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• Find measures associated to laminations.

• First attempt: Invariant transversal measure ν (for the
holonomy pseudogroup). Locally:

µ = volt ⊗ ν(t)

• Weaker concept: Harmonic measures (for the diffusion
semigroup). Locally:

µ = h(x , t)volt ⊗ ν(t)
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Existence of harmonic measures

• Garnett: nonsingular real foliations12

• Berndtsson-Sibony: holomorphic foliations with singularities3

• Fornæss-Sibony: laminations by Riemann surfaces with
singularities4

1L. Garnett. “Foliations, the ergodic theorem and Brownian motion”. In:
J. Funct. Anal. 51 (1983).

2A. Candel. “The harmonic measures of Lucy Garnett”. In: Adv. Math.
(2003).

3B. Berndtsson and N. Sibony. “The ∂-equation on a positive current”.
In: Invent. Math. (2002).

4J. E. Fornæss and N. Sibony. “Harmonic currents of finite energy and
laminations”. In: Geom. Funct. Anal. (2005).
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No Unicity

Furstenberg’s example56

Lozano-Rojo repetitive graphs7

5J. E. Fornæss, N. Sibony, and E. F. Wold. “Examples of minimal
laminations and associated currents”. In: Math. Z. (2011).

6Bertrand Deroin. “Non unique-ergodicity of harmonic measures:
smoothing Samuel Petite’s examples”. In: Differential geometry. 2009.

7A. Lozano-Rojo. “An example of a non-uniquely ergodic lamination”. In:
Ergodic Theory Dynam. Systems (2011).
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Unicity

Who? Where? When? How?

Deroin C 1 foliations NO Brownian
Kleptsyn8 transversely conformal Motion
Bonatti Riccati INVARIANT Fol. Geod.
Gómez-Mont9 foliations Flow
Fornæss Lam. Riem. Surf. MEASURES Complex
Sibony10 in P2 Var.

8B. Deroin and V. Kleptsyn. “Random conformal dynamical systems”. In:
Geom. Funct. Anal. (2007).

9C. Bonatti and X. Gómez-Mont. “Sur le comportement statistique des
feuilles de certains feuilletages holomorphes”. In: Essays on geometry and
related topics, Vol. 1, 2. 2001.

10J. E. Fornæss and N. Sibony. “Harmonic currents of finite energy and
laminations”. In: Geom. Funct. Anal. (2005).
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Lamination by Riemann surfaces transversely Lipschitz

Let X be a metric space, endowed with an atlas U = {Ui , φi} with
φi : D× Ti → Ui such that:

• φ−1
i ◦ φj(z , t) = (fij(z , t), hij(t)),

• fij holomorphic in the first variable and Lipschitz in the second
one,

• hij is Lipschitz.

Lamination with
singularities. (X ,L,E )

X compact metric space,
E ⊂ X and a lamination L on
X \ E .
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|w | |z |

z w

zdw − (0.75 + 0.2i)wdz

Hyperbolic Singularities

Let (X ,L,E ) in a compact complex surface M. We say that p ∈ E
is a hyperbolic singularity if we can find U ⊂ M a neighborhood of
p and some holomorphic coordinates (z ,w) centered at p such
that the leaves are invariant varieties for the holomorphic 1-form
ω = zdw − λwdz , with λ ∈ C \ R.
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(1, 1) Currents

Let M be a compact complex surface

• C∞
(
M,
∧1,1 T ∗(M)

)
carries a structure of topological vector

space

• A (1, 1) current T is an element of its dual space

• Tα(φ) =
∫
M α ∧ φ for α a (1, 1) form. Smooth currents.

• [V ](φ) =
∫
V φ for V Riemann surface in M. Dirac currents

• ∂̄, ∂ and d are extended by duality to currents.

dT (φ) = T (dφ)

Positivity:

• A (1, 1) form φ is positive if it is a volume form on every 1
dimensional subvariety

• T is positive if T (φ) ≥ 0 for every φ ≥ 0
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Harmonic Directed Positive (1, 1)-Currents (HDPC). ∂∂T = 0

T =
∫
hα[Vα]dµ(α)

[Vα] integration currents on plaques, hα positive harmonic
functions, µ a (not invariant) transversal measure.

Closed Directed Positive (1, 1)-Currents (CDPC). dT = 0

T =
∫

[Vα]dµ(α)

[Vα] integration currents on plaques, µ an invariant transversal
measure.
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Cohomological intersection

• Define a Hilbert space of equivalence classes among real
harmonic currents T1 ∼ T2 then T1 = T2 + ∂∂u for u ∈ L1

loc

• Define [·] ∧ [·] cohomological intersection

Theorem
(X ,L,E ) in M homogeneous compact Kähler manifold. If
[T ] ∧ [T ] = 0 for every T HDPC, then there exists only one
equivalence class (nonzero and normalized).
If there are no CDPC, there is only one HDPC of mass one.
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Geometric self-intersection

If T ∧g T = 0 for every T HDPC, then [T ] ∧ [T ] = 0.
Consider Φε ∈ Aut(M) a perturbation of the identity.
Define

T ∧g T (ψ) = lim
ε→0

T ∧g Φ∗ε (T )(ψ) =

= lim
ε→0

∫ ∑
p∈Jεα,β

hα(p)hεβ(p)ψ(p)dµ(α)dµ(β)

Where Jεα,β denotes the intersection points between Γα and Γεβ.
If ]Jεα,β ≤ N independently of ε, then T ∧g T = 0.

α1
α2
α3
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Summary

Summing up

For (X ,L,E ) a lamination with singularities

• in M a compact homogeneous Kähler surface,

• with a discrete set singularities,

• no CDPC,

if we find a perturbation of the identity Φε such that ]Jεα,β ≤ N for
ε small enough then

there exists T a unique HDPC.

Remark: Tits’ theorem says M = P2,P1 × P1,P1 × T1,T2
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Theorem. Fornæss-Sibony, P-G
1112 Let (X ,L,E ) ⊂ M a minimal transversely Lipschitz lamination
with at most hyperbolic singularities embedded in a homogeneous
compact Kähler surface.
If there are no CDPC there exists only one HDPC of mass 1.

11John Erik Fornæss and Nessim Sibony. “Unique ergodicity of harmonic
currents on singular foliations of P2”. In: Geom. Funct. Anal. (2010).

12P-G. “Ergodicity of laminations with singularities in Kähler surfaces”. In:
Math. Z. (2013).
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Corollary

If (X ,L) ⊂ P1 × P1 transversely Lipschitz and with no invariant
compact curves, then it does not admit CDPC.

Remark: Vanishing of self-intersection of closed currents (invariant
measures) was already considered by Hurder and Mitsumatsu13

Corollary

If (X ,L,E ) ⊂ P1 × P1 transversely Lipschitz with no compact
invariant curves and hyperbolic singularities, then there exists only
one HDPC current of mass one, in particular a unique minimal set.

13S. Hurder and Y. Mitsumatsu. “The intersection product of transverse
invariant measures”. In: Indiana Univ. Math. J. 40 (1991).
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• Exceptional minimal set problem: Does there exists any non
trivial non singular lamination by Riemann surfaces in P2?
Same question for M hom. comp. Kähler surface. Answer:

Yes, but...known cases carry CDPC.
Is there any lamination by Riemann surfaces in M hom.
comp. Kähler surface with no CDPC?

• Genericity of holomorphic foliations: Coutinho and Pereira14

proved that a generic foliation on algebraic surfaces of high
degree has no invariant curves. Therefore the result applies
generically for foliations in P1 × P1.

14S. C. Coutinho and J. V. Pereira. “On the density of algebraic foliations
without algebraic invariant sets”. In: J. Reine Angew. Math. 594 (2006).
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Thanks for your attention
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