyperbolic singularities and without invariant compact curves. Then it has only one minimal set.

Proof: X, X' two minimal sets with T, T' HDPC and $X'' = X' \cup X$. X'' admits a unique HDPC T''. But it already had two: X'' and X'.

Applications

Non singular case

- Every non singular foliation on \mathbb{T}^2 carries a CDPC.
- The associated foliation to every Levi-flat on \mathbb{T}^2 carries a CDPC. [Ohs06]

Generalization of the Exceptional Minimal Set Problem: Is there any lamination in a homogeneous compact Kähler surface without CDPC?

Singular case

Jouanoulou's Theorem has been generalized by Coutinho and Pereira [CP06] for every algebraic surface. A modification of an easier proof of \mathbb{P}^2 can be made for $\mathbb{P}^1 \times \mathbb{P}^1$.

・ロト ・同ト ・ヨト ・ヨト

Bibliography I

[CP06] S. C. Coutinho and J. V. Pereira. On the density of algebraic foliations without algebraic invariant sets. J. Reine Angew. Math., 594:117–135, 2006.

- [FS05] J. E. Fornæss and N. Sibony. Harmonic currents of finite energy and laminations. Geom. Funct. Anal., 15(5):962–1003, 2005.
- [FS10] John Erik Fornæss and Nessim Sibony. Unique ergodicity of harmonic currents on singular foliations of P². Geom. Funct. Anal., 19(5):1334–1377, 2010.
- [HM91] S. Hurder and Y. Mitsumatsu. The intersection product of transverse invariant measures. Indiana Univ. Math. J., 40(4):1169–1183, 1991.

[Ohs06] Takeo Ohsawa. On the Levi-flats in complex tori of dimension two. *Publ. Res. Inst. Math. Sci.*, 42(2):361–377, 2006.

- 4 同 6 4 日 6 4 日 6

Bibliography II

[PG13a] C. Pérez-Garrandés.

Directed harmonic currents for laminations on certain compact complex surfaces.

Accepted for publication in Internat. J. Math., 2013.

[PG13b] Carlos Pérez-Garrandés.

Ergodicity of laminations with singularities in Kähler surfaces. *Mathematische Zeitschrift*, 275(3-4):1169–1179, 2013.

イロト イポト イヨト イヨト

Future work

- Providing examples
- Harmonic flow
- Higher dimension

★ 臣 ▶ | ★ 臣 ▶

< 17 ▶