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Abstract

Let F be a holomorphic foliation on M, a homogeneous compact Kähler surface, with only hyper-
bolic singularities. Let L be a closed set saturated by leaves of the foliation, containing singularities
and with every leaf dense on it. We say L is a minimal lamination by Riemann surfaces with only
hyperbolic singularities. If there are no positive closed currents directed by L, then there is a unique
positive harmonic current directed by L of mass one. This result was obtained previously for CP2

by Fornæss and Sibony, by developing intersection theory for currents. By applying the same theory
we obtain the result for the rest of homogeneous compact Kähler surfaces.

1 Introduction

The aim of this work is to obtain a generalization for every compact homogenous Kähler surface of
the main result obtained by Fornæss and Sibony in [6] via the theory they developed in [4] (see also
[5]). These works are devoted to prove the uniqueness of the ergodicity for laminations in CP2 without
directed closed currents.

Definition 1.1. We say (X,L, E) is a transversally Lipschitz lamination by Riemann surfaces with
singular set E ⊂ X, if X is a compact topological space such that for every p 6∈ E we can find local charts
φi : ∆× T → X where ∆ is the unit disk and T is a metric space. These charts satisfy that the change
of coordinates is φ−1

i ◦φj(z, t) = (fij(z, t), hij(t)) with hij Lipschitz, fij holomorphic in the first variable
and Lipschitz in the second one. These local charts are called flow boxes.

The laminations we will deal with in this article will be embedded in complex surfaces M. Then, if
φ : ∆2

δ,δ′ → U ⊂ M is a local chart from a polydisk of radii δ and δ′ to M centered at p, the plaques
Γw of these flow boxes can be written as graphs (z, fw(z)) with z ∈ ∆δ, w ∈ T ⊂ ∆′δ and fw being an
holomorphic function verifying that fw(0) = w.

Definition 1.2. Let (X,L, E) be a lamination by Riemann surfaces with singularities embedded on a
compact complex surface M, with E discrete. We say that p ∈ E is a hyperbolic singularity , if we can
find U ⊂ M a neighbourhood of p and some holomorphic coordinates (z, w) centered on p such that the
leaves of (X,L, E) are invariant varieties for the holomorphic 1-form ω = zdw − λwdz, with λ ∈ C \R.

Theorem 1.1. Let M be a homogeneous compact Kähler surface containing a minimal Lipschitz lam-
ination L by Riemann surfaces with hyperbolic singularities. If there are no closed currents directed by
L, then there is a unique directed harmonic current of mass one.

This theorem was proven by Fornæss and Sibony in [6] for CP2. following Tits [8] there are only three
other cases of homogeneous compact Kähler surfaces: CP1 × CP1,CP1 × T1,T2. The theory developed
in [4] works for every compact homogenous Kähler manifold, and according to that paper we just need
to prove that the geometric selfintersection of a harmonic current always vanishes.

The reasoning in order to prove the theorem will be similar in the three cases. The proof will be
made explicitly for CP1 × CP1.

2 Directed harmonic currents in laminations

Let (M, ω) be a compact homogeneous Kähler surface. The space of (1, 1)-forms can be endowed with
the supremum norm, in this way the space of (1, 1)-forms gets a structure of Banach space. A (1, 1)-
current T of order 0 is a C linear functional T on this space. We will deal with positive harmonic currents
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directed by a lamination. It means that T (φ) ≥ 0 if φ is a positive (1, 1)-form, T|U (γ) = 0 where γ is a

(1, 0)-form in U holding that the plaques of the lamination in U are integral varieties of γ and T (∂∂u) = 0
for every real function u. More information about currents can be found in Demailly’s book [3].

This kind of currents can be decomposed in regular flow boxes as

T =

∫
t∈T

ht[Γt]dµ(t).

where ht is a harmonic function along each plaque depending on the point in the transversal t ∈ T , [Γt]
is the integration current over the plaque Γt and µ is a local transversal measure.

Remark 2.1 ([4]). If a positive harmonic current on a laminated compact set X gives mass to a leaf,
then this leaf is a compact Riemann surface. However, we will assume the non existence of closed leaves,
then µ cannot have mass on points.

We need to recall another important concept from [4]. The geometric selfintersection of this kind of
currents in homogeneous manifolds is a measure defined in a flow box as follows. Let u be a test function
with support in the flow box, then we define the geometric selfintersection as

T ∧g T (u) = lim
ε→0

T ∧g T ε(u) =

∫ ∑
p∈Jεα,β

u(p)hα(p)hεβ(p)dµ(α)dµ(β),

where we have chosen a family of automorphisms Φε → Id, such that T ε := Φε∗(T ) and Γεβ := Φε(Γβ).
The set Jεα,β is the set of the intersection points between Γα and Γεβ .

Theorem 2.1 (Fornæss, Sibony [6]). Let L be a minimal Lipschitz lamination with only hyperbolic
singularities in a compact homogeneous Kähler manifold (M, ω), without directed closed currents. If
T ∧g T = 0 for every directed positive harmonic current T there is only one of them with mass one.

The existence of such currents was proven for laminations by Riemann surfaces with finite number
of singularities by Berndtsson and Sibony in [1].

Proving that the geometric selfintersection is equal to 0 in a regular flow box is done by finding a
bound N on the number of intersection points of a plaque of the lamination and another plaque moved
by an element of this family of automorphisms close enough to the identity. Indeed, if u is a continuous
function which is 0 outside a flow box, since u and hα are bounded, then

|T ∧g T ε(u)| ≤
∫
d(Γα,Γβ)<Cε

N | sup(hα)|2| supu|dµ(α)dµ(β)→ 0

where C > 0 is a constant. This limit holds because µ has no mass on single points.
Under some assumptions, that we recall at the beginning of section 3, in [6] it is also proven that the

geometric self-intersection is 0 in an open linearizable neighbourhood of a hyperbolic singularity.
To sum up, we need to find a continuous family of automorphisms of each surface Φε with Φ0 = Id

satisfying the conditions of [6] around the singularities and a big enough N ∈ N to ensure that Γ1 and
Γε2 intersect each other at most at N points when ε is small enough. Γ1 and Γ2 denote plaques of the
same flow box, and Γε2 = Φε(Γ2). Hence, in order to prove Theorem 1.1, we just need to prove, for each
compact complex Kähler surface M a theorem like the one below which is the key result in this article.

Theorem 2.2. Let L be a minimal transversally Lipschitz lamination with only hyperbolic singularities
in M and without directed closed currents. There are a covering of the lamination outside the singular
neighbourhoods, a NL ∈ N and a εL > 0 such that there are at most N intersections between Γ1 and Γε2,
where Γ1 and Γ2 are plaques in the same flow box, for every ε with |ε| < εL.

The proof relies in finding a covering by flow boxes of three different types according to the behaviour
of the lamination and to the family of automorphisms inside them. Firstly, open linearizable neighbour-
hoods around the singularities where results of [6] can be applied. Secondly, some flow boxes having
intersection points between a plaque and itself moved by an element of the family of automorphims close
enough to the identity. And finally, flow boxes where, if Γ1 and Γε2 are very close, then Γ1 and Γ2 are far
away. The final step is to get a contradiction when there are too many intersection points of a original
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plaque and a perturbed one. It is done by following a leaf up to one of the plaques of the second type
and showing that there is a plaque which does not intersect itself moved by the automorphism.

Since different surfaces have different group of automorphisms we cannot consider the same family
for these three cases, but we will search for automorphisms with similar local behaviour. Main difference
with the case of CP2 is that the automorphisms taken in that case by Fornæss and Sibony have a line of
fixed points. In our cases there is at most one fixed point.

In order to find these coverings, Hurwitz’s Theorem will play a special role. Since we can see plaques
locally as graphs, and these graphs vary continuously in the transversal, we can apply Hurwitz’s Theorem.
It is useful to prove that, when we move a plaque by a tangential motion, the moved plaque and the
original one intersect each other.

We will also need the following remark.

Remark 2.2. Writing the plaques of the flow boxes as graphs, Lipschitzness implies that for t, t′ ∈ T ⊂
∆δ′ , there is a constant C > 1 depending on the flow box, such that

d(t, t′)

C
≤ d(ft(z), ft′(z)) ≤ Cd(t, t′)

for every z ∈ ∆δ. In the expression above d is the distance in the transversal. We will denote
d(ft(z), ft′(z)) by dz(Γt,Γt′).

This remark will be necessary to travel from flow box to flow box and we will use it sistematically in
our arguments.

3 Case of CP1 × CP1

We consider CP1 × CP1 with the Fubini-Study metric in each factor. Since it is a product space then
T (CP1 ×CP1) = TCP1 × TCP1. Hence, we have a notion of verticality and horizontality in the tangent
bundle defined in the natural way.

Assume that the lines [1 : 0]× CP1 and CP1 × [1 : 0] do not contain any singularity, p = ([1 : 0], [1 :
0]) ∈ L and TpL is not vertical neither horizontal.

Therefore, we have four different charts covering CP1 × CP1, ψi : C2 → CP1 × CP1 for i = 1, 2, 3, 4
defined as follows:

a) ψ1(z, w) = ([z : 1], [w : 1]),

b) ψ2(z, w) = ([1 : z], [w : 1]),

c) ψ3(z, w) = ([z : 1], [1 : w]),

d) ψ4(z, w) = ([1 : z], [1 : w]).

Clearly every singularity is contained in the image of ψ1.
The family of automorphisms we are searching for is

Φε([z1 : z2], [w1 : w2]) = ([z1 + εv1z2 : z2], [w1 + εv2w2 : w2])

for a suitable vector (v1, v2), but we have to choose it carefully according to the behaviour of the
lamination in a neighbourhood of a singularity.

Let s1, s2, . . . , sn be the singularities. Since they are hyperbolic, there exist AiA a linearizable neigh-
bourhood around ψ−1

1 (siA) and a change of coordinates φiA : AiA → ∆2
δ,δ′ with φiA(ψ−1(siA)) = (0, 0)

such that in the new coordinates (z′, w′) the leaves of the lamination are integral varieties of the 1-form
w′dz′−λiAz′dw′ with this λiA veryfing that λiA 6∈ R. Hence the separatrices are {w′ = 0} and {z′ = 0}.
Φε would act as a translation by (εv1, εv2) in ψ−1

1 (AiA) = ∆2
δ,δ′ , Φε(z, w) = (z + εv1, w + εv2).

Next we define ΦiAε = φ−1
iA

ΦεφiA , and ΦiAε has to hold the conditions of [6]: it could be written as

(α(ε), β(ε)) + (z′, w′) + εO(z′, w′) with α′(0), β′(0) 6= 0 and β′(0)
α′(0) 6= λiA . Notice that (α′(0), β′(0)) =

Dφ−1
iA|Φε(0,0)(v1, v2) =: (viA1 , viA2 ). The third element of the sum appears if and only if φ is not linear.

In fact, it is not linear because in that case the lamination would have a directed closed current, the
integration current on the separatrix, which would be a projective line. These conditions must hold
around every singularity. Therefore we have to choose a vector (v1, v2) such that:
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i) viA1 , viA2 6= 0 and
v
iA
2

v
iA
1

6= λiA ,

ii) (v1, v2) is unitary,

iii) v1, v2 6= 0 and (v2, v1) does not belong to TpL,

iv) (v1, v2) is tangent for certain point p′ ∈ C2 \ (
⋃
AiA).

So, we have fixed (v1, v2) and we have the family of automorphisms Φε. The next step is choosing a good
covering of the lamination L as follows:

(1) We already have linearizable neighbourhoods of the singularities where [6] can be applied, we will
denote them by AiA . We will call them singular neighbourhoods.

(2) We need a neighbourhood U0 of p, because it is a fixed point for every element of the family of
automorphisms. We will find it by using ψ4.

(3) Afterwards, we will cover CP1× [1 : 0] \U0 via ψ3 with two types of flow boxes, horizontal W a
jW

and
and vertical W t

iW
. The superindices come from “along” and “transversal”, referring to the behaviour

of the laminations with respect to the automorphisms.

(4) Same for [1 : 0]× CP1 \ U0 with ψ2. We will obtain V tiV and V ajV .

(5) And finally, by using ψ1, we get flow boxes BajB and BtiB covering the rest of the points of CP1×CP1

depending on whether every plaque is transversal to the motion or not, respectively.

Lemma 3.1. There is a flow box U0 centered at p = ([1 : 0], [1 : 0]) biholomorphic to ∆δ × T and an
ε0 > 0 such that, if Γw and Γεw′ intersect each other in N0 points, then the vertical distance in |z| = δ
verifies

dz(Γw,Γw′) > c0|ε|

with certain c0 > 0 for every ε with |ε| < ε0.

Proof. We will use ψ4. Consider a horizontal flow box U ′0 = ∆δ×T centered at p, ∆δ is a disk centered at
0, and T is a topological space containing 0. The points in the flow box can be written as (z, w+fw(z)),
where fw are holomorphic functions satisfying fw(0) = 0 for every w ∈ T .

Since f ′0(0) 6= 0 and (v2, v1) is not a scalar multiple of (1, f ′0(0)), we can choose U0 verifying that
m < |f ′w(z)| < M , |f ′w(z) − v1

v2
| > m0 > 0 for every (z, w) ∈ ∆δ × T and as fw(z) = gw(z)z for a

certain holomorphic function gw varying continuously with w, we can also ask for m < |gw(z)| < M and
|gw(z)− v1

v2
| > m0 > 0 for every (z, w) ∈ ∆δ × T .

Now, we want to find δ0 small enough to get that if Γw and Γεw′ intersect each other in N0 points,
then the vertical distance in z satisfies

dz(Γw,Γw′) > dz(Γw′ ,Γεw′)− dz(Γw,Γεw′) > c0|ε|

with certain c > 0 for every z with |z| = δ0. The idea is to find a lower bound for dz. Since L is a
Lipschitz lamination, we can find the bound for Γ0 and shrink later the transversal to ensure that every
plaque holds the inequality.

In the domain of ψ4,

Φε(z, w) =

(
z

1 + εv1z
,

w

1 + εv2w

)
,

then

Γε0 =

{(
z

1 + εv1z
,

f0(z)

1 + εv2f0(z)

)
, z ∈ ∆δ

}
.

Hence, if we fix z ∈ ∆δ such that z′ = z
1+εv1z

∈ ∆δ, then z = z′

1−εv1z′ . So, the transversal distance in a
point z is

dz(Γ0,Γ
ε
0) =

∣∣∣∣∣f0(z)−
f0( z

1−εv1z )

1 + εv2f0( z
1−εv1z )

∣∣∣∣∣ .
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We can write it as follows

dz(Γ0,Γ
ε
0) =

∣∣∣∣∣zg0(z)−
( z

1−εv1z )g0( z
1−εv1z )

1 + zεv2
1−εv1z g0( z

1−εv1z )

∣∣∣∣∣
=

∣∣∣∣∣∣zg0(z)−
zg0( z

1−εv1z )

1 + zε
(
−v1 + v2g0( z

1−εv1z )
)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
z
[
g0(z)− εzg0(z)

(
v2g0

(
z

1−εv1z

)
− v1

)
− g0

(
z

1−εv1z

)]
1 + εz

(
−v1 + v2g0

(
z

1−εv1z

))
∣∣∣∣∣∣

≥

∣∣∣∣∣∣ z

1 + zε
(
−v1 + v2g0

(
z

1−εv1z

))
∣∣∣∣∣∣ (F −G) ,

where

F :=

∣∣∣∣εzg0(z)

(
v2g0

(
z

1− εv1z

)
− v1

)∣∣∣∣ ,
G :=

∣∣∣∣g0(z)− g
(

z

1− εv1z

)∣∣∣∣ .
We are searching for a lower bound of this last expression. F is obviously greater than |ε||z|mm0|v2| so

we have to find an upper bound for G. We observe that z
1−εv1z = z + εv1z

2

1−εv1z , and considering Taylor
expansion of g0 in 0, we obtain that∣∣∣∣g0(z)− g

(
z

1− εv1z

)∣∣∣∣ =

∣∣∣∣∣
∞∑
n=p

anz
n −

∞∑
n=p

an

(
z +

εv1z
2

1− εv1z

)n∣∣∣∣∣
= |εv1z

p+1hε(z)|,

with |hε(z)| bounded by M0 for every z and every ε small enough.
Thus, by replacing these bounds in the previous expression,

dz(Γ0,Γ
ε
0) ≥ |z|

1 + zε
(
−v1 + v2g0

(
z

1−εv1z

)) [|ε||z|m|v2|m0 − |εv1z
p+1h(z)|

]
≥ |εz2|

1 + zε
(
−v1 + v2g0

(
z

1−εv1z

)) (mm0|v2| − v1|z|pM0).

Now, we choose ε0 such that if |ε| < ε0 then

1

1 + zε
(
−v1 + v2g0

(
z

1−εv1z

)) > 1

2
,

for every z ∈ ∆δ, and if we set δ to satisfy that mm0|v0| > 2|v1|δpM0, then

min
|z|=δ

dz(Γ0,Γ
ε
0) >

δ2|ε|mM0|v2|
4

.

Therefore min|z|=δ dz(Γw,Γw′) ≥ min|z|=δ dz(Γw′ ,Γεw′)−max|z|=δ dz(Γw,Γ
ε
w′) then, by applying Lemma

4.2 of [4]

min
|z|=δ

dz(Γw,Γw′) ≥ δ2|ε|mM0|v2|
4

− cN0 K|ε|.

Hence if N0 is big enough,

min
|z|=δ

dz(Γw,Γw′) ≥ δ2|ε|mM0|v2|
8

> 0.
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So the number c0 we were searching for is

c0 =
δ2mM0|v2|

8
.

Lemma 3.2. There is a covering of CP1 × [1 : 0] \ U0 by flow boxes of two different types, W a
jW

and
W t
iW

and an ε1 > 0, verifying that for every ε such that |ε| < ε1,

• if Γw is a plaque in W a
jW

then Γεw ∩ Γw 6= ∅;

• if Γz and Γz′ are plaques in W t
iW

satisfying that max dw(Γz,Γ
ε
z′) <

|v1||ε|
2 then min dw(Γz,Γz′) >

|v1||ε|
2 .

Proof. In order to prove this lemma we use ψ3. In this chart, an automorphism behaves as Φε(z, w) =
(z + εv1,

w
1+εv1w

). It is a horizontal translation in w = 0. We want to cover the points of w = 0 which
are not in U0. It is a compact set, so we will find a finite covering.

If q is a point with horizontal tangent, we take a horizontal flow box centered at q where f ′0(z) = 0 if
and only if z = 0. We will proof that for ε small enough, Γ0 and Γε0 intersect each other and by Hurwitz’s
theorem (see for example Conway’s book [2]) we can find a flow box centered at q verifying this for every
plaque in it.

We can write Γ0 = {(z, f0(z)), z ∈ ∆δ′} with f0(0) = 0 and f ′(0) = 0 and Γε0 = {(z+εv1,
f0(z)

1+εv2f0(z) ), z ∈
∆δ′}, so we want to compute if the function

f0(z)− f0(z − εv1)

1 + εv2f0(z − εv1)

has any zero. The number of zeros of that function is the same as the number of zeros of

gε(z) =
1

ε

(
f0(z)− f0(z − εv1)

1 + εv2f0(z − εv1)

)
=

1

ε

(
f0(z)− f0(z − εv1)− f2

0 (z − εv1)εv2

1 + εv2f0(z − εv1)

)
.

Then, limε→0 gε(z) = f ′0(z)v1−f2
0 (z)v2 which has a finite number of zeroes in ∆δ. By Hurwitz’s theorem

again, there is ε1 such that if |ε| < ε1, gε(z) has the same number of zeros as the limit, hence Γε0 and Γ0

intersect each other. So do nearby enough plaques. We cover these points by flow boxes W a
jW

.
Now, if q is a non horizontal point in w = 0, we can take a vertical flow box around it (z + fz(w), w)

and Γεz = (z + εv1 + fz(w), w
1+εv2w

). If max dw(Γz,Γ
ε
z′) < |v1ε|/2, then

min dw(Γz,Γz′) ≥ min dw(Γz,Γ
ε
z′)−max dw(Γz′ ,Γ

ε
z′) = |εv1| − |v1ε|/2 > |εv1|/2.

In this way we obtain the flow boxes W t
iW

.
So, finally, we can cover {w = 0} \ U0 by a finite number of flow boxes.

We can cover [1 : 0]× CP1 analogously and obtain the same result for open sets V tiV and V ajV .

Lemma 3.3. There is a covering of [1 : 0]×CP1 \ U0 by flow boxes of two different types, V ajV and V tiV
and an ε2 > 0, verifying that for every ε such that |ε| < ε2,

• if Γz is a plaque in V ajV then Γεz ∩ Γz 6= ∅;

• if Γw and Γw′ are plaques in V tiV satisfying that max dz(Γw,Γ
ε
w′) <

|v2||ε|
2 then min dz(Γw,Γw′) >

|v2||ε|
2 .

Define W :=
⋃

(W a
jW

) ∪
⋃

(W t
iW

) and V :=
⋃

(V ajV ) ∪
⋃

(V tiV ).

Lemma 3.4. There is a covering of CP1 ×CP1 \ (U0 ∪ V ∪W ∪A) by flow boxes of two different types,
BajB and BtiB , and an ε3 > 0 such that if |ε| < ε3,
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• if Γw is a plaque in BajB then Γεw ∩ Γw 6= ∅;

• if Γz and Γz′ are plaques in BtiB satisfying max dw(Γz,Γ
ε
z′) <

|ε|
2 then min dw(Γz,Γz′) >

|ε|
2

Proof. We use ψ1 because every point of CP1 ×CP1 \ (U0 ∪W ∪ V ∪A) is on its domain. In this chart,
Φε works as a translation by the vector (εv1, εv2), and there is a point on this open set p′ whose tangent
space contains (v1, v2).

We will do a change of coordinates just for simplicity. Let us consider the rotation R : C2 → C2

sending (v1, v2) to (1, 0) and (v2,−v1) to (0, 1). We have obtained new coordinates (z′, w′) such that
our family of automorphisms is a family of horizontal translations. Then, we can argue as we did in [7].
The reader can check the explicit computations there, but we include here an overview of the arguments
for the convenience of the reader. Let ph be a point where the motion is tangent to its plaque at it.
Then, applying Hurwitz’s theorem in the same way, this plaque moved a little bit by the family of
automorphisms intersects the original plaque. We cover this kind of points with flow boxes BajB . The
rest of the points are transversal to the motions, hence they can be covered with flow boxes BtiB .

The estimates appearing in the statement forBtiB follow from Remark 2.2 and the fact that dw(Γz,Γ
ε
z) =

ε. This finishises the proof of the lemma.

Although we have several types of flow boxes covering the lamination in CP1 × CP1, we can split
them in three main types: flow boxes along the automorphisms, which are W a

jW
, V ajV , B

a
jB

, transversal
to the automorphisms W t

iW
, V tiV , B

t
iB
, U0 and a singular flow box AiA for each singularity. We set

ε4 = mini=0...3{εi} and c4 = min{c0, |v1|/2, |v2|/2, 1/2}. Now we are ready to prove Theorem 2.2 for
M = CP1 × CP1.

Theorem 3.1. Let L be a minimal transversally Lipschitz lamination with only hyperbolic singularities
in CP1 × CP1 and without directed closed currents. There are a covering of the lamination outside the
singular neighbourhoods and an N0 such that there are at most N0 intersections between Γ1 and Γε2,
where Γ1 and Γ2 are plaques in the same flow box, for every ε with |ε| < ε4.

Proof. For the sake of simplicity, throughout the proof we will denote by dmax(Γ1,Γ2) the maximum of
the transversal distances in a flow box between the plaques Γ1,Γ2 and dmin(Γ1,Γ2) to the minimum.

By Lemma 4.2.a of [4], if Γ1 Γε2 are plaques in the same regular flow box which intersect each other in
N points, then the transversal distance satisfies that dmax(Γ1,Γ

ε
2) < cN |ε|A, for certain constants c < 1

and A > 0 not depending on the flow box. There exists b > 0 such that the distortion of the transversal
distance in a change of flow boxes is bounded from above by b and by 1/b from below. This b arises from
combining the constant in Remark 2.2 and the distortion of the distance when we change coordinates on
the surface. Finally, there is also M ∈ N holding that, for every plaque in a flow box along the motion,
we can find a path from this plaque to a plaque in a flow box transversal to the motion passing through
at most M changes of flow boxes avoiding AiA and U0 (unless we have started in U0). This number M
can also be chosen holding the same statement when starting from a flow box transversal to the motion
and finishing in a tangential one.

Now, take Γ1 and Γ2 in a flow box transversal to the motion holding that Γ1 and Γε2 have N
intersection points for an ε with |ε| < ε4. Hence dmax(Γ1,Γ

ε
2) < cNA|ε|. Consider a path as we said

before joining this flow box transversal to the motion with another one along the motion, and let Γ′1
and Γ′2 be the corresponding continuation of the plaques. Then, by applying Lemma 4.2.b of [4] when

changing flow boxes, dmax(Γ′1,Γ
ε′

2 ) < bMcN/2
M |ε|A. Nevertheless, if cNA < c4 by the previous lemmas

dmin(Γ1,Γ2) > c4|ε|. Following the path we can also conclude that dmin(Γ1,Γ2) > |ε|c4
bM

. Then,

dmin(Γ′1,Γ
ε′

1 ) > dmin(Γ′1,Γ
′
2)− dmax(Γ′1,Γ

ε′

2 ) ≥ |ε|
( c4
bM
− bMcN/2

M

A
)

There is N1 ∈ N such that if N > N1, this last term is bigger than zero, but if this happens, it would
mean that Γ′1 and Γε

′

1 do not have a common point. But they do if |ε| < ε4. So N cannot be arbitrarily
large.

Now, we argue when we start in a flow box along the motion. Consider Γ1 and Γ2 in it such that Γ1

and Γε2 intersect each other at N points. They also verify that dmax(Γ1,Γ
ε
2) < cN |ε|A. We construct a

path to a transversal flow box, and we reach the continuation of the plaques Γ′1 and Γ′2. They hold that

dmax(Γ′1,Γ
ε′

2 ) < AbMcN/2
M |ε|. Hence, there exists N ′2 ∈ N such that, if N > N ′2, then cN/2

M

AbM < c4.
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Therefore, by previous lemmas, dmin(Γ′1,Γ
′
2) > c4|ε|. We follow the path back to the original flow box

and we get that dmin(Γ2,Γ
ε
2) > (c4/b

M − cNA)|ε|. So there is N2 > N ′2 holding that c4/b
M − cNA > 0

for every N > N2. But this would mean that there are no intersection points between Γ2 and Γε2. Same
contradiction arises.

In order to obtain the N0 in the statement, take N0 = max{N1, N2}.

4 Case of T1 × CP1 and T2

These four different local behaviours we saw in the previous section describe also every behaviour ap-
pearing in the two remaining surfaces to be studied. So we just need to put them in the right situation.
Let us begin with T1 × CP1.

Let Π1 : T1×CP1 → T1 and Π2 : T1×CP1 → CP1 be the projections on each factor and π : C→ T1

is the canonical projection in T1. Let s1, . . . , sn be the singularities of the lamination. We can find an
automorphism of T1 × CP1 such that T1 × [1 : 0] does not contain any singularity, and an open simply
connected relatively compact set U of C, which is a neighbourhood of a fundamental domain for the
equivalence relation definig T1, containing only one preimage by π of the singularities.

In this case, we are going to search for a family of automorphisms as

Φε([z], [w1 : w2]) = ([z + v1ε], [w1 + εv2w2 : w2]).

So, in the chart ψ2(z, w) = ([z], [w : 1]) the automorphisms act as translations by a vector (εv1, εv2).
Thus, if we choose (v1, v2) satisfing the conditions i),ii) and iv) we asked for in the case of CP1 × CP1,
we can argue in a similar way: firstly, we need to cover T1 × [1 : 0] in a special way and then, the rest of
the points are a compact set in the other chart where the automorphisms act as translations, so we can
cover it as we did for CP1 × CP1.

Lemma 4.1. There is a covering of T1 × [1 : 0] by flow boxes of two different types, V ajV and V tiV and
an ε0 > 0, holding that if |ε| < ε0,

• if Γz is a plaque in V ajV then Γεz ∩ Γz 6= ∅;

• if Γw and Γw′ are plaques in V tiV satisfying that max dw(Γz,Γ
ε
z′) <

|v1||ε|
2 then min dw(Γz,Γz′) >

|v1||ε|
2 .

Proof. We work with ψ1. In this chart Φε(z, w) = (z + εv1,
w

1+εv1w
), hence it is a horizontal translation

in w = 0. Notice that this is the same situation we dealed with in Lemma 3.3, hence the proof is the
same.

We set V =
⋃
V ajV ∪

⋃
V tiV .

Lemma 4.2. There is a covering of T1 × CP1 \ V by flow boxes of two different types, BajB and BtiB ,
and an ε1 > 0 such that if |ε| < ε1

• if Γw is a plaque in BajB then Γεw ∩ Γw 6= ∅;

• if Γz and Γz′ are plaques in BtiB satisfying that max dw(Γz,Γ
ε
z′) <

|ε|
2 then min dw(Γz,Γz′) >

|ε|
2 .

The behaviour in the chart given by ψ2 is a translation, so the proof is the same than Lemma 3.4.
Setting εL = min{ε1, ε2}, both lemmas together let us prove Theorem 2.2 for M = CP1 × T1 by the
same reasoning of Theorem 3.1.

Finally, we deal with the case of T2. Let Λ be a lattice in C2, and let π : C2 → C2/Λ = T2 be
the canonical projection. If L is a minimal lamination with hyperbolic singularities embedded in T2,
we can consider a relatively compact simply connected open neighbourhood U of (0, 0) in C2 covering
a fundamental domain of the equivalence relation defining T2, and containing only one preimage of the
singularities inside it and no one on its boundary. The family of automorphisms we will consider is
Φε[(z, w)] = [(z+εv1, w+εv2)], with (v1, v2) chosen as before. Φε lifts to a translation Φ̃ε : C2 → C2. We
can argue as we did in Lemma 3.4 and we get Theorem 2.2 when M = T2 in the same way we proved
Theorem 3.1.
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Universidad Complutense de Madrid
Plaza de las Ciencias 3
28040 Madrid
carperez@ucm.es

9


