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Abstract

Let L be a Lipschitz lamination by Riemann surfaces embedded in M . If M is a complex torus,
CP1 × CP1 or T1 × CP1 and there is no directed closed current then there exists a unique directed
harmonic current of mass one. Moreover if L is embedded in M = CP1 × CP1 and has no compact
leaves, then there is no directed closed current. If L is not Lipschitz, then slightly weaker results are
obtained.

1 Introduction

The aim of this work is to show new examples where the theory of Fornæss and Sibony, developed for
homogeneous Kähler manifolds in their fundamental article [3], can be applied. In that article and in [4]
they face the case of CP2. In this paper, we consider complex tori and products of curves.

Holomorphic non singular foliations in homogeneous Kähler manifolds are studied by Ghys in [5].
There, we can find a classification of foliations in two dimensional tori. Ghys studies the minimal sets
of these foliations, and we notice that all of them are holomorphically flat, in the sense of [7]. Ohsawa
introduces this concept and proves that every Levi-flat is either holomorphically flat or a Levi-scroll,
depending on whether the induced foliation on it is minimal or not, respectively. Our main result in
this context is: for a transversally Lipschitz lamination embedded on a two dimensional complex torus
without directed closed currents there is a unique directed harmonic current of mass one.

We will also establish similar results in the case of CP1 × CP1. In fact, we obtain that, for a
transversally Lipschitz laminations without compact leaves, there are no directed closed currents, so
there is a unique directed harmonic current of mass one. This is related to results in [1], where it is
proven that a Riccati equation without transversal invariant measure has a unique harmonic measure in
the limit set.

2 Revisiting Fornæss-Sibony

First of all, we will revisit [3] to clarify our exposition. Let (M,ω) be a homogeneous Kähler surface and
T will be a real harmonic current of bidegree (1, 1) in M . Then T can be decomposed as T = Ω+∂S+∂S
where Ω is a unique closed �-harmonic form of bidegree (1, 1), and S is a current of bidegree (0, 1) which
is not uniquely determined, but ∂S is. Moreover, T is closed if and only if ∂S = 0.

Since T = Ω + ∂S + ∂S with Ω and ∂S uniquely determined, the energy of T is defined as

E(T ) =

∫
∂S ∧ ∂S

when ∂S is in L2. Then 0 ≤ E(T ) < ∞ and the energy depends only on T but not on the choice of S.
Considering a scalar product 〈 , 〉 on the space of �-harmonic forms, a real inner product and a seminorm
are defined on He = {T, with E(T ) <∞} as

〈T1, T2〉e = 〈Ω1,Ω2〉+
1

2

(∫
∂S1 ∧ ∂S2 + ∂S2 ∧ ∂S1

)
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‖T‖2e = 〈Ω,Ω〉+

∫
∂S ∧ ∂S.

With this seminorm we can define a Hilbert space He of classes [T ]as follows: T1, T2 are in the same
class if and only if T1 = T2 + i∂∂u with u ∈ L1 and u real.

Now, for T1, T2 currents, an intersection form Q is defined by

Q(T1, T2) =

∫
Ω1 ∧ Ω2 −

∫
(∂S1 ∧ ∂S2 + ∂S2 ∧ ∂S1).

Then Q(T, T ) =
∫

Ω ∧ Ω − 2E(T ). This is a continuous bilinear form on He and Q(T, T ) is upper
semicontinuous for the weak topology on He and for T harmonic positive current, Q(T, T ) ≥ 0. A
class [T ] is positive if there is any positive harmonic current in the class [T ]. Defining the hyperplane
H = {T, T ∈ He,

∫
T ∧ ω = 0}, it can be proven that Q is strictly negative definite on H.

Next, this approach is used to study laminar currents. Let (X,L, E) be a laminated set with sin-
gularities in (M,ω), a Kähler surface. There exists a unique equivalence class [T ] of harmonic currents
of mass one directed by the lamination and maximizing Q(T, T ) because Q is strictly concave on H.
However, this uniqueness is for equivalence classes, not for currents. It is necessary to assume some extra
hypotheses:

Theorem 2.1. Let (X,L, E) be a laminated set with singularities in a Kähler surface (M,ω). Suppose
E is a locally complete pluripolar set with 2-dimensional Hausdorff measure Λ2(E) = 0. If there is no
non-zero positive laminated closed current, then there is a unique positive harmonic laminated current T
of mass one maximizing Q(T, T ).

This implies that under the same hypotheses, when Q(T, T ) = 0 for every T positive laminated
harmonic current, there exists a unique positive laminated harmonic current of mass one.

Finally, the case of a minimal lamination on CP2 is considered, and it is proven that Q(T, T ) = 0
for every T positive harmonic laminated current when the lamination is Lipschitz or the current has
finite transversal energy. That is done defining the geometric intersection between laminated currents,
finding some bounds in the number of crossing points between a plaque of the lamination and another
plaque moved by an automorphism of CP2 such that this geometric autointersection vanishes for every
T , and proving the vanishing of Q(T, T ) by regularizing the current. This reasoning is done for minimal
laminations, but the proof is similar if we consider laminations with only one minimal set.

Hence, they state

Theorem 2.2. Let (X,L) be a C1 laminated compact set in CP2, without compact curves, then X has
a unique positive directed closed harmonic current T of mass 1.

The hypothesis mention neither minimality nor closed currents because by Hurder-Mitsumatsu [6],
absence of compact curves implies no directed positive closed currents, and since Levi problem is solvable
on CP2 and there are no singularities, there is only one X ′ ⊂ X minimal set.

3 Complex Tori

We want to study minimal laminations by Riemann surfaces embedded holomorphically in two dimen-

sional tori. Then T2 = C2

Λ , and we have a locally injective projection π : C2 → T2 which induces the
complex structure on T2. Since the embedding is holomorphic, flow boxes are open sets U on C2 where
π is injective and we can write every plaque as a graph of a holomorphic function of z (horizontal flow
box) or w (vertical flow box). Explicitly:

Definition 3.1. U ⊂ C2 is a horizontal flow box centered on p = (p1, p2) where π is injective and there
is δ > 0 and TU ⊂ C containing p2 such that ψU : ∆δ ×TU → U with ψ(z, w) = (p1 + z, w+ fw(z)), with
fw a holomorphic function vanishing in z = 0.

Definition 3.2. We say a point p of the lamination is horizontal if the unitary tangent vector to the
lamination in p is (1, 0).

We can define analogously vertical flow boxes and vertical points.
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Definition 3.3. Let (X,L) be a laminated compact set in T2. We say that the lamination has invariant
complex line segments if there is an affine line Y in C2 and U ⊂ C2 open set, such that Y|U ⊂ π−1(X)|U .

Main examples of this kind of laminations are minimal sets for constant vector fields in the torus
where every leaf is an affine complex line in the covering C2(holomorphically flat laminations). In this
sense, there is a paper of Ohsawa [7] where he proves that every C∞ Levi-flat contains a complex segment.
Hence if the foliation induced is minimal, then it can only be holomorphically flat.

As we know, T2 is a complex connected Lie group, so the connected component of the group of
automorphisms of T2 is Aut0(T2) = T2, and we will denote by τ(ε1,ε2)(x1, x2) = (x1 + ε1, x2 + ε2) a
translation on C2 where x1, x2, ε1, ε2 ∈ C. These translations induce the automorphisms on T2.

Proposition 3.1. Let (X,L) be a minimal lamination by Riemann surfaces embedded on a torus T2 =
C2/Λ. If there exists εn → 0 such that τ(0,εn)(L) = L, then either every point is vertical or there are no
vertical points.

Proof. Suppose there is a p = (p1, p2) with vertical tangent. We could find a vertical flow box, ψp :
Tp × ∆δ → C2 where ψp(z, w) → (z + fz(w), p2 + w), with π injective in Im(ψp). For n big enough
Γεnp should be another plaque on the flow box, hence the transversal distance between dz(Γp,Γ

εn
p ) =

|p + fp(z) − p − fp(z − εn)| > 0 for every n and for every z. But this means that
fp(z)−fp(z−εn)

εn
has no

zeros and this sequence converges uniformly to f ′(z), which has a zero. Therefore, by Hurwitz’s theorem,
f ′(z) = 0 for every z.

Hence, if there are no vertical points, the lamination could be covered only by horizontal flow
boxes, and for every point p we get a holomorphic function by analytic continuation, fLp such that
π(z, fLp(z)), z ∈ C parametrizes Lp. Likewise, if every point is vertical, the lamination is holomorphi-
cally flat.

Proposition 3.2. If L is a leaf of a lamination (X,L) embedded on a torus T2 and there is a holomorphic
function fL : C→ C that parametrizes L by π(z, fL(z)), then fL is linear, so L̄ is a holomorphically flat
laminated set.

Proof. Firstly, every leaf in L̄ is a horizontal graph, because the set of vertical points is a closed set (by
Hurwitz’s theorem again), and L is dense on L̄ without vertical points. So, there is no vertical point in
L̄.

Assuming f ′L is not constant, then there is a sequence zn with |f ′L(zn)| → ∞. But π(zn, fL(zn))
has a convergent subsequence in L, π(znk , fL(znk)) → (z0, f(z0)) ∈ T2 and the unitary tangent in each

point π(znk , fL(znk)) is
(1,f ′(znk ))√
1+‖f ′(znk )‖

. Therefore, this should also converge, and it does, to (0, 1), so

there would be a vertical point in the lamination. This contradiction arises from the fact that f ′L was
supposed unbounded. So if it is bounded, by Liouville’s theorem, it should be constant. Therefore, L is
a holomorphically flat lamination.

Note that all the leaves of holomorphically flat laminations are parabolic, so there is a directed
closed current. A lamination on a torus has no invariant complex segments if and only if every leaf has
horizontal and vertical points. Then, in this case, the connected component of the identity of the group
of automorphisms of the lamination is Aut0L = {id}.

Lemma 3.1 (Fornæss-Sibony[3]). 1. There is a constant 0 < c0 < 1 such that, for every holomorphic
function on the disk g with |g| < 1, if g has N zeros in D1/2 then |g| < cN0 on D1/2.

2. Let g a holomorphic function on the disk with |g| < 1. Then, if |g| < η < 1 on D1/4, then |g| < η1/2

on D1/2.

We will use this lemma in the proofs of the theorems to estimate the transversal distances.

Theorem 3.1. If (X,L) is a Lipschitz lamination in T2 without invariant complex line segments, we
can find a covering by flow boxes U of L and N ∈ N such that, if Γα,Γβ are plaques from the same flow
box, then Card(Γα ∩ Γεβ) < N , where Γεβ is Γβ moved by a horizontal or a vertical translation.
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Proof. Since L has no complex segments, every leaf has vertical and horizontal points. For every vertical
point pv, we can take a relatively compact vertical flow box Tpv ×∆δ such that f ′α has finite number Kpv

of zeros on ∆δ/2 for every α ∈ Tpv because the lamination has no complex invariant line segments. These
flow boxes will be called special vertical flow boxes. Since the set of the vertical points is closed, there is
a finite subcovering. We make an analogous argument for horizontal points, and, in this way, collecting
all the flow boxes we obtain an open set of the lamination relatively compact, and the complement can
be covered by polydisks which can be seen as horizontal or vertical flow boxes for our convenience.

Using Hurwitz’s theorem like we did in the proof of proposition 3.1, we can find a refinement of this
covering, a kv ∈ N and a εv > 0 small enough such that for every α, β in the transversal of a special
vertical flow box (α and β can be the same point), fβ(z − ε) − fα(z) has 0 < k < kv zeros on ∆δ for
every 0 < ε < εv. This means that under small vertical translations, plaques in special vertical flow
boxes intersect each other at k points.

After another refinement, we can assure the same is true for other εh and kh in special horizontal
flow boxes. So let be ε0 = min(εh, εv) and k = max{kh, kv}.

For ε < ε0, τ(0,ε)(z, w) = (z, w + ε) is a vertical translation, and we suppose we have a horizontal
flow box where we have N ′ intersection points between two plaques, Γα,Γβ when we move one of them
by the translation Γεβ = τ(0,ε)(Γβ). In this case, the transversal distance defined on every z ∈ ∆δ is
dz(Γβ ,Γα) = |α+ fα(z)− β − fβ(z)|, and as L is a Lipschitz lamination, we have

|α− β|
C

< dz(Γα,Γβ) < C|α− β|

for certain global constant C independent of the flow box. Since Γα and Γεβ intersect, there is z0 with
dz0(Γα,Γβ) = ε. Hence

ε

C2
< dz(Γα,Γβ) < C2ε.

There is also a constant b > 1 holding the following: if Γ1 and Γ2 are two plaques in a flow box with
dz(Γ1,Γ2), the transversal distance on it, and Γ′1,Γ

′
2 are their continuations to an adjacent flow box with

the transversal distance d′z(Γ1,Γ2) then

min d′z(Γ
′
1,Γ
′
2)

b
≤ min dz(Γ1,Γ2) ≤ max dz(Γ1,Γ2) ≤ bmax d′z(Γ

′
1,Γ
′
2).

This b does not depend on neither the flow box nor the plaques.
As we have a finite covering, we can reach a special vertical flow box following a path with at most

M changes of flow boxes where M is a global bound. Hence, we get

|ε|
C2bM

< dz(Γα0
,Γβ0

) < C2bM |ε|

where α0 and β0 are the analytic continuation of the plaques.
Due to the Lipschitzness of the lamination, we can find a global constant K ′ such that, for every flow

box continuating Γα and Γβ , say Γα′ ,Γβ′ we have

dz(Γα′ ,Γβ′)

K ′|ε|
<

1

b2
.

By Lemma 3.1, there is c < 1 such that

dz(Γα,Γ
ε
β)

K ′|ε|
< cN

′
<

1

b2
,

then we can see this transversal distance in the next plaques, and considering the distortion, it satisfies
that

d′z(Γα′ ,Γεβ′)

K ′|ε|
< bcN

′
< 1.

Hence, in a bigger disk, by Lemma 3.1, they would differ at most by (bcN
′
)1/2. Repeating the argument

until we arrive to the vertical special flow box, we get that d′z(Γα0
,Γεβ0

) < K ′|ε|b2cN ′/2M .
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So, we should have that, by triangular inequality,

dz(Γβ0
,Γεβ0

) ≥ dz(Γα0
,Γβ0

)− dz(Γα0
,Γεβ0

) ≥
(

1

C2bM
−K ′b2cN

′/2M
)
|ε|

but, if N ′ is big enough to make 1
C2bM

> K ′|ε|b2cN ′/2M . It would mean that Γβ′ ,Γεβ′ should not intersect
each other, but they do. Therefore, making N = max{N ′, k}, we obtain the N appearing in the statement
for vertical translations.

This argument can be made analogously for horizontal translations.

Theorem 3.2. Let (X,L) be a lamination by Riemann surfaces in T2 without invariant complex line
segments. There exist ε0 > 0, A > 0 and a covering {Bi} of the lamination, such that for every ε ∈ C
with |ε| < ε0, for every τ(ε,0) and τ(0,ε),there are at most A log 1/|ε| crossing points between L1 and Lε2 in
any flow box.

Proof. The proof is similar to the previous one, but the estimates are slightly different. We will try to
be consistent with the notation of the previous theorem. Here, since the lamination is a holomorphic
motion, we can take horizontal and vertical flow boxes as we said before, such that

|α− β|2

C
≤ |α+ fα(z)− β − fβ(z)| ≤ C|α− β|2.

By previous arguments, we can also consider a covering by flow boxes as in the previous theorem, where
these inequalities hold for transversal distances, and taking ε0 small enough to assure that a plaque on
a special horizontal flow box and the same plaque moved by a horizontal translation have to intersect
each other.

Proceeding as before, we can check what happens for τ(ε,0). Assume that we have N crossing points
on a vertical flow box. By previous arguments,

ε4

K
≤ dz(Γα,Γβ) ≤ K|ε|1/4

for certain K > 2 non depending on ε.So, we can reach a special horizontal flow box by a path in at
most M changes of flow boxes and α′ and β′ are the corresponding plaques in this flow box. Hence

|ε|4M

KMbM
< dz(Γ

′
α,Γ

′
β) < bMKM |ε|1/4

M

.

By similar arguments, we can find a constant c verifiying the estimate

dz(Γα,Γ
ε
β)

K|ε|1/4M
< cN <

1

b2
.

So, by the same reason than for the Lipschitz case,

dz(Γ
′
α,Γ

′ε
β ) < b2cN/2

M

K|ε|1/4
M

.

But, by triangular inequality again,

dz(Γ
′
β ,Γ

′ε
β ) > dz(Γ

′
α,Γ

′
β)− dz(Γ′α,Γ′εβ ) >

|ε|4M

KMbM
− b2cN/2

M

K|ε|1/4
M

and if

N >
(4M − (1/4)M ) log |ε|

1/2M log c
− log(2bM+2KM+1)

1/2M log c
= A log

1

|ε|
+B

then dz(Γ
′
β ,Γ

′ε
β ) > |ε|4

M

2KMbM
> 0, hence Γ′β ,Γ

′ε
β would not intersect each other. The contradiction arises

if N is too big compared to − log |ε|
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This last bound is not as good as the one of Lipschitz case, and we need to recall from [3] the following
definition.

Definition 3.4. A harmonic directed current T which can be written in flow boxes as T =
∫
hα[Vα]dµ(α),

has finite transverse energy if in some local flow box∫
log |α− β|dµ(α)dµ(β) < −∞

Theorem 3.3. Let (X,L) be a lamination in T2 without invariant complex line segments. For every
harmonic directed current T of mass one with finite transverse energy, Q(T, T ) = 0. This is also true
if the lamination is transversally Lipschitz without the assumption of the finiteness of the transversal
energy.

Proof. This proof follows [3] with slight modifications. It is included for the convenience of the reader.
We know that if T is a (1, 1) positive directed harmonic current it can be seen as T =

∫
A

[Vα]hαdµ(α) in a
flow box ∆×A where hα is a harmonic function in the plaque Vα. Hence, for T =

∫
A

[Vα]hαdµ(α), T ε =∫
A

[V εβ ]h′βdµ
′(β) where T ε = τ∗ε (T ), the geometric intersection is defined in the flow box over a test

funtion φ as

T ∧g T ε(φ) =

∫ ∑
p∈Jεα,β

hα(p)hεβ(p)dµ(α)dµ(β)

where Jεα,β are the intersection points between Vα and V εβ . Let us suppose that µ has finite transverse
energy. As we proved before, the number of points in Jεα,β is at most A log 1/ε. As hα and hεβ are
uniformly bounded,

|T ∧g T ε(φ)| ≤ C1‖φ‖∞
∫
dmin(Vα,Vβ)≤Cε

A log 1/εdµ(α)dµ(β)

≤ C2‖φ‖∞
∫
dmin(Vα,Vβ)≤Cε

log
1

d(Vα, Vβ)
dµ(α)dµ(β)→ 0.

In the Lipschitz case the number of intersection points is bounded by N independent of ε. Therefore,

|(T ∧g Tε)(φ)| ≤ C‖φ‖∞
∫
dmin(Vα,Vβ)≤Cε

Ndµ(α)dµ(β)→ 0

because µ has no mass on points.
Now, it is necessary to prove that Q(T, T ) =

∫
T ∧ T = 0. Since we are working on homogeneus

Kähler manifolds, it is enough to prove that for smoothings T δ, T δ
′

ε , Q(T δ, T δ
′

ε )→ 0 when δ, δ′ are small
enough compared to ε and δ, δ′, ε go to 0.

The estimate on the geometric wedge product is stable under small translations Tε of T . We can
think in smoothing a current as an average of small translations.

Let φ be a test function supported in some local flow box. By definition, the value of the geometric
wedge product on φ is

〈T ∧ T ε〉g(φ) =

∫ ∑
p∈Jεα,β

hα(p)hεβ(p)dµ(α)dµ(β).

But if we fix a plaque [V εβ ] we can look for points in it which are also points of a plaque Vα and we write
it like this

〈T ∧ Tε〉g(φ) =

∫ (∫
V εβ

[φhαh
ε
β ](p)i∂∂ log |w − fα(z)|dµ(α)

)
dµ(β)

These expressions are small when ε is small. The same applies when we do this for slight translations
within small neighbourhoods U(ε) of the identity in Aut0(T2) = T2 and their smooth averages T δ. So,
if we consider φT δ as a smooth test form we get

〈Tε, φT δ〉 =

∫ (∫
V εβ

[φhεβ ](p)T δ

)
dµ(β).
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Repeating the process, consider the averaging over small translations of Tε, we get that T δ
′

ε ∧T δ(φ)→ 0
when δ, δ′ << ε and ε→ 0. Since this argument is made over flow boxes, we need to consider a partition
of unity of φ’s, so we get T δ

′

ε ∧ T δ = Q(T δ
′

ε , T
δ)→ 0. Therefore Q(T, T ) = 0.

Non existence of directed positive closed currents implies (X,L) has no invariant complex line seg-
ments. Hence Q(T, T ) = 0 for every T harmonic directed positive current. This observation leads us to
the following corollary.

Corollary 3.1. Let (X,L) be a Lipschitz lamination in T2 with no directed positive closed currents.
Then there is a unique harmonic current T of mass one directed by the lamination. Specifically it has
only one minimal set.

4 Products of curves

In this section we will deal with cases of some products of curves with many automorphisms. They
are CP1 × CP1 and CP1 × T1. We have a slightly different definition of verticality and horizontality
here, but it is natural anyway based on their standard parametrizations. We define φ1 : C → CP1 as
φ1(w) = [1 : w] and φ2 : C→ CP1 as φ2(z) = [z : 1]. For T1, since π : C→ T1 is locally injective, there
exists δ > 0 such that π|∆δ(z) is injective for every z ∈ C. So, every p in X = CP1 × CP1,T1 × CP1

admits a parametrization ϕ = (ϕ1, ϕ2) where ϕi are injective restrictions to disks of these functions.

Definition 4.1. U ⊂ X is a horizontal flow box centered on p = (p1, p2) if there is a parametrization
as we said before with ϕ(z0, w0) = (p1, p2), a disk D1 centered at 0, a subset A contained on a disk D2

centered at 0 such that plaques of L|U are parametrized by ϕ(z0 + z, w0 + α+ fα(z)) for every α ∈ A.

Definition 4.2. We will say that a point p of the lamination is horizontal if π2(TpL) = 0.

We define analogously vertical flow boxes and vertical points, and we can cover our lamination by
horizontal or vertical flow boxes. Note that if p is a horizontal point we can take a horizontal flow box
on a neighbourhood of p, and if ϕ(z0, w0) = p, then f ′0(0) = 0.

Proposition 4.1. Every minimal lamination (X,L) in T1 × CP1 either has horizontal points, or is
T1×{p}. And if (X,L) is in CP1×CP1 and there is a leaf L without horizontal points, then L = (f(p), p)
is a closed leaf for f : CP1 → CP1 holomorphic.

Proof. The proof is analogous to Proposition 3.1. We can consider a covering only with vertical flow
boxes and, beginning with a vertical plaque Γα with a parametrization ϕ(fα(z), z), we can extend fα to
obtain a holomorphic function from CP1 to the first factor of the surface. If the first factor is CP1, this
function is rational, but if the first factor is T1 there are no nonconstant holomorphic functions from
CP1 to T1.

Clearly, the same is true for vertical points in CP1 × CP1. So every lamination (X,L) embedded in
it without compact curves has vertical and horizontal points.

Theorem 4.1. Let (X,L) be a lamination without compact leaves having only one minimal set in
M = CP1 × CP1 . Suppose that the point p = ([0 : 1], [1 : 0]) is neither vertical nor horizontal and
belongs to the minimal set. Let Φε be the automorphism of CP1×CP1 defined as Φε([z1 : z2], [w1 : w2]) =
([z1 + εz2 : z2], [w1 : w2]). Then, there exists a covering and some constants ε0 > 0, N ∈ N, A > 0 such
that if Γα,Γβ are plaques from the same flow box and

1. (X,L) is a Lipschitz lamination then Card(Γα ∩ Γεβ) < N with Γεβ = Φε(Γβ)

2. (X,L) is not Lipschitz then Card(Γα ∩ Γεβ) < A log 1/ε

for every ε with |ε| < ε0
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Proof. We will explain the Lipschitz case. The only one difference with non Lipschitz case is that the
last one has a little bit more complicated inequalities as we could see in Theorem 3.2.

First of all, we notice that [1 : 0]×CP1 is invariant for every Φε and we consider a flow box centered
on p.

ϕ : ∆δ ×A→ B0 ⊂ CP1 × CP1 (1)

(z, w)→ ([1 : z], [fw(z) + w : 1]) (2)

small enough to hold that 0 <
f ′
0(0)
2 < f ′w(z) < 2f ′0(0). We cover CP1 × CP1 \ B0 by horizontal or

vertical flow boxes, and we obtain a covering B = {Bi}.
The automorphism Φε sends (z, w) to ( 1

1+εz , w), so the transversal distance between a plaque Γβ of
L and Γεβ the same one moved by Φε, is

dz(Γβ ,Γ
ε
β) =

∣∣∣∣β + fβ(z)− β − fβ
(

1

1 + εz

)∣∣∣∣
=

∣∣∣∣fβ(z)− fβ
(

1

1 + εz

)∣∣∣∣
≥ k

∣∣∣∣z − 1

1 + εz

∣∣∣∣
= k

∣∣∣∣ε z2

1 + εz

∣∣∣∣
Therefore, max|z|≤δ dz(Γβ ,Γ

ε
β) = max|z|=δ dz(Γβ ,Γ

ε
β) ≥ k|ε||δ|2/2 if ε small enough.

Now, we repeat the argument. Consider two plaques Γα and Γεβ which intersect each other in N
points. Following a path, we reach B0 in at most M changes of flow boxes which is independent of
the plaques. Let α′ and β′ be the analytic continuation of the original plaques, and by same reasoning

of Theorem 3.1, we obtain that, dz(Γ
ε
β′ ,Γα′) ≤ K ′|ε|b2cN ′/2M for every z ≤ δ, in fact for z = 0,

d0(Γεβ′ ,Γα′) = |α′ − β′| ≤ K ′|ε|b2cN ′/2M , so

dz(Γα′ ,Γβ′) ≤ C|α′ − β′| ≤ CK ′|ε|b2cN
′/2M .

Finally, ∣∣∣∣kεδ2

2

∣∣∣∣ ≤ max
|z|≤z

dz(Γ
ε
β′ ,Γβ′)

≤ max
|z|≤z

dz(Γ
ε
β′ ,Γα′) + max

|z|≤z
dz(Γβ′ ,Γα′)

≤ K ′|ε|b2cN
′/2M + CK ′|ε|b2cN

′/2M

then if N is big enough to hold k|ε||δ|2/2 > (C + 1)K ′|ε|b2cN ′/2M , a contradiction arises. So the
number of intersection points is bounded

Theorem 4.2. Let (X,L) be a lamination without compact leaves and having only one minimal set
embedded in M = T1 × CP1. Let Φε([z1], [w1 : w2]) = ([z1 + ε], [w1 : w2]) then there exists a covering of
L by flow boxes and some constants N ∈ N, ε0 > 0 and A > 0 such that if Γα,Γβ are plaques from the
same flow box and Γεβ = Φε(Γβ),

1. (X,L) is a Lipschitz lamination then Card(Γα ∩ Γεβ) < N

2. (X,L) is not Lipschitz then Card(Γα ∩ Γεβ) < A log 1/ε

for |ε| < ε0.

Proof. The proof of this theorem is similar to theorems 3.1 and 3.2. Since L has no compact leaves,
there are non horizontal points. Hence, we just need to take a finite covering of the horizontal points
by special horizontal flow boxes, find a ε0 small enough to hold that every plaque in these flow boxes
intersects itself when we move it by Φε if |ε| < ε0, and get the same contradiction we obtain in theorems
3.1 and 3.2.
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Theorem 4.3. Let (X,L) be a lamination without compact leaves having only one minimal set in
CP1 × CP1 or T1 × CP1. For every harmonic directed current T of mass one with finite transverse
energy, Q(T, T ) = 0. This is also true if the lamination is Lipschitz without the assumption of the
finiteness of the transversal energy.

The proof is analogous to [3] and theorem 3.3.

Corollary 4.1. Let (X,L) be a lamination without compact leaves having only one minimal set in
M = CP1 × CP1 . Then there is no closed laminar current of mass one if L is Lipschitz and, if the
lamination is not Lipschitz, every closed laminated current of mass one has infinite transverse energy.

Proof. We know that if T is closed of mass one T = Ω + ∂S + ∂S for a unique �−harmonic form Ω and
∂S = 0. So

∫
T ∧ T =

∫
Ω ∧ Ω = 0, but we are on a Kähler manifold where the dimension of H1,1(M)

is two. It is generated by the Kähler form ω and another form ω′ such that
∫
ω ∧ ω = 1,

∫
ω′ ∧ ω′ = −1

and
∫
ω′ ∧ ω = 0. So, every positive laminar closed current T of mass one has Ω = ω + ω′.

Now, consider the automorphism of M , S(p0, p1) = (p1, p0). S∗(T ) is a laminar current for the
lamination S(L) which has similar properties to L.

Q(T, S(T )) =
∫

Ω ∧ Ω = 0 following [3] but, by [2], the product of closed laminar currents is always
geometric. So, we consider a flow box together for L and S(L) on a neighbourhood of ([0 : 1], [0 : 1])
where L is horizontal, so S(L) is vertical and T =

∫
α∈A [Vα]dµ(α) where Vα are the plaques and S(T ) =∫

α∈A S
∗[Vβ ]dµ(β) with the same µ then T ∧g S(T )(Φ) =

∫
A×A Φdµdµ for a test form Φ but, as the

intersection is geometric, this is 0 for every test form, hence T = 0.

We can also assure that when we have no closed directed currents, there is a unique harmonic positive
current directed by the lamination of mass one. This remark in CP1 × CP1 is coherent with [1], where
it is proven that there is a unique harmonic foliated measure for Riccati foliations when there are no
holonomy invariant measures.
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