Introduction

Definitions

Intersection theory

Result

Consequences

Ergodicity of embedded singular laminations

Carlos Pérez Garrandés

Universidad Complutense de Madrid University of Oslo

September 3, 2014

Table of Contents

Introduction

Definitions

Intersection theory

Results

Consequences

Table of Contents

Introduction

Definitions

Intersection theory

Results

Consequences

Definitions

Intersection theory

Result

Consequences

• Find measures associated to laminations.

- Find measures associated to laminations.
- First attempt: Invariant transversal measure ν (for the holonomy pseudogroup). Locally:

$$\mu = \mathsf{vol}_t \otimes \nu(t)$$

- Find measures associated to laminations.
- First attempt: Invariant transversal measure ν (for the holonomy pseudogroup). Locally:

$$\mu = \mathsf{vol}_t \otimes \nu(t)$$

• Weaker concept: Harmonic measures (for the diffusion semigroup). Locally:

$$\mu = h(x, t) \operatorname{vol}_t \otimes \nu(t)$$

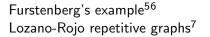
- Garnett: nonsingular real foliations¹²
- Berndtsson-Sibony: holomorphic foliations with singularities³
- Fornæss-Sibony: laminations by Riemann surfaces with singularities⁴

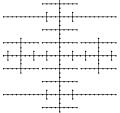
¹L. Garnett. "Foliations, the ergodic theorem and Brownian motion". In: *J. Funct. Anal.* 51 (1983).

²A. Candel. "The harmonic measures of Lucy Garnett". In: Adv. Math. (2003).

 $^{3}\text{B.}$ Berndtsson and N. Sibony. "The $\overline{\partial}\text{-equation}$ on a positive current". In: Invent. Math. (2002).

⁴J. E. Fornæss and N. Sibony. "Harmonic currents of finite energy and laminations". In: *Geom. Funct. Anal.* (2005).





⁵J. E. Fornæss, N. Sibony, and E. F. Wold. "Examples of minimal laminations and associated currents". In: *Math. Z.* (2011).

⁶Bertrand Deroin. "Non unique-ergodicity of harmonic measures: smoothing Samuel Petite's examples". In: *Differential geometry.* 2009.

⁷A. Lozano-Rojo. "An example of a non-uniquely ergodic lamination". In: *Ergodic Theory Dynam. Systems* (2011).

Introdu	ction Defin	itions Intersection theory	Results	Consequences
		Unicity		
	Who?	Where?	When?	How?
	Deroin	C^1 foliations	NO	Brownian
	Kleptsyn ⁸	transversely conformal		Motion
	Bonatti	Riccati	INVARIANT	Fol. Geod.
	Gómez-Mont ⁹	foliations		Flow
	Fornæss	Lam. Riem. Surf.	MEASURES	Complex
	Sibony ¹⁰	in \mathbb{P}^2		Var.

⁸B. Deroin and V. Kleptsyn. "Random conformal dynamical systems". In: *Geom. Funct. Anal.* (2007).

⁹C. Bonatti and X. Gómez-Mont. "Sur le comportement statistique des feuilles de certains feuilletages holomorphes". In: *Essays on geometry and related topics, Vol. 1, 2.* 2001.

¹⁰J. E. Fornæss and N. Sibony. "Harmonic currents of finite energy and laminations". In: *Geom. Funct. Anal.* (2005).

Introduction	Definitio	ons Intersection theory	Results	Consequences
		Unicity		
Who?		Where?	When?	How?
Deroin		C ¹ foliations	NO	Brownian
Klepts	yn ⁸	transversely conformal		Motion
Bonatt	;i	Riccati	INVARIANT	Fol. Geod.
Gómez	-Mont ⁹	foliations		Flow
Fornæs	SS	Lam. Riem. Surf.	MEASURES	Complex
Sibony	.10	in comp. hom.		Var.
PG		Kähler surf.		

⁸B. Deroin and V. Kleptsyn. "Random conformal dynamical systems". In: *Geom. Funct. Anal.* (2007).

⁹C. Bonatti and X. Gómez-Mont. "Sur le comportement statistique des feuilles de certains feuilletages holomorphes". In: *Essays on geometry and related topics, Vol. 1, 2.* 2001.

¹⁰J. E. Fornæss and N. Sibony. "Harmonic currents of finite energy and laminations". In: *Geom. Funct. Anal.* (2005).

Table of Contents

Introduction

Definitions

Intersection theory

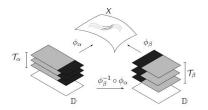
Results

Consequences

Lamination by Riemann surfaces transversely Lipschitz

Let X be a metric space, endowed with an atlas $\mathcal{U} = \{U_i, \phi_i\}$ with $\phi_i : \mathbb{D} \times \mathcal{T}_i \to U_i$ such that:

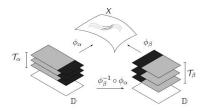
- $\phi_i^{-1} \circ \phi_j(z,t) = (f_{ij}(z,t), h_{ij}(t)),$
- *f_{ij}* holomorphic in the first variable and Lipschitz in the second one,
- *h_{ij}* is Lipschitz.



Lamination by Riemann surfaces transversely Lipschitz

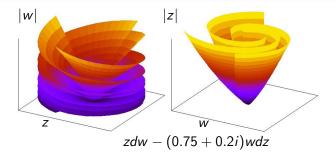
Let X be a metric space, endowed with an atlas $\mathcal{U} = \{U_i, \phi_i\}$ with $\phi_i : \mathbb{D} \times \mathcal{T}_i \to U_i$ such that:

- $\phi_i^{-1} \circ \phi_j(z,t) = (f_{ij}(z,t), h_{ij}(t)),$
- *f_{ij}* holomorphic in the first variable and Lipschitz in the second one,
- *h_{ij}* is Lipschitz.



Lamination with singularities. (X, \mathcal{L}, E)

X compact metric space, $E \subset X$ and a lamination \mathcal{L} on $X \setminus E$.



Hyperbolic Singularities

Let (X, \mathcal{L}, E) in a compact complex surface M. We say that $p \in E$ is a hyperbolic singularity if we can find $U \subset M$ a neighborhood of p and some holomorphic coordinates (z, w) centered at p such that the leaves are invariant varieties for the holomorphic 1-form $\omega = zdw - \lambda wdz$, with $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

Introduction	Definitions	Intersection theory	Results	Consequences
		(1,1) Currents		

• $\mathcal{C}^{\infty}\left(M, \bigwedge^{1,1} \mathcal{T}^{*}(M)\right)$ carries a structure of topological vector space

Introduction	Definitions	Intersection theory	Results	Consequences
		(1,1) Currents		

- $C^{\infty}(M, \bigwedge^{1,1} T^{*}(M))$ carries a structure of topological vector space
- A (1,1) current \mathcal{T} is an element of its dual space

Introduction	Definitions	Intersection theory	Results	Consequences
		(1,1) Currents		

- $\mathcal{C}^{\infty}\left(M, \bigwedge^{1,1} T^{*}(M)\right)$ carries a structure of topological vector space
- A (1,1) current ${\mathcal T}$ is an element of its dual space
- $T_{\alpha}(\phi) = \int_{M} \alpha \wedge \phi$ for α a (1,1) form. Smooth currents.

Introduction	Definitions	Intersection theory	Results	Consequences
		(1,1) Currents		

- $\mathcal{C}^{\infty}\left(M, \bigwedge^{1,1} T^{*}(M)\right)$ carries a structure of topological vector space
- A (1,1) current T is an element of its dual space
- $T_{\alpha}(\phi) = \int_{M} \alpha \wedge \phi$ for α a (1,1) form. Smooth currents.
- $[V](\phi) = \int_V \phi$ for V Riemann surface in M. Dirac currents

Introduction Definitions Intersection theory Results Consequences
(1,1) Currents

- $\mathcal{C}^{\infty}\left(M, \bigwedge^{1,1} T^{*}(M)\right)$ carries a structure of topological vector space
- A (1,1) current $\mathcal T$ is an element of its dual space
- $T_{\alpha}(\phi) = \int_{M} \alpha \wedge \phi$ for α a (1,1) form. Smooth currents.
- $[V](\phi) = \int_V \phi$ for V Riemann surface in M. Dirac currents
- $\bar{\partial}, \partial$ and *d* are extended by duality to currents.

$$dT(\phi) = T(d\phi)$$

Introduction Definitions Intersection theory Results Consequences
(1, 1) Currents

Let M be a compact complex surface

- $\mathcal{C}^{\infty}\left(M, \bigwedge^{1,1} T^{*}(M)\right)$ carries a structure of topological vector space
- A (1,1) current $\mathcal T$ is an element of its dual space
- $T_{\alpha}(\phi) = \int_{M} \alpha \wedge \phi$ for α a (1,1) form. Smooth currents.
- $[V](\phi) = \int_V \phi$ for V Riemann surface in M. Dirac currents
- $\bar{\partial}, \partial$ and *d* are extended by duality to currents.

$$dT(\phi) = T(d\phi)$$

Positivity:

Introduction Definitions Intersection theory Results Consequences
(1,1) Currents

Let M be a compact complex surface

- $\mathcal{C}^{\infty}\left(M, \bigwedge^{1,1} T^{*}(M)\right)$ carries a structure of topological vector space
- A (1,1) current ${\mathcal T}$ is an element of its dual space
- $T_{\alpha}(\phi) = \int_{M} \alpha \wedge \phi$ for α a (1,1) form. Smooth currents.
- $[V](\phi) = \int_V \phi$ for V Riemann surface in M. Dirac currents
- $\bar{\partial}, \partial$ and *d* are extended by duality to currents.

$$dT(\phi) = T(d\phi)$$

Positivity:

• A (1,1) form ϕ is positive if it is a volume form on every 1 dimensional subvariety

Introduction Definitions Intersection theory Results Consequences
(1,1) Currents

Let M be a compact complex surface

- $\mathcal{C}^{\infty}\left(M, \bigwedge^{1,1} T^{*}(M)\right)$ carries a structure of topological vector space
- A (1,1) current $\mathcal T$ is an element of its dual space
- $T_{\alpha}(\phi) = \int_{M} \alpha \wedge \phi$ for α a (1,1) form. Smooth currents.
- $[V](\phi) = \int_V \phi$ for V Riemann surface in M. Dirac currents
- $\bar{\partial}, \partial$ and *d* are extended by duality to currents.

$$dT(\phi) = T(d\phi)$$

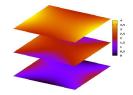
Positivity:

- A (1,1) form ϕ is positive if it is a volume form on every 1 dimensional subvariety
- T is positive if $T(\phi) \ge 0$ for every $\phi \ge 0$

Harmonic Directed Positive (1,1)-Currents (HDPC). $\partial \overline{\partial} T = 0$

 $T = \int h_{\alpha}[V_{\alpha}]d\mu(\alpha)$

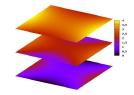
 $[V_{\alpha}]$ integration currents on plaques, h_{α} positive harmonic functions, μ a (not invariant) transversal measure.



Harmonic Directed Positive (1, 1)-Currents (HDPC). $\partial \overline{\partial} T = 0$

 $T = \int h_{\alpha}[V_{\alpha}]d\mu(\alpha)$

 $[V_{\alpha}]$ integration currents on plaques, h_{α} positive harmonic functions, μ a (not invariant) transversal measure.



Closed Directed Positive (1, 1)-Currents (CDPC). dT = 0

$$T = \int [V_{\alpha}] d\mu(\alpha)$$

 $[V_{\alpha}]$ integration currents on plaques, μ an invariant transversal measure.

Table of Contents

Introduction

Definitions

Intersection theory

Results

Consequences

- Define a Hilbert space of equivalence classes among real harmonic currents $T_1 \sim T_2$ then $T_1 = T_2 + \partial \overline{\partial} u$ for $u \in L^1_{loc}$
- Define $[\cdot] \wedge [\cdot]$ cohomological intersection

Theorem

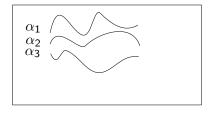
 (X, \mathcal{L}, E) in *M* homogeneous compact Kähler manifold. If $[T] \wedge [T] = 0$ for every *T* HDPC, then there exists only one equivalence class (nonzero and normalized). If there are no CDPC, there is only one HDPC of mass one.

Geometric self-intersection

If $T \wedge_g T = 0$ for every T HDPC, then $[T] \wedge [T] = 0$. Consider $\Phi_{\epsilon} \in Aut(M)$ a perturbation of the identity. Define

$$T \wedge_{g} T(\psi) = \lim_{\epsilon \to 0} T \wedge_{g} \Phi^{*}_{\epsilon}(T)(\psi) =$$
$$= \lim_{\epsilon \to 0} \int \sum_{p \in J^{\epsilon}_{\alpha,\beta}} h_{\alpha}(p) h^{\epsilon}_{\beta}(p) \psi(p) d\mu(\alpha) d\mu(\beta)$$

Where $J_{\alpha,\beta}^{\epsilon}$ denotes the intersection points between Γ_{α} and $\Gamma_{\beta}^{\epsilon}$. If $\sharp J_{\alpha,\beta}^{\epsilon} \leq N$ independently of ϵ , then $T \wedge_g T = 0$.



Geometric self-intersection

If $T \wedge_g T = 0$ for every T HDPC, then $[T] \wedge [T] = 0$. Consider $\Phi_{\epsilon} \in Aut(M)$ a perturbation of the identity. Define

$$T \wedge_{g} T(\psi) = \lim_{\epsilon \to 0} T \wedge_{g} \Phi^{*}_{\epsilon}(T)(\psi) =$$
$$= \lim_{\epsilon \to 0} \int \sum_{p \in J^{\epsilon}_{\alpha,\beta}} h_{\alpha}(p) h^{\epsilon}_{\beta}(p) \psi(p) d\mu(\alpha) d\mu(\beta)$$

Where $J_{\alpha,\beta}^{\epsilon}$ denotes the intersection points between Γ_{α} and $\Gamma_{\beta}^{\epsilon}$. If $\sharp J_{\alpha,\beta}^{\epsilon} \leq N$ independently of ϵ , then $T \wedge_g T = 0$.

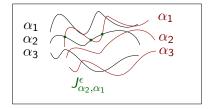


Geometric self-intersection

If $T \wedge_g T = 0$ for every T HDPC, then $[T] \wedge [T] = 0$. Consider $\Phi_{\epsilon} \in Aut(M)$ a perturbation of the identity. Define

$$T \wedge_{g} T(\psi) = \lim_{\epsilon \to 0} T \wedge_{g} \Phi^{*}_{\epsilon}(T)(\psi) =$$
$$= \lim_{\epsilon \to 0} \int \sum_{p \in J^{\epsilon}_{\alpha,\beta}} h_{\alpha}(p) h^{\epsilon}_{\beta}(p) \psi(p) d\mu(\alpha) d\mu(\beta)$$

Where $J_{\alpha,\beta}^{\epsilon}$ denotes the intersection points between Γ_{α} and $\Gamma_{\beta}^{\epsilon}$. If $\sharp J_{\alpha,\beta}^{\epsilon} \leq N$ independently of ϵ , then $T \wedge_g T = 0$.



Summing up

For (X, \mathcal{L}, E) a lamination with singularities

- in *M* a compact homogeneous Kähler surface,
- with a discrete set singularities,
- no CDPC,

if we find a perturbation of the identity Φ_ϵ such that $\sharp J^\epsilon_{\alpha,\beta} \leq N$ for ϵ small enough then

Summing up

For (X, \mathcal{L}, E) a lamination with singularities

- in *M* a compact homogeneous Kähler surface,
- with a discrete set singularities,
- no CDPC,

if we find a perturbation of the identity Φ_{ϵ} such that $\sharp J_{\alpha,\beta}^{\epsilon} \leq N$ for ϵ small enough then there exists T a unique HDPC.

Summing up

For (X, \mathcal{L}, E) a lamination with singularities

- in *M* a compact homogeneous Kähler surface,
- with a discrete set singularities,
- no CDPC,

if we find a perturbation of the identity Φ_{ϵ} such that $\sharp J_{\alpha,\beta}^{\epsilon} \leq N$ for ϵ small enough then there exists T a unique HDPC.

Remark: Tits' theorem says $M = \mathbb{P}^2, \mathbb{P}^1 \times \mathbb{P}^1, \mathbb{P}^1 \times \mathbb{T}^1, \mathbb{T}^2$

Table of Contents

Introduction

Definitions

Intersection theory

Results

Consequences

Theorem. Fornæss-Sibony, P-G

¹¹¹² Let $(X, \mathcal{L}, E) \subset M$ a minimal transversely Lipschitz lamination with at most hyperbolic singularities embedded in a homogeneous compact Kähler surface.

If there are no CDPC there exists only one HDPC of mass 1.

¹¹John Erik Fornæss and Nessim Sibony. "Unique ergodicity of harmonic currents on singular foliations of \mathbb{P}^{2^n} . In: *Geom. Funct. Anal.* (2010). ¹²P-G. "Ergodicity of laminations with singularities in Kähler surfaces". In: *Math. Z.* (2013).

Corollary

If $(X, \mathcal{L}) \subset \mathbb{P}^1 \times \mathbb{P}^1$ transversely Lipschitz and with no invariant compact curves, then it does not admit CDPC.

Remark: Vanishing of self-intersection of closed currents (invariant measures) was already considered by Hurder and Mitsumatsu¹³

Corollary

If $(X, \mathcal{L}, E) \subset \mathbb{P}^1 \times \mathbb{P}^1$ transversely Lipschitz with no compact invariant curves and hyperbolic singularities, then there exists only one HDPC current of mass one, in particular a unique minimal set.

¹³S. Hurder and Y. Mitsumatsu. "The intersection product of transverse invariant measures". In: *Indiana Univ. Math. J.* 40 (1991).

Table of Contents

Introduction

Definitions

Intersection theory

Results

Consequences

 Exceptional minimal set problem: Does there exists any non trivial non singular lamination by Riemann surfaces in P²?
 Same question for *M* hom. comp. Kähler surface. Answer:

¹⁴S. C. Coutinho and J. V. Pereira. "On the density of algebraic foliations without algebraic invariant sets". In: *J. Reine Angew. Math.* 594 (2006).

Exceptional minimal set problem: Does there exists any non trivial non singular lamination by Riemann surfaces in P²? Same question for *M* hom. comp. Kähler surface. Answer: Yes, but...known cases carry CDPC. Is there any lamination by Riemann surfaces in *M* hom. comp. Kähler surface with no CDPC?

¹⁴S. C. Coutinho and J. V. Pereira. "On the density of algebraic foliations without algebraic invariant sets". In: *J. Reine Angew. Math.* 594 (2006).

Introduction

Definitions

Intersection theory

Result

- Exceptional minimal set problem: Does there exists any non trivial non singular lamination by Riemann surfaces in P²? Same question for *M* hom. comp. Kähler surface. Answer: Yes, but...known cases carry CDPC. Is there any lamination by Riemann surfaces in *M* hom. comp. Kähler surface with no CDPC?
- Genericity of holomorphic foliations: Coutinho and Pereira¹⁴ proved that a generic foliation on algebraic surfaces of high degree has no invariant curves. Therefore the result applies generically for foliations in $\mathbb{P}^1 \times \mathbb{P}^1$.

¹⁴S. C. Coutinho and J. V. Pereira. "On the density of algebraic foliations without algebraic invariant sets". In: *J. Reine Angew. Math.* 594 (2006).

Thanks for your attention