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Tα
Tβ

DD

φα φβ

X

φ−1
β ◦ φα

Lamination (by Riemann surfaces transversely R-regular)

Let X be a topological space, endowed with an atlas U = {Ui , φi}
with φi : D× Ti → Ui such that:

φ−1
i ◦ φj(z , t) = (fij(z , t), hij(t)),

fij holomorphic in the first variable and R-regular in the
second one,

hij is R-regular.

If X is a manifold we say it is a foliation
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Example II. Suspension

Consider S = D \ {p1, p2} = D/Γ for Γ ⊂ Aut(D) Deck
transformations.

Π : π1(S) ≈ Γ→ G ⊂ Aut(P1)

αp1 7→ g1

αp2 7→ g2

The trivial fibration, D× P1 carries the trivial horizontal foliation.
The quotient manifold MG = D× P1/(Γ,Π(Γ)) is a P1 fibration
over S endowed with a foliation transversal to the fibration whose
dynamical transversal behavior is codified by G .
G is a Kleinian group hence Λ is its limit set (smallest invariant
closed set), if it is a Schottky group Λ is a Cantor set.
We can extract a Λ fibration over S , carrying a lamination which is
not a foliation.
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Minimal lamination

If every leaf is dense.

Foliations by Riemann surfaces transversely holomorphic on
manifolds are locally orbits of a holomorphic vector field.
Every polynomial vector field of C2 induces a foliation on P2 with
singularities.

Lamination with singularities (X ,E ,L)

Let X be a compact topological space, E ⊂ X and a lamination L
on X \ E .
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|w | |z |

z w

zdw − (0.75 + 0.2i)wdz

Hyperbolic Singularities

Let (X ,L,E ) in a compact complex surface M. We say that p ∈ E
is a hyperbolic singularity if we can find U ⊂ M a neighborhood of
p and some holomorphic coordinates (z ,w) centered at p such
that the leaves are invariant varieties for the holomorphic 1-form
ω = zdw − λwdz , with λ ∈ C \ R.
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Summary

We will study singular laminations:

minimal

transversely Lipschitz

embedded in complex surfaces

with at most hyperbolic singularities
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A current T of bidimension (p, q) in a compact complex manifold
M is an element of the dual space of (p, q) differential forms.

The operators d , dc , ∂, ∂̄ can be defined by duality for
currents. For instance, dT (φ) = T (dφ).

A differential form α of bigrade (p, q) can be considered as a
current Tα of bidimension (n − p, n − q) defined as
Tα(φ) =

∫
M α ∧ φ.

An analytic subvariety Y of dimension m can be seen as a
current [Y ] of bidimension (m,m) defined as [Y ](φ) =

∫
Y φ.
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Closed Directed Positive (1, 1)-Currents (CDPC). dT = 0

T =
∫

[Vα]dµ(α)

[Vα] integration currents on plaques, µ an invariant transversal
measure. Do not always exist.

Harmonic Directed Positive (1, 1)-Currents (HDPC). ∂∂T = 0

T =
∫
hα[Vα]dµ(α)

[Vα] integration currents on plaques, hα positive harmonic
functions, µ a (not invariant) transversal measure. Do always exist.
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Construction of Directed Currents

HDPC

φ : D→ L with L leaf.

τr :=
φ∗(log+ r

ξ [(∆)])

‖φ∗(log+ r
ξ [(∆)]‖

⇒ τrn
weak∗→ T .

CDPC

φ : C→ L with L leaf.

τr :=
φ∗[(∆r )]

‖φ∗[(∆r )]‖
⇒ τrn

weak∗→ T .

Hyperbolic leaf Parabolic leaf

D C
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Intersection Theory [FS05]

Fornæss and Sibony defined a geometrical self-intersection ∧g .

lim
ε→0

∫ ∑
p∈Jεα,β

hα(p)hεβ(p)ψ(p)dµ(α)dµ(β)

Jεα,β is the set of intersection points between Γα and Φε(Γβ) for Φε

family of automorphism such that Φε
ε→0−→ Id .

Theorem. Fornæss-Sibony[FS05]

For a lamination (X ,L,E ) transversely Lipschitz with E finite and
no compact leaves in a Kähler surface (M, ω), if T ∧g T = 0 for
every HDPC,

either there are CDPC

or there is only one HDPC of mass one (T ∧ ω = 1).
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Sufficient condition for the geometric self-intersection to vanish.
Condition 1

If there exist:

a family of automorphisms close to the identity Φε,

a covering by flow boxes U = (Ui , ϕi ),

a positive number ε0 > 0 and

a positive integer N ∈ N
such that if |ε| < ε0, for every pair of plaques Γα, Γβ in the same
flow box Ui , the number of intersection points between Γα and
Φε(Γβ) (i.e. ]Jεα,β) is smaller than N. Then T ∧g T = 0 for every
HDPC.
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Unicity [PG13a],[PG13b]

Theorem

Let X be a minimal transversely Lipschitz lamination by Riemann
surfaces with only hyperbolic singularities in a homogeneous
compact Kähler surface M satisfying the hypothesis below. Then
T ∧g T = 0 for every HDPC.

Hypothesis on the lamination depending on the surface

P2: no compact leaves (Fornæss- Sibony),

P1 × P1: no compact leaves,

P1 × T1: no compact leaves,

T2: no compact leaves nor invariant complex segments.
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Sketch of the proof on P1 × P1

WLOG ([1 : 0], [1 : 0]) is not vertical or horizontal.

Charts of P1 × P1:

ϕ1(z ,w) = ([1 : z ], [1 : w ])

ϕ2(z ,w) = ([z : 1], [1 : w ])

ϕ3(z ,w) = ([1 : z ], [w : 1])

ϕ4(z ,w) = ([z : 1], [w : 1]).

We can assume as well that all the singularities are contained in
the image of ϕ4.
We will consider a family

Φε([z0 : z1], [w0 : w1]) = ([z0 + εv1z1 : z1], [w0 + εv2w1 : w1]).

C. Pérez Garrandés Laminations in Kähler surfaces



Intro
Unicity Theorem

Corollaries and Applications

Intersection Theory
Statement and Proof

Sketch of the proof on P1 × P1

WLOG ([1 : 0], [1 : 0]) is not vertical or horizontal.
Charts of P1 × P1:

ϕ1(z ,w) = ([1 : z ], [1 : w ])

ϕ2(z ,w) = ([z : 1], [1 : w ])

ϕ3(z ,w) = ([1 : z ], [w : 1])

ϕ4(z ,w) = ([z : 1], [w : 1]).

We can assume as well that all the singularities are contained in
the image of ϕ4.
We will consider a family

Φε([z0 : z1], [w0 : w1]) = ([z0 + εv1z1 : z1], [w0 + εv2w1 : w1]).
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Expressions of ϕ−1
i ◦ Φε ◦ ϕi

i = 1

(z ,w) 7→
(

z

1 + εv1z
,

w

1 + εv2w

)
i = 2

(z ,w) 7→
(
z + εv1,

w

1 + εv2w

)
i = 3

(z ,w) 7→
(

z

1 + εv1z
,w + εv2

)
i = 4

(z ,w) 7→ (z + εv1,w + εv2)
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Behavior at ([1 : 0], [1 : 0])
p = ([1 : 0], [1 : 0]) ∈ U0

Γp = {(z , fp(z)), z ∈ ∆δ}, Γεp =

{(
z ,

fp( z
1−εv1z

)

1+εv2
z

1−εv1z

)
, z ∈ ∆δ

}
distz(Γp, Γ

ε
p) =

∣∣∣∣∣fp(z)−
fp( z

1−εv1z
)

1 + εv2
z

1−εv1z

∣∣∣∣∣

Figure : distz(Γp, Γ
ε
p)/ε for ε = 1
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ε
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ε
p)/ε for ε = 0.1

C. Pérez Garrandés Laminations in Kähler surfaces



Intro
Unicity Theorem

Corollaries and Applications

Intersection Theory
Statement and Proof

Behavior at ([1 : 0], [1 : 0])
p = ([1 : 0], [1 : 0]) ∈ U0

Γp = {(z , fp(z)), z ∈ ∆δ}, Γεp =

{(
z ,

fp( z
1−εv1z

)

1+εv2
z

1−εv1z

)
, z ∈ ∆δ

}
distz(Γp, Γ

ε
p) =

∣∣∣∣∣fp(z)−
fp( z

1−εv1z
)

1 + εv2
z

1−εv1z

∣∣∣∣∣

Figure : distz(Γp, Γ
ε
p)/ε for ε = 0.01
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Control on the local behavior

Singular flow boxes

The motions were chosen such that we can apply the local study
carried out in Fornaess-Sibony [FS10].

Flow boxes transversal to the motions

If Γα and Γβ are plaques on the flow box, there exist C1,C2 > 0
such that

max d(Γα, Γ
ε
β) < C1|ε| ⇒ min d(Γα, Γβ) > C2|ε|

Flow boxes along the motions

If Γβ is a plaque on the flow box, then, for |ε| small enough,

Γβ ∩ Γεβ 6= ∅.
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End of the proof

Start with a f.b.t. to the motion and #(Γα ∩ Γεβ) > N.

If N large enough, for certain c < 1,

max d(Γα, Γ
ε
β) < cN |ε| < C1|ε|⇒ min d(Γα, Γβ) > C2|ε|.

Continue Γα and Γβ up to a f.b.a. the motion.
Their continuations satisfy

min d(Γ′
α, Γ

′
β) > C2|ε|

M2

max d(Γ′
α, Γ

′ε
β ) < M1c

N |ε|
Applying the triangular inequality,

min d(Γ′β, Γ
′ε
β ) ≥ min d(Γ′α, Γ

′ε
β )−max d(Γ′α, Γ

′ε
β ) ≥

≥ C2|ε|
M2

−M1c
N |ε| > 0

if N big enough.

Contradiction with the local behavior inside f.b.a. the
motions.
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Corollary

A minimal transversely Lipschitz lamination in a compact
homogeneous Kähler surface with at most hyp. singularities and
without CDPC admits only one HDPC of mass 1.

Reason: No CDPC ⇒ no compact leaves.
If M = T2, No CDPC ⇒ no complex segments.
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Corollary

A minimal non singular transversely Lipschitz lamination which is
not a single leaf in P1 × P1 does not admit CDPC.

Remark: the same is true on P2 (Hurder-Mitsumatsu [HM91])

Corollary

Let X be a transversely Lipschitz lamination by Riemann surfaces
in P1 × P1 with at most hyperbolic singularities and without
invariant compact curves. Then it has only one minimal set.

Proof: X , X ′ two minimal sets with T ,T ′ HDPC and
X ′′ = X ′ ∪ X .
X ′′ admits a unique HDPC T ′′. But it already had two: X ′′ and
X ′.
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Applications

Non singular case

Every non singular foliation on T2 carries a CDPC.

The associated foliation to every Levi-flat on T2 carries a
CDPC. [Ohs06]

Generalization of the Exceptional Minimal Set Problem:
Is there any lamination in a homogeneous compact Kähler surface
without CDPC?

Singular case

Jouanoulou’s Theorem has been generalized by Coutinho and
Pereira [CP06] for every algebraic surface. A modification of an
easier proof of P2 can be made for P1 × P1.
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Future work

Providing examples

Harmonic flow

Higher dimension
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