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“Wildness, Ed. We’re running out of it, even up here in Alaska.

People need to be reminded that the world is unsafe and unpredictable,

and at a moment’s notice, they could lose everything, like that.

I do it to remind them that chaos is always out there,

lurking beyond the horizon. That, plus, sometimes,

Ed, sometimes you have to do something bad,

just to know you’re alive.”

Northern Exposure
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a Marta, mi hermana pequeña, por ser mi asidua compañera de castigos.
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Summary/Resumen

0.1 Resumen

0.1.1 Introducción

Uno de los objetos de estudio más importantes de las matemáticas mod-

ernas son las ecuaciones diferenciales. Este tipo de ecuaciones pueden

modelizar desde el crecimiento de la población de una determinada es-

pecie a los movimientos de los planetas. Son, de hecho, una de las piedras

angulares de las ciencias y de las matemáticas.

Aunque hubo numerososos matemáticos anteriormente, podŕıamos

decir que fue alrededor de 1900 cuando el estudio de las ecuaciones difer-

enciales alcanzó la importancia que disfruta a d́ıa de hoy. Fue debido al

nuevo enfoque desarrollado por Poincaré quién introdujo técnicas y ar-

gumentos topológicos en el estudio de las ecuaciones, dejando a un lado

la búsqueda de soluciones exactas y centrándose en los aspectos cualita-

tivos. De hecho, quizá el ejemplo más famoso de este tipo de enfoque

es el Teorema de Poincaré-Bendixson que clasifica los posibles ĺımites

de órbitas acotadas en ecuaciones diferenciales autónomas en R2. Se

acumulan hacia singularidades, órbitas heterocĺınicas o ciclos ĺımites.

Aunque las ecuaciones diferenciales han sido ampliamente estudiadas,

aún hay varias preguntas muy naturales sin respuesta. Quizá, la más in-

teresante sea el problema número 16 de Hilbert, que se pregunta sobre la

acotación del número de ciclos ĺımite que puede tener un campo vectorial

polinomial en R2. Écalle e Ilyashenko probaron que este número es finito,

pero la cuestión de la existencia de una cota uniforme sobre el número

de ciclos ĺımites para campos vectoriales polinomiales de un grado fijado,

sigue abierta.

Estos campos vectoriales polinomiales en R2 pueden verse como cam-

pos polinomiales en C2, y éstos, a su vez, como restricciones a una vista

af́ın de un campo vectorial en P2. Ahora, las órbitas han dejado de

vii
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ser curvas reales, son curvas complejas, es decir superficies de Riemann.

Diremos que tenemos una foliación por superficies de Riemann de P2.

Aśı que, en este contexto, un análogo a tener un ciclo ĺımite seŕıa tener

una curva cerrada invariante sin singularidades. Desafortunadamente, el

Teorema del Índice de Camacho-Sad [CS82] implica que debemos tener,

al menos, un punto singular en esta curva. Por tanto, debemos relajar

nuestras exigencias y, en lugar de buscar una curva invariante, simple-

mente pediremos un conjunto cerrado invariante. Este conjunto tendŕıa

estructura de laminación por superficies de Riemann. Hasta el momento,

no se sabe si existen este tipo de conjuntos en P2. Es lo que se conoce

como el problema del minimal excepcional. La primera vez que fue es-

tudiado en su forma moderna fue en el art́ıculo de Camacho, Lins-Neto

y Sad [CLNS92]. El problema análogo para foliaciones de codimensión

uno en Pn con n ≥ 3 fue resuelto por Lins-Neto en [LN99] donde probó

que no existen estos conjuntos.

Éstos pueden ser unos buenos motivos para estudiar las laminaciones

por superficies de Riemann, pero no son los únicos. El lector puede

consultar el survey de Ghys [Ghy99] para ver diferentes ejemplos de lam-

inaciones construidas desde otros contextos que muestran la importancia

que juegan las laminaciones en ciertos sistemas dinámicos.

Del mismo modo que hay diferentes contextos donde aparecen las

laminaciones por superficies de Riemann, hay muchas formas diferentes

de estudiarlas, y multitud de aspectos que comprender.

0.1.2 Objetivos

El problema de intentar encontrar un embedding de una laminación en

algún espacio ha sido muy estudiado. En este sentido, podemos destacar

el trabajo de Deroin en [Dem], donde el autor es capaz de embeber una

laminación por superficies de Riemann sin ciclos evanescentes (ver el

art́ıculo de Sullivan [Sul76]) en un espacio proyectivo de dimensiónN , con

N suficientemente grande. En el mismo sentido, Fornæss, Sibony y Wold

prueban en [FSW11] que un limite proyectivo de variedades complejas

de dimensión n puede ser embebido en P2n+1. De hecho, constuir lam-

inaciones por ĺımites proyectivos resulta ser especialmente importante,

ya que, Alcalde-Cuesta, Lozano-Rojo y Macho-Stadler, en [ACLRMS11],

prueban que bajo unas condiciones bastante generales, las laminaciones

con un Cantor en la transversal siempre se pueden construir como ĺımites

proyectivos.
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En los dos casos mencionados, partimos de una laminación dada, y

queremos embeberla en estos espacios. Sin embargo, podŕıamos consid-

erar el razonamiento contrario. Es decir, dada una variedad, queremos

saber cómo son las laminaciones embebidas en ella. El primer paso es

estudiar las foliaciones de estas variedades. Hemos indicado anterior-

mente que las laminaciones en P2 tienen singularidades, pero eso no es

cierto al estudiar otras variedades. Por ejemplo, Ghys clasifica en [Ghy96]

las foliaciones de codimensión uno sin singularidades en variedades ho-

mogéneas.

Otro problema interesante es averiguar si se pueden asociar medidas

a la laminación y qué tipos de medidas seŕıan. El primer intento que

uno puede hacer en este sentido es intentar definir una medida transver-

sal invariante, sin embargo, las laminaciones que las admiten son bas-

tante escasas. Pero, afortunadamente, si relajamos nuestras expectati-

vas, siempre podemos encontrar una medida armónica. Este resultado

fue probado por Garnett en [Gar83] para foliaciones sin singularidades, y

por Berndtsson y Sibony en [BS02] cuando el conjunto de singularidades

de una laminación tiene dimensión de Hausdorff menor o igual que 2.

Sin embargo, una vez que la existencia está asegurada, es impor-

tante averiguar la unicidad. Ésta no es trivial y depende mucho de

la foliación que estemos considerando. Por ejemplo, Lozano-Rojo, en

[LR11], hay laminaciones minimales que admiten dos medidas transver-

salmente invariantes mutuamente singulares. Del mismo modo, una lam-

inación con infinitas medidas transversales invariantes, puede encontrarse

en [FSW11], donde los autores utilizan un ejemplo debido a Furstenberg

para construir tal laminación. Deroin, en [Der09], usa también el ejem-

plo de Furstenberg para construir una foliación sin medidas transversas

invariantes, pero con infinitas medidas armónicas.Merece la pena men-

cionar que en este art́ıculo, además, se dejan abiertas cuatro cuestiones

y esta tesis indaga sobre la tercera de ellas.

Aśı que, necesitamos estudiar cada laminación por separado. Consid-

eremos, por ejemplo, una foliación de Riccati. Estas foliaciones son uno

de los ejemplos más sencillos de comportamiento caótico en una foliación.

Son transversas a una fibración de fibra P1 salvo en una cantidad finita

de puntos de la base donde la fibra es invariante. En este caso, Bonatti

y Gómez-Mont probaron la unicidad de la medida en [BGM01] mediante

el uso del flujo geodésico.
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0.1.3 Resultados

Otra situación donde se obtuvo la unicidad fue para laminacion embe-

bidas en P2, probada por Fornæss y Sibony en [FS05]. Este art́ıculo es

el punto de partida de esta tesis. Nosotros hemos podido generalizar ese

resultado para laminaciones embebidas en superficies Kähler. Además,

el cuidadoso estudio de un entorno de una singularidad hiperbólica lle-

vado a cabo en [FS10], nos permite, tras una pequeña modificacion de

los argumentos, probar un teorema similar cuando permitimos este tipo

de singularidades.

La razón por la cual la unicidad es importante en este tipo de medidas

es porque puede ser vista como un atractor global para la dinámica de la

laminacion. Del mismo modo, puede ser entendido como un análogo a un

teorema de independencia del parámetro inicial en un sistema dinámico.

Trataremos de explicar esta afirmación más detenidamente en el Caṕıtulo

3.

Por tanto, el Teorema Principal obtenido en esta tesis es el siguiente.

Teorema 0.1. Sea (M,ω) una superficie Kähler homogénea compacta

con una laminación por superficies de Riemann L que es minimal y

transversalmente Lipschitz embebida en la superficie. Si L no admite

ninguna corriente cerrada invariante dirigida por la laminación, entonces

existe una única corriente armónica de masa uno dirigida por la lami-

nación.

La demostración hace uso de la teoŕıa de intersección desarrollada

por Fornæss y Sibony en [FS05]. Por tanto, según la clasificación de

superficies homogéneas compactas de Tits [Tit63], hay sólo cuatro tipos

diferentes de superficies que estudiar. Estas superficies son las siguientes:

toros de dimensión compleja dos, el producto de una curva eĺıptica por

una recta proyectiva, P1 × P1 y P2.

Esencialmente, en [FS05], donde el teorema está probado para P2,

los autores reducen el problema de probar la unicidad a un problema

de calcular puntos de intersección cuando la laminación está perturbada

por una familia de automorfismos cercana a la identidad. En este caso,

la familia de automorfismos tiene una recta de puntos fijos. Mediante el

control del comportamiento de la laminación y de la familia de automor-

fismos cerca de esta esta recta, y mediante argumentos de continuación

de la distancia transversal entre placas, son capaces de encontrar una

cota superior para el número de estos puntos de intersección.
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En nuestros casos, podŕıamos no tener esta recta invariante. Por

tanto, aunque podemos usar la teoŕıa de intersección de [FS05], la prueba

para el resto de superfices será diferente a la de P2. El factor común al

resto de las superficies es la estructura producto en el fibrado tangente,

que nos permitirá trabajar con nociones naturales de verticalidad y hor-

izontalidad.

Esta tesis es, esencialmente, la combinación de dos art́ıculos [PG13a]

y [PG13b]. En el primero, resolvemos el caso no singular y en el segundo,

el caso con singularidades hiperbólicas. El caso sin singularidades está

motivado por el problema de dilucidar la existencia o no de laminaciones

embebidas en tales superficies mediante el estudio de las propiedades que

estas laminaciones debieran tener. Sin embargo, hasta el momento no se

ha conseguido dar ningún ejemplo expĺıcito. De este modo, usando argu-

mentos similares, podemos extender este resultado para el caso de lami-

naciones con singularidades hipérbolicas, donde las hipótesis del teorema

se cumplen de forma genérica. La demostración principal del teorema se

desarrolla en T2 para el caso no singular y en P1 × P1 para el caso con

singularidades.

La organización de este texto es la siguiente. En el Caṕıtulo 1, in-

cluiremos las nociones necesarias para la mejor comprensión del texto,

desde las primeras definiciones en la teoŕıa de corrientes y laminaciones

hasta la teoŕıa de la intersección desarrollada en [FS05], que nos permi-

tirá reducir la prueba del teorema a contar puntos de intersección. En

el Caṕıtulo 2, probaremos el Teorema Principal de esta tesis, primero

para laminaciones sin singularidades, y después con ellas. Por último, el

Caṕıtulo 3 consiste en una discusión sobre dónde y cómo este Teorema

se puede aplicar.

0.1.4 Conclusiones

Si bien es cierto que anteriormente mencionamos la necesidad de estudiar

cada laminación por separado, a partir de los resultados obtenidos en

esta tesis, parece que el comportamiento de las laminaciones es similar

en cualquier superficie Kähler homogénea compacta. De esta forma, se

puede generalizar el problema de minimal excepcional a este contexto:

¿Existe alguna laminación no singular embebida en alguna superficie

Kähler homogénea compacta que no admita corrientes dirigidas?

Si bien es cierto que se pueden dar ejemplos de laminaciones no sin-

gulares no triviales en algunos toros complejos, todas ellas admiten corri-
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entes cerradas. Aśı pues, esta pregunta sigue abierta para investigaciones

futuras.

En lo concerniente a laminaciones con singularidades, es sabido que

las hipótesis bajos las cuales hemos obtenido nuestros teoremas son bas-

tante generales. Además, particularizando para el caso de P1×P1, pode-

mos dar una prueba relativamente sencilla de que esto es aśı. Asimismo

hemos probado que toda laminación transversalmente Lipschitz no sin-

gular en P1 × P1 sin curvas compactas no admite corrientes cerradas

dirigidas. Del mismo modo, se puede probar que una foliación de P1 ×
P1 sin curvas compactas invariantes y con, a lo sumo, singularidades

hiperbólicas, soporta una única corriente armónica. De este modo, queda

eliminada la hipótesis de la minimalidad.

0.2 Summary

One of the most important parts of modern Mathematics is the study

of differential equations. These equations can modelize from the growth

of a population to the motion of the planets. Actually, they are one the

cornerstones of Mathematics and Science.

Although there were several earlier mathematicians who studied dif-

ferential equations, it was around 1900 when the study of these equations

gained importance, mainly because of the work of Poincaré who intro-

duced topological techniques to their qualitative study. In fact, maybe

the most famous example of a topological result in differential equations

is the Poincaré-Bendixson theorem, which classifies the possible limit be-

haviour of a bounded orbit in an autonomous differential equation on R2.

They can accumulate either to a singularity, to an heteroclinic trajectory

or to a limit cycle.

Even though differential equations have been widely studied, there

are some natural questions which are still unsolved. Perhaps, the most

interesting one is Hilbert’s 16th theorem which enquires about the bound-

edness on the number of limit cycles of a polynomial vector field in R2.

It was proven by Écalle and Ilyashenko that this number is finite, but it

remains unsolved if there is any uniform bound on the number of finite

cycles for polynomial vector fields of a fixed degree.

These polynomial vector fields on R2 can be seen as polynomial vector

fields in C2 and these ones as restrictions to an affine view of a vector

field in P2. Now, the orbits are no longer real curves, but are complex
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curves, namely Riemann surfaces. We say that we have a foliation by

Riemann surfaces of P2.

In this way, having an invariant closed curve without singularities is

the analogous to the existence of a limit cycle. Unluckily, this cannot

happen in P2 because every invariant curve for these foliations must con-

tain a singularity by the Theorem of the Index of Camacho-Sad [CS82].

Hence, if we relax our demands and, instead of searching for an invariant

curve, we search for any closed invariant set without singularities, this set

would have the structure of a lamination by Riemann surfaces. The exis-

tence of such sets is unknown in P2 so far. This problem is known as the

minimal exceptional set problem and was firstly studied on its modern

statement in the article of Camacho, Lins-Neto and Sad, [CLNS92]. If we

consider the same problem for foliations of codimension one in Pn with

n ≥ 3, Lins-Neto showed in [LN99] that there cannot be any exceptional

minimal set.

This is one motivation for studying laminations by Riemann sur-

faces, but it is not the only one. The reader can check the survey by

Ghys [Ghy99] for examples of laminations constructed from other dif-

ferent sources showing the important role laminations play on certain

dynamical systems.

As beforementioned, there are many different contexts where lami-

nations can appear and likewise, there are many different approaches to

their study and many different characteristics to understand.

For instance, the problem of the embeddability of abstract lamina-

tions has been widely studied. For an example of this approach we can

refer to [Der08], where Deroin finds embeddings of any Riemann surface

lamination without vanishing cycles (see Sullivan’s paper [Sul76]) in PN

for certain N big enough. In the same direction, Fornæss, Sibony and

Wold proved in [FSW11] that a lamination arising from projective limits

of complex manifolds of dimension n can be embedded in P2n+1. This

technique for constructing laminations became important because of the

results obtained by Alcalde-Cuesta, Lozano-Rojo and Macho-Stadler in

[ACLRMS11], where they show that under certain hypothesis concerning

the transversal behavior, any lamination transversely Cantor is a projec-

tive limit.

In both cases mentioned above, we are given a lamination and we

embed it in these spaces. However, we can make the converse reasoning.

Namely, we are given a manifold and we want to know how are the



xiv SUMMARY/RESUMEN

laminations embedded in it. The first step is studying the foliations of

these manifolds. It was mentioned before that every foliation of Pn has

singularities, but this is no longer true if we study other manifolds. For

instance, in [Ghy96], Ghys classifies the foliations without singularites on

homogeneous manifolds.

Another interesting problem is to find out wether we can associate

measures to a lamination and which kind of measures are these. The first

attemp that one can try in order to find this association would be try-

ing to define an invariant transversal measure, nonetheless a lamination

admitting such a measure is very uncommon. But luckily, if we relax

our expectations, we can always find a harmonic measure. This result

was proven in [Gar83] for foliations without singularities and, in [BS02],

when the set of singularities of the lamination has Hausdorff dimension

lower or equal to 2.

However, once the existence is ensured, it is important to check the

unicity. This is not trivial and depends strongly on the foliation. For

instance, Lozano-Rojo has proven in [LR11] that there are minimal lami-

nations with two transversely invariant measures mutually singular. Like-

wise, an example of a lamination with an infinite amount of transversely

invariant measures can be found in [FSW11], where Fornæss, Sibony

and Fornæss-Wold use an example given by Furstenberg to construct a

lamination with this property. Deroin, in [Dem], constructs a foliation

by Riemann surfaces of a manifold from the Furstenberg example with-

out transversely invariant measures, but with several harmonic measures.

Moreover, in the end of this article, the author leaves four open questions

and this thesis is devoted to study the third one of them.

Thus, we need to study each lamination almost separately. Consider,

for instance, a Riccati foliation. These foliations are the very first exam-

ple of chaotic behavior of a lamination. They are transverse to a fibration

with fibers P1 everywhere except in a discrete set of points of the base.

In this situation, the unicity of the harmonic measure was proven by

Bonatti and Gómez-Mont in [BGM01] by using the geodesic flow.

Another situation where this unicity is obtained is in a lamination

embedded in P2, proven in [FS05]. This article is the starting point of this

thesis. We could generalize this result for every compact homogeneous

Kähler surface. Furthermore, the careful study of the behavior in a

neighbourhood of a hyperbolic singularity carried out in [FS08] allows us

to, with a small modification of the original argument, to prove the same
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theorem allowing hyperbolic singularities in the lamination.

The reason it is so important to have the unicity on these measures

is because it can be seen as a global attractor for the dynamics of the

lamination. It can also be understood like an analogous to a result of

independence of the initial parameters on a dynamical system. We will

try to explain these assertion more carefully in Chapter 3.

Hence, the Main Theorem in this thesis is the following

Theorem 0.1 (Main theorem). Let (M,ω) be a homogeneous compact

Kähler surface with a minimal transversely Lipschitz lamination by Rie-

mann surfaces with only hyperbolic singularities L embedded on it. Sup-

pose that L does not admit any directed invariant closed current. Then

there exists a unique harmonic current of mass one directed by L.

The proof is based on the intersection theory that Fornæss and Sibony

developed in [FS05]. Then, according to Tits’ classification [Tit63], there

are only four different kinds of surfaces to consider. These surfaces are

the following: two dimensional complex tori, the product of a projective

line and a elliptic curve, P1 × P1 and P2.

Basically, in [FS05], where this theorem was proven for P2, the au-

thors reduce the problem of proving uniqueness to a problem of comput-

ing intersection points when the lamination is perturbed by a family of

automorphisms close to the identity. In that case, the family of auto-

morphisms has a line of fixed points. By controlling the behavior near

this line, and by arguments of continuation of the transversal distance

between plaques, the authors were able to find a bound for the amount

of these intersection points.

In our case, we might not have this invariant line. For instance, for

two dimensional complex tori, the automorphisms close to the identity

are translations. Then, for automorphisms which are close to the identity,

there are no fixed points. Hence, although we can use the intersection

theory of [FS05], the proof for the rest of the desired surfaces will be

different to the one of P2. The common feature for the rest of the surfaces

is that they have a product structure in the tangent bundle, which allows

us to work with natural notions of verticality and horizontality.

This thesis is essentially the combination of two papers: [PG13a] and

[PG13b]. In the first one, we solve the non singular case, and in the

second one the case allowing only hyperbolic singularities. The non sin-

gular case is motivated by the problem of elucidate the existence or not of

laminations embedded in the surfaces under consideration, studying the
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properties such lamination should have. However, there are no explicit

examples of these laminations so far. In this way, similar arguments al-

low us to extend this result for laminations with hyperbolic singularities.

In this setting, the hypotheses of our theorem hold generically. The main

proof of the theorem is made in T2 in the non singular case, whereas in

the case with singularities, it is done in P1 × P1.

The organization of this dissertation goes as follows. In Chapter 1,

we include some necessary preliminar knowledge, from the very basics

about currents and laminations to intersection theory of directed cur-

rents, which allows us to reduce the proof of the theorem to a problem

of computing intersection points. In Chapter 2, we prove the Main The-

orem of this thesis firstly for laminations without singularities and later

allowing them. Finally, Chapter 3 consists of a discussion about where

and how this theorem can be applied.



Chapter 1

Preliminaries

1.1 Laminations and Foliations

1.1.1 Definitions and examples

Definition 1.1. We say (X,L, E) is a lamination by Riemann surfaces

with singular set E ⊂ X, if X is a compact topological space such that

for every p 6∈ E we can find local charts φi : ∆ × Ti → X where ∆ is

the unit disk and Ti is a topological space. These charts satisfy that

the change of coordinates is φ−1
i ◦ φj(z, t) = (φ1

ij(z, t), φ
2
ij(t)) with φ2

ij

continuous and φ1
ij holomorphic in the first variable and continuous in

the second one. These local charts are called flow boxes, and the sets

φi(∆× {α}) are the plaques of the flow box.

Note that, transversely to the plaques we are only asking for conti-

nuity. But, in this thesis, we will often deal with transversely Lipschitz

laminations. In this case, the topological spaces Ti are metrizable, the

function φ2
ij is Lipschitz and so it is φ1

ij in the second variable. If E = ∅ we

say that it is a non singular lamination. In fact, for the sake of simplicity,

the set of the singularities E of lamination (X,L, E) will be the smallest

set such that we can find neighbourhoods as described in Definition 1.1

for every point p in X \ E.

As mentioned in the introduction, laminations are related to folia-

tions. Actually, in this thesis we will sometimes deal with holomorphic

foliations.

Definition 1.2. Let M be a complex manifold of dimension m. A

holomorphic foliation F of M by Riemann surfaces with singular set E

is given by an atlas U = {Ui, φi} of M \ E, with φi : ∆ ×∆m−1 →M ,

1
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Tα

Tβ

DD

φα φβ

M

φ−1
β ◦ φα

Figure 1.1: Change of coordinates between flow boxes

where ∆ is the unit disk and ∆m−1 is the m − 1-dimensional polydisk.

The change of coordinates satisfies that can be written like φ−1
i ◦φj(z, t) =

(φ1
ij(z, t), φ

2
ij(t)), where φ1

ij and φ2
ij are holomorphic in each variable.

Obviously, any holomorphic foliation is a lamination, and from cer-

tain holomorphic foliations, we can extract laminations which are not

foliations. We can see this situation in the following well known exam-

ple.

Example 1 (Suspension). Consider the surface S = D \ {1/2,−1/2}.
Its fundamental group is the free group generated by two elements. Let

Φ : S̃ → S be a conformal universal covering of S and Γ ∈ Aut{S̃}
is the group of Deck transformations of Φ which is isomorphic to the

fundamental group of S. Consider a isomorphism π from Γ to a Schottky

group G ⊂ Aut(P1) of two generators f1, f2.

Let us recall the definition of a Schottky group. Let U ⊂ P1 an

open set bounded by 2l Jordan curves τ1, τ
′
l , . . . , τl, τ

′
l , if there exists

f1, . . . , fl ∈ Aut(P1) such that fj(τj) = τ ′j and fj(U)∩U = ∅, we say that

the subgroup generated by f1, . . . , fj is a Schottky group and Schottky

groups are free groups. More information about Kleinian and Schottky

groups can be found in [Mas88].

Now, over the product manifold S̃×P1, which carries the trivial hor-

izontal holomorphic foliation, we can consider the action of Γ as follows.

For every α ∈ Γ, a point (s̃, p) ∈ S̃×P1 is sent to (αs̃, π(α)p). The group

Γ acts properly and freely over S̃ × P1 and by considering the quotient,

we get a complex manifold MG which is a fibration over S with fiber

P1. This manifold is endowed with a holomorphic foliation, coming from
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the horizontal one we mentioned above, transversal everywhere to the

fibration. The transversal dynamics of the foliation is given by the group

G.

Since G is a special case of Kleinian group, it has a limit set Λ(G),

which is the smallest closed set invariant by G. In this case, as G is

a Schottky group, its limit set is a perfect nowhere dense set. So, we

can extract a lamination from MG that can be understood as a fibration

with fiber Λ(G) over S, and this lamination is not a holomorphic foliation

because its ambient space is not a manifold.

Example 2 (Projective limits). Suppose we have a family of Riemann

surfaces {Si}i∈N together with a family of holomorphic maps {f}i∈N,

fi : Si+1 → Si of degree di ≥ 2. The projective limit is the subset

X = {(xi)i∈N| fi(xi+1) = xi}

of the product space
∏
Si. It has a structure of lamination by Riemann

surfaces with a Cantor set in the transversal. Examples of laminations

constructed like this are widely studied in [FSW11].

This construction is specially important because of a theorem stated

in [ACLRMS11]. By allowing more flexibility on the maps, the authors

proved that any non singular transversely Cantor lamination with a sim-

ple enough transversal dynamic arises from a suitable projective limit.

Example 3. (Holomorphic motions) This example will be useful later.

We need to recall the definition of a really important concept in one di-

mensional complex dynamics. This is the concept of holomorphic motion

which was introduced by Mañé, Sad and Sullivan in [MSS83] in order to

study perturbations of Julia sets.

Definition 1.3. Let T be a subset of P1. A holomorphic motion of T

is a map f : ∆×T → P1 such that:

- for any fixed t ∈ T , the map f(.,t)(z) := f(z, t) is holomorphic in

∆

- for any fixed z the map f(z,.)(t) := f(t, z) is an injection and

- the mapping f(0,.) is the identity on A.

It is easy to realize that laminations embedded in complex surfaces

can be seen as local holomorphic motions close to regular points: if we

fix t and move z we obtain a parametrization of a plaque.
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Notice that, in the definition above our conditions seem very flexible:

we require holomorphicity in one variable and only injectivity in the other

one. Nevertheless, in [MSS83], the authors obtain the so-called λ-Lemma

Theorem 1.4. If f : ∆×T → P1 is a holomorphic motion, then f has

an extension to F : ∆×T → P1 such that

- F is a holomorphic motion of T

- each F(z,.)(t) := F (z, t) is quasiconformal

- F is jointly continuous in both variables.

As a direct consequence of this theorem we obtain that the transver-

sal regularity of every lamination embedded in a surface will be, at least,

quasiconformal. This theorem has been refined several times and one of

these refinements given by Bers and Royden [BR86] include some esti-

mates that will be worthful for us.

Example 4. (Levi-flats) Let M be a complex manifold of dimension

n and X is a C1 real submanifold of codimension 1. For every point

p ∈ X, the tangent space contains a unique complex subspace of complex

dimension n− 1, say Cp. In this way, we obtain a distribution C. In the

case C is integrable, X carries a foliation with n−1-dimensional complex

leaves. We say that X is a Levi-flat. Therefore, if M is a surface, X

carries a structure of lamination by Riemann surfaces.

Lins-Neto proved in [LN99] that there are no real analytic Levi-flats in

Pn if n ≥ 3, however their existence in P2 is still unknown. Nonetheless,

this is not true for every compact surface, since Ohsawa gave in [Ohs06]

a complete classification of real analytic Levi-flats in complex tori of

dimension 2.

The laminations we will deal with in this dissertation are embedded in

surfaces. More explicitely, a laminated set (X,L) by Riemann surfaces is

said to be embedded in a manifold if there exists an injection Φ : X →M

such that the complex structure of the leaves as well as the transversal

regularity of (X,L) come from Φ.

1.1.2 Holonomy and Monodromy

In some examples, like suspensions, we can find a global transversal space

where the whole transversal dynamics can be seen. Nonetheless, this
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situation is very uncommon, so we need some extra flexibility to code

the transversal behavior of the laminations. This is the holonomy pseu-

dogroup. This concept is fundamental in foliation theory and a wider

explanation can be found in [CC00]. This book also includes several in-

teresting explicit examples of holonomy groups and pseudogroups. For a

more concise definition in the case of holomorphic foliations, see [Zak01].

Consider α : [0, 1] → L a loop in the leaf L with basepoint p. This

loop can be covered by a finite number of flow boxes, U1, U2, . . . Ul, such

that there is a partition t1 = 0, t2, . . . , tl = 1 of [0, 1] with α([ti, ti+1]) ∈ Ui
for every i = 1, 2, . . . , l and U1 = Ul. Let ϕi : D× Ti be the coordinates

charts of the flow boxes, then if ϕ−1
1 (p) = (z1, τ1) the change of coor-

dinates from U1 to U2 gives a homeomorphism from a neighborhood of

τ1 ∈ T1 to an open set of T2 and τ1 is sent to τ2. Repeating this process,

after l−1 iterations we finally come back to U1, so, considering the com-

position of all these homeomorphism from Ti to Ti+1, we can associate

a homeomorphism Holα from Vα to V ′α neighborhoods of τ1 ∈ T1. The

regularity of these homeomorphisms is the transversal regularity of the

lamination. This function Holα is called the holonomy function associ-

ated to the loop α. Since this function is not defined in all T1, we need

to consider the holonomy pair (Holα, Vα).

Remark 1.1.1. The function Holα does not depend on the choice of the

intermediate transversals Ti, i = 2, . . . , n.

Remark 1.1.2. The germ of the map Holα only depends on the homotopy

class of α.

Remark 1.1.3. If we consider another flow box B containing p, with

coordinates φB : B → D× TB, there exists a homeomorphism h : T1 →
TB having the same regularity than the transversal one of the lamination

such that the germ of the holonomy Hol′α : TB → TB satisfies that

Hol′α = h−1 ◦Holα ◦ h.

Definition 1.5. Let L be a leaf of a lamination by Riemann surfaces

and p ∈ L a point contained in a flow box B mapped into D×T . Then

for every [α] ∈ π(L, p) we can associate a germ of a map Holα : T → T .

This is the so-called monodromy mapping.

We say that the image of π(L, p) by the monodromy mapping is the

monodromy pseudogroup.

Theorem 1.6 (Hector [Hec72], Epstein, Millet, Tischler [EMT77]). If

(X,L, E) is a lamination with E = ∅, the leaves having trivial mon-

odromy pseudogroup are generic.
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It could actually happen that there were no leaves with non triv-

ial holonomy. This one would be the “simple” transversal behavior

mentioned before appearing in the hypothesis of the main theorem in

[ACLRMS11]. So in this situation, the lamination arises as a projective

limit.

On the other hand, we have the following interesting result:

Theorem 1.7 (Bonatti, Langevin, Moussu [BLM92]). If X is a minimal

exceptional set for a foliation F on P2, there exists a leaf of F with

contractive holonomy.

1.1.3 Singular Laminations

Example 5 (Singular foliations). So far, we have just given examples of

laminations without singularities. The most natural way to introduce an

example with singularities is throughout singular holomorphic foliations.

Let us restrict to foliations in P2. A holomorphic vector field

χ =
3∑
i=1

Pi
∂

∂zi

on C3 with Pi homogeneous polynomials of the same degree induces a

holomorphic foliation in P2 and every complex vector field in P2 has

singular points. In this setting, we will say that the foliation is saturated

if the singular set is finite. By the Theorem of the Index of Camacho-

Sad, [CS82], there is a germ of a leaf passing through any singularity.

This analytic set is called separatrix of the singularity. Therefore if we

consider the analytic continuation of a local separatrix L, and we look

at its adherence L, this will be an invariant set for the foliation. Then, if

L is not a Riemann surface, it has structure of lamination by Riemann

surfaces with singularities.

There are several kinds of singularities of a vector field on a surface

according to their local behavior. Since we are assuming they are discrete,

we can take a holomorphic coordinate chart (x, y) centered on one of them

p, and the vector field can be expressed in this chart like

F (x, y)
∂

∂x
+G(x, y)

∂

∂y
,
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with F and G holomorphic functions satisfying that F (0, 0) = G(0, 0) =

0. Consider the the matrix

J =

 ∂F
∂x

(0, 0) ∂G
∂x

(0, 0)

∂F
∂y

(0, 0) ∂G
∂y

(0, 0)

 .

This matrix depends on the chart we choose.

Definition 1.8. Let (0, 0) be a singularity of a complex vector field

F (x, y) ∂
∂x

+ G(x, y) ∂
∂y

on U ⊂ C2. Let λ1, λ2 be the the eigenvalues of

the matrix above. We will say that the singularity is irreducible if it

satisfies one of the following conditions:

1. λ1λ2 6= 0 and λ1/λ2 ∈ C \ (N ∪ 1/N)

2. λ1λ2 = 0 and λ1 + λ2 6= 0.

We say that λ is the characteristic value of the singularity, where λ =

λ1/λ2 if we are in the first situation and λ = 0 in the second one.

For every chart, we will obtain the same characteristic value λ or its

inverse 1/λ. The name irreducible singularity is due to the following

theorem:

Theorem 1.9 (Seidenberg). Let χ be a complex vector field on a compact

complex surface M with a discrete set of singularities. There exist a

complex surface M̃ and Π : M → M̃ a birational map, such that the

vector field induced by χ on M̃ has only irreducible singularities.

We will say that an irreducible singularity of a complex vector field in

a surface is hyperbolic if λ = λ1/λ2 6∈ R. Poincaré showed that there ex-

ists a linearizable neighborhood of a hyperbolic singularity. This means,

an open set around the singularity and a change of coordinates (x, y) such

that, in these coordinates, the vector field can be written λx ∂
∂x

+ y ∂
∂y

.

Note that if a foliation on a coordinate chart (x, y) of a surface, since

it has codimension one, is given by the orbits of the vector field

χ = F (x, y)
∂

∂x
+G(x, y)

∂

∂y
,

it can be also seen like the invariant varieties of the holomorphic 1-form

γ = G(x, y)dx− F (x, y)dy.
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(Re z, Im z, |w|) (Rew, Imw, |z|)

Figure 1.2: Representation of leaves of zdw − (0.75 + 0.2
√
−1)wdz close

to (0, 0)

Hence, on a neighborhood of a hyperbolic singularity for the foliation

given by a 1-form γ, we can find some new coordinates (x′, y′) where the

foliation can be written as

γ′ = ydx′ − λx′dy′,

where λ = λ1/λ2 6∈ R.

Then, we can extend the definition of a hyperbolic singularity to

laminations by Riemann surfaces.

Definition 1.10. Let (X,L, E) be a lamination by Riemann surfaces

with singularities embedded on a compact complex surface M , with E

discrete. We say that p ∈ E is a hyperbolic singularity if we can find

U ⊂ M a neighborhood of p and holomorphic coordinates (z, w) cen-

tered at p such that the leaves of (X,L, E) are invariant varieties for the

holomorphic 1-form ω = zdw − λwdz, with λ ∈ C \ R.

Note that this definition needs an analytic structure around the sin-

gularity, thus it is not defined for an abstract lamination.

Unlike the non singular case, it is very easy to find a leaf with non

trivial holonomy. If we consider a foliation by Riemann surfaces and we

take the separatrix of a hyperbolic singularity, it has non trivial holon-

omy. We just need to consider a small loop around the singularity, and

depending on the orientation given to the loop, it will be contracting or

expanding.
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1.2 Currents

Currents and pluripotential theory will be the main tools in the proof of

our results. In this section, we will recall the necessary background on

these topics in order to follow the discussion. More information about it

can be found in Demailly’s book [Dem] for a deep and rigorous treatment

of currents, and in the survey of Dinh and Sibony [DS13] for an approach

more oriented towards dynamics.

Let M be a homogeneous compact complex surface. Consider a dif-

ferential l-form γ on M . In local coordinates z = (z1, z2), this form can

be written as

γ(z) =
∑

|I|+|J |=l

γIJdzI ∧ dzJ ,

where I = (i1, . . . , ip) ∈ {1, 2}p, J = (j1, . . . , jq) ∈ {1, 2}q. In this

expression, we denote by dzI = dzi1∧· · ·∧dzip and dzJ = dzj1∧· · ·∧dzjq
and γIJ is a function with complex values. We say that γ is a form of

bidegree (p, q) if the decomposition above has non zero coeficients γIJ
only if |I| = p and |J | = p. We define the conjugate of γ like

γ(z) =
∑

γIJdzI ∧ dzJ ,

and obviously the conjugate of a (p, q) form is a (q, p) form. We say that

a form γ is real if γ = γ.

If we apply the operator d to a (p, q)-form we will obtain a sum of a

(p+ 1, q)-form and a (p, q + 1)-form. So we could split the operator d as

a sum d = ∂ + ∂. Since dd = 0 we can conclude that ∂∂ = ∂∂ = 0 and

∂∂ + ∂∂ = 0.

The operator d sends real forms to real forms, but ∂ and ∂ do not.

We can, however, define the operator dc =
√
−1

2π
(∂ − ∂) which is real and

satisfies that ddc =
√
−1
π
∂∂.

We will say that a (1, 1) form ω is Hermitian if it can be written as

ω(z) =
√
−1

∑
i,j=1,2

ωijdzi ∧ dzj

and the matrix (ωij(z)) is Hermitian and positive definite at every point.

Hermitian forms define the so-called Hermitian metrics on manifolds.

Moreover, a complex surface M endowed with a Hermitian closed (1, 1)-

form ω is called a Kähler manifold.

We can define a topology in the space of (p, q)-forms Ck of a compact

complex manifold as follows. Suppose α is a Ck (p, q)-form and U is a
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coordinate open set with holomorphic coordinates z1, z2, . . . , zn. In these

coordinates, α can be expressed as

α =
∑

|I|=p,|J |=q

αIJdzI ∧ dz̄J

and for every compact subset V ⊂ U and l ≤ k define the seminorms

psL(α) = sup
x∈V

max
|I|=p,|J |=q,|s|≤l

|DsαIJ |

where s = (s1, . . . , sn) ∈ Nn, |s| =
∑n

i=1 si and Ds = ∂|s|

∂s1 ,...,∂sn
. Consider-

ing a finite atlas of the manifold U = {Uj}, these collection of seminorms

varying on l, V and Uj induces the Ck topology on (p, q)-forms.

A current S on a compact complex surface M of bidimension (p, q)

(or bidegree (2−p, 2−q)) and order k is a continuous C-linear functional

on the space of the Ck (p, q)-forms with the Ck topology. Unless we

metion otherwise, we consider order 0 currents. We will write 〈S, ϕ〉
or S(ϕ) to indicate the value of S on ϕ. The differential operators on

currents are defined by duality. For instance, for d, the current dT is

defined to hold that 〈dT, ϕ〉 = 〈T, dϕ〉. The rest of operators are defined

analogously.

A simple, but important, example of (p, p) current is the integration

current on a subvariety Y ⊂ M of dimension p, denoted [Y ]. Namely,

for every test form ψ

[Y ](ψ) =

∫
Y

ψ.

Moreover, any (p, q) form α induces a current Tα of bidimension (n −
p, n− q) in the following way:

Tα(φ) =

∫
M

α ∧ φ

for every test (n− p, n− q) form φ. These currents are often referred as

smooth currents. Actually, any current can be approximated by smooth

currents.

The wedge product of two currents is not always defined. However,

it can be defined the wedge product between a smooth current and any

current in the following way. If S is a current of bidimension (p1, q1) on

M and α a (p2, q2) form with p1 ≥ p2 and q1 ≥ q2, we can define the

current S ∧ α as

S ∧ α(φ) = 〈S, α ∧ φ〉

for every (p1 − p2, q1 − q2) test form φ.
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1.2.1 Positivity

Usually, in the literature, there are three notions of positivity for differ-

ential forms. However, in the case of surfaces, these three definitions are

equivalent, so we will give just one of them.

Definition 1.11. A (p, p) form γ in a complex surface M is positive if

it can be written like

γ =
l∑

i=1

γi(
√
−1)αi ∧ αi

for certain (p, 0) forms αi and coefficients γi > 0.

Criterion. A (p, p)-form γ in M is positive if and only if for every

p-dimensional complex submanifold S endowed with its canonical orien-

tation, γ|S is a volume form on S.

By duality, we can define the concept of positivity for currents

Definition 1.12. Let S be a current of bidimension (p, p) such that for

every (2− p, 2− p) positive form γ the measure S ∧ γ is positive. Then

we say that S is a positive current.

For a positive (p, p) current S on a Kähler surface (M , ω), we will

define the mass of S on a compact set K as

‖S‖ =

∫
K

S ∧ ω2−p.

1.2.2 Positive Directed Currents

In this paragraph, we will relate currents to laminations. On abstract

laminations, we only have differential structure along the leaves. How-

ever, our laminations will be embedded on complex surfaces, so we will

have a complex differential structure on the ambient space which, along

the leaves, is coherent with the one of the lamination.

Let (X,L, E) be a lamination embedded in a surface M . Then, for

every p ∈ X, we can find a small flow box U and a continuous map

φ : U → ∆2, holomorphic along the plaques such that in ∆2 the image of

the plaques satisfies the Pfaffian equation {dw = 0}. In this way, if we

define the (1, 0) form γ = φ∗(dw), then the plaques Dt of the lamination

satisfy that [Dt] ∧ γj = 0.
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Definition 1.13. A (1, 1) current T on M is weakly directed by the

lamination L if T ∧ γj = 0.

Then, by definition, the first example of weakly directed laminations

is the current of integration on a plaque [D]. Nevertheless, if we consider

a function f with support contained on [D] the current f [D] is also a

directed current. Given that we were searching for a unicity property we

need to impose an extra condition to the currents which is that they be

harmonic. In this case, f [D] is a harmonic directed current if and only if

f is harmonic with support contained on D. By the maximum modulus

principle f is constant, so the flexibility has been significantly reduced.

These are the kind of currents we will deal with.

Definition 1.14. Let (X,L, E) be a lamination embedded on M . We

will say that a current T is a positive harmonic directed current if it can

be decomposed in flow boxes like

T =

∫
hα[Γα]dµ(α)

with [Γα] the integration current on the plaque Γα, µ a transversal mea-

sure and hα a positive harmonic function on the plaque Γα.

It was proven in [FWW09] that T is a ∂∂-closed positive current in

a surface M directed by a lamination (X,L, E) if and only if it can be

written locally as the definition above. This fact is no longer true for

laminations embedded in higher dimensional manifolds.

The existence of directed harmonic positive currents for foliations

without singularites was proven by Garnett in [Gar83]. Later, Berndtsson

and Sibony [BS02] proved its existence for foliations with a pluripolar

set E of singularities. This proof was generalized in [FS05] for a C1

lamination embedded in a manifold M . In case M is a surface the proof

goes as follows. See A for the basics on Functional Analysis and Chapter

I of [Dem] for a explicit definition of the topologies of currents.

Theorem 1.15 ([FS05]). Let (X,L, E) be a lamination with a pluripolar

set of singularities embedded in a suface M . There exists a positive

directed harmonic current of mass one.

Proof. Let {γi} be a family of continuous (1, 0) forms, such that γi ∧
[Γα] = 0 for every Γα plaque in a flow box B.
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Consider the set C of all the directed positive currents of mass one

with support in the laminated set. Therefore, in a flow box, T ∈ C can

be seen as T = i‖T‖γ ∧ γ, for ‖T‖ a positive measure.

Take a transversal T = {z = 0} and let π be the projection of the

plaques on T . The measure T can be decomposed along π in a measure

να on each plaque. In this way, for any φ a C∞ (1, 1)-form with support

on the flow box

〈T, φ〉 =

∫
〈ναiγ ∧ γ, φ〉dµ(α) =

∫
〈ν̃α[Γα], φ〉dµ(α)

where ν̃α are measures.

Now, let VN be the space of continuous functions on X with support

on N flow boxes and C2 on the leaves. This space is endowed with the

supnorm on X and the C2 topology on the leaves. If we consider a plaque

of a flow box, written as (z, f(z)), we can define

√
−1∂b∂bψ =

√
−1

∂2ψ(z, f(z))

∂z∂z
dz ∧ dz.

We can extend the action of T to ∂b∂bψ for ψ ∈ VN . Consider ξj a

partition of unity associated to {Bj}Nj=1 where Suppφ = ∪Ni=1Bj. We

define

〈T, ∂b∂bψ〉 =
∑
j

∫
〈[Γα]ν̃α,∆α(ξjψ)〉dµ(α),

where ∆α is the Laplacian on the plaque Γα. So T is continuous on VN .

If Tn converges towards T in the weak topology, then the sequence

will also converge weakly in the dual of VN .

We define WN = X + VN , with X noting the space of the C1,1 forms

on M endowed with the topology of the supremum on X. Consider W̃N

the Banach completion of this space. Since T acts on WN , it can be

extended to a continuous linear functional on W̃N .

Therefore, there is a natural map Λ : C → W̃ ′N such that, since

a subsequence Tn in C has a subsequence that converges weakly to a

current T , then Λ(C) is also a compact convex set.

If we denote by D the space of exact forms
√
−1∂∂φ with φ a C∞

function on M , we can define BN := D + VN ⊂ WN .

Suppose that Λ(C) ∩ BTN = ∅, where BTN is the set of the elements of

W ′N vanishing on every element of BN . Then, by Hahn-Banach Theorem

there exists an element
√
−1∂∂φN +

√
−1∂b∂bψN of BN such that

〈T,
√
−1∂∂φN + i∂b∂bψN〉 ≥ δ > 0
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for every T ∈ C. In particular, uN := φN + ψN is subharmonic on the

leaves of the lamination. Hence, uN attains its maximum on a point z0 ∈
E. Since E is pluripolar, we can find a ball centered on z0, B(z0, r) and

a plurisubharmonic function v on a neighborhood of B(z0, r), such that

E ∩ B(z0, r) ⊂ {v = −∞}. But considering the subharmonic function

uN − δ
2
|z − z0|2 + εv, it attains its maximum in a point z1 close to z0 if ε

small enough, and z1 6∈ E. In this way, we obtain a contradiction.

Therefore, there exists TN ∈ C vanishing in BN . So let T be a weak

limit of this sequence. The current T is positive, directed and for every

continuous function ψ which is C2 on leaves,

T (ψ) =

∫
〈[Γα]ν̃α,∆αψ〉dµ(α) = 0

hence 〈ν̃α,∆αψ〉 = 0 for µ almost every point and, in consequence, ν̃α is

a positive harmonic function on µ almost every plaque.

In order to understand the role of the harmonic functions appearing

in the decomposition a little more, we need to consider the following key

Remark 1.2.1 ([Mat12]). If we consider two decompositions of a directed

harmonic current T in a flow box B as stated in Definition 1.14,

T|B =

∫
hα[Γα]dµ(α) =

∫
h′α[Γα]dµ′(α)

then

hαdµ(α) = h′αdµ
′(α) (1.1)

for µ almost every point in the transversal. Hence, if we take a loop γ

with basepoint p on a plaque Γ0 ⊂ B0 and we cover it by flow boxes

B0, B1, . . . , Bl there is a unique way of extending the harmonic function

hp appearing in the decomposition of T in B associated to the plaque Γ0

along the loop. In this way, when we return to p, the value in Γ0 of the

extended function h̃0 might have changed, but it satisfies the equality

(1.1) if µ′ is the pushforward of the original µ by the holonomy map

Holγ. Therefore these harmonic functions are not well defined on the

leaves but they are on their universal covering.

This observation allows us to prove the following

Proposition 1.16. [Sul76] Let (X,L, E) be a lamination in a complex

surface M and let T be a directed closed current. Then, in flow boxes,

T can be written as

T =

∫
[Γα]dµ(α),
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for µ a holonomy invariant transversal measure.

Conversely, if µ is a holonomy invariant transversal measure, we can

construct a directed closed positive current associated to µ.

Proof. Since T (dϕ) = 0 for every form ϕ supported on a flow box U =

∆ ×∆′ and such that dϕ is a (1, 1)-form, then if we integrate by parts,

dhα = 0 for µ almost every point in the transversal so hα is a constant

and the local expression of T in the flow box can be normalized such that

this constant is one.

This holds in every flow box, so consider a loop γ with basepoint p and

passing through the flow boxes U1, . . . , Un and define the pushforward

of the measure µ′ = Holγ∗µ. It gives us that T|U =
∫

[Γα]dµ(α) =∫
[Γα]dµ′(α). Hence dµ(α) = dµ′(α) and µ is holonomy invariant.

For the second part of the proposition, we are given µ, a transversely

invariant measure, and let U = {Uα}α∈Λ be a covering of the lamination

by flow boxes. Consider {ψα}α∈Λ a partition of unity associated to U .

We will show that the current defined as T :=
∑

α

∫
ψα[Γt]dµ(t) is closed.

Indeed, let ϕ be a form such that dϕ has bidegree (1, 1). Then, by

integrating by parts and using the fact that ψα is 0 on the boundary of

the plaques

T (dϕ) =
∑
α

∫ ∫
Γt

dϕψαdµ(t)

= −
∑
α

∫ ∫
Γt

ϕdψαdµ(t),

but, for every flow box U , the invariance of µ allows us to exchange the

sum and the integral, so we get

T|U(dϕ) = −
∫ ∫

Γt

∑
α

ϕdψαdµ(t)

= −
∫ ∫

Γt

ϕ
∑
α

dψαdµ(t)

= −
∫ ∫

Γt

ϕd

(∑
α

ψα

)
dµ(t) = 0.

Therefore T (dϕ) = 0.

Proposition 1.17. Let (X,L, E) be a minimal lamination in a compact

Kähler surface (M , ω) and let T be a directed closed current of mass one.

Suppose that we are in one of the following situations,
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1. E = ∅ and there exists a loop with contractive holonomy,

2. all the singularities in the lamination are hyperbolic,

then SuppT is a compact Riemann surface.

Proof. In both hypotheses we have a loop γ with contractive holonomy.

The first one by assumption and in the second one as it was stated at the

end of subsection 1.1.3. Fix p ∈ γ a basepoint. The point p is regular, so

we can consider a flow box Bp centered at p with ψ : Bp → ∆× T ⊂ ∆2.

The current T in Bp can be written as

T =

∫
[Γt]dµ(t)

where µ is holonomy invariant.

Since Holγ is contractive, we can find two subsets Vp ⊂ Up of T such

that Holγ(Up) = Vp. Iterating the holonomy, due to its contractiveness,

Holnγ (Up) → {0}. On the other hand, µ is holonomy invariant, hence

µ({p}) = µ(Up) > 0, which means that µ has an atomic mass at p.

Let L be the leaf passing through p and notice that SuppT = L. Let

us suppose that L has no singular points. Then, we can cover L with a

finite number of flow boxes, having a finite number of plaques belonging

to L. Otherwise, if there is a flow box B0 ≈ ∆× T0 with Γtn plaques of

L, then, by the holonomy invariance of µ,

µ(T0) ≥
∑
n∈N

µ(tn) =∞.

Hence the mass of T would not be one.

In the second assumption, since s0 is a hyperbolic singular point in

the support of T then both separatrices are contained in the support

of T . Let S0 be one of them. Consider a singular neighborhood and a

small loop γ contained on S0 surrounding the singularity, it has contrac-

tive holonomy, and reasoning as before, it can have mass only on the

separatrices. This situation occurs around every singularity. For regular

points, we can repeat the argument above. Thus SuppT = L with L

the analytic continuation of a local separatrix, and L must be a compact

Riemann surface.

As a corollary, due to the Theorem 1.7, we can ensure that, if a mini-

mal set for a holomorphic foliation in P2 carries a closed current, it must
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be a compact Riemann surface. In this sense, Rebelo has obtained inter-

esting results in [Reb13] for singular holomorphic foliations in algebraic

surfaces, relating closed currents, compact leaves and infinite trajectories

of the 1-dimensional real flow introduced in [BLM92].

1.2.3 Construction of Positive Directed Closed and

Harmonic Currents

The proof of the existence of directed harmonic currents given in Theo-

rem 1.15 is not constructive. The most common way of obtaining closed

and harmonic directed currents is by an averaging process à la Ahlfors.

This method was introduced by Goodman and Plante ([GP79], [Pla75])

to construct holonomy invariant measures in foliations, which would cor-

respond to closed currents. Afterwards, it was modified by Fornæss and

Sibony [FS05] to produce harmonic directed currents. We include here

an overview of this averaging process. We will restrict the staments to

our setting.

Theorem 1.18 (Goodman, Plante[GP79]). Let (X,L, E) be a lamina-

tion with a finite set of singularities E in a Kähler surface (M , ω). Let

φ : C → L the universal covering of a parabolic leaf and define the cur-

rents τr := [φ(∆r)]
A(r)

, where ∆r is the disk of radius r and A(r) the area

of φ(∆r). Then, every limit current T of τr in the weak topology is a

directed closed current of mass one.

Actually, as we said above, this theorem is more general. In its usual

statement, the averaging sequence of increasing subsets is more flexible.

It just needs to satisfy a condition about the growth of the area.

If we do not have any closed current, we will not have any image of C
directed by the lamination. We need to modify this procedure in order

to have a constructive way to obtain harmonic directed currents. In this

situation, every leaf L of the lamination is hyperbolic, and if φ : D→ L

is the universal covering then∫
D

(1− |ξ|)|φ′(ξ)|2dλ(ξ) =∞.

This estimate above suggests that the area of the image increases very

fast and is crucial to prove

Theorem 1.19 ([FS05]). Let (X,L, E) a lamination on a Kähler surface

(M , ω) and φ : D → L, the universal cover of a leaf L. Define Tr =
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Hyperbolic leaf Parabolic leaf

D C

Figure 1.3: Coverings of different leaves

φ∗(log+ r
|ξ| [∆r]) and average by its mass τr := Tr

‖Tr‖ . Then every limit

current of τr is a harmonic directed current of the lamination of mass

one.

At this point, we can explain better the claim given in the introduc-

tion, where we say that unicity is important because it can be seen as

a global atractor for the dynamics of the lamination. We have just seen

how to construct a harmonic current as a very natural process consisting

on averaging the integration current of images of a increasing sequence of

concentric disks in the universal cover of the leaf by their area. Hence, a

priori, different leaves of the laminations could generate different positive

harmonic currents. Even, since this limit is taken in the weak topology,

two different currents can be in the accumulation set of an averaging

process starting from only one leave. However, if we have the unicity of

directed harmonic currents, these phenomena cannot occur: at the end

of this process we will always obtain the same positive directed harmonic

current.
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1.3 Intersection Theory

First of all, we will revisit [FS05] to clarify our exposition, further details

can be found in that reference. Let (M,ω) be a homogeneous Kähler

surface and T a real harmonic current of bidegree (1, 1) and order 0 in

M . If we denote the operator by � = (∂∂
∗

+ ∂
∗
∂), we say that T is �

harmonic if �(T ) = 0. Then T can be decomposed as T = Ω + ∂S + ∂S,

for a unique �-harmonic form Ω of bidegree (1, 1) and a current S of

bidegree (0, 1). The current S is not uniquely determined, but ∂S is.

Moreover, T is closed if and only if ∂S = 0.

Since T = Ω + ∂S + ∂S with Ω and ∂S uniquely determined, the

energy of T can be defined as

E(T ) =

∫
∂S ∧ ∂S

when ∂S is in L2. Then 0 ≤ E(T ) < ∞ and the energy depends only

on T but not on the choice of S. Considering a scalar product 〈 , 〉 on

the space of �-harmonic forms, a real inner product and a seminorm are

defined on He = {T, with E(T ) <∞} as

〈T1, T2〉e = 〈Ω1,Ω2〉+
1

2

(∫
∂S1 ∧ ∂S2 + ∂S2 ∧ ∂S1

)

‖T‖2
e = 〈Ω,Ω〉+

∫
∂S ∧ ∂S.

With this seminorm we can define a Hilbert space He of classes [T ] as

follows: T1, T2 are in the same class if and only if T1 = T2 + i∂∂u with

u ∈ L1 and u real.

Now, for T1, T2 currents, an intersection form Q is defined by

Q(T1, T2) =

∫
Ω1 ∧ Ω2 −

∫
(∂S1 ∧ ∂S2 + ∂S2 ∧ ∂S1).

Then Q(T, T ) =
∫

Ω ∧ Ω − 2E(T ). This is a continuous bilinear form

on He and Q(T, T ) is upper semicontinuous for the weak topology on

He. If T is a harmonic positive current then Q(T, T ) ≥ 0. A class [T ] is

positive if there is a positive harmonic current in the class [T ]. Defining

the hyperplane H = {[T ], [T ] ∈ He,
∫
T ∧ ω = 0}, it can be proven that

Q is strictly negative definite on H.

Next, this approach is used to study laminar currents. Let (X,L, E)

be a laminated set with singularities in (M,ω), a Kähler surface. There
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exists a unique equivalence class [T ] of harmonic currents of mass one di-

rected by the lamination and maximizing Q(T, T ) given that Q is strictly

concave on H. However, this uniqueness is for equivalence classes, not

for currents. It is necessary to assume some extra hypotheses:

Theorem 1.20. Let (X,L, E) be a laminated set with singularities in

a Kähler surface (M,ω). Suppose E is a locally complete pluripolar set

with 2-dimensional Hausdorff measure Λ2(E) = 0. If there is no non-zero

positive directed closed current, then there is a unique positive harmonic

laminated current T of mass one maximizing Q(T, T ).

This implies that under the same hypotheses, when Q(T, T ) = 0

for every T positive laminated harmonic current, there exists a unique

positive laminated harmonic current of mass one.

Finally, the case of a minimal lamination on P2 is considered, and it is

proven that Q(T, T ) = 0 for every T positive harmonic laminated current

when the lamination is transversely Lipschitz or when the current has

finite transversal energy. Fornaess and Sibony prove that a lamination

in M = P2 verifies the following condition:

Condition 1. There exist:

- A family of automorphisms Φε of M such that Φε → id when ε→ 0,

- a covering by flow boxes U ,

- a natural number N0 > 0

- and a positive number ε0 > 0

such that for every ε with |ε| < ε0 and for every pair of plaques Γα and

Γβ in a flow box of U , the number of intersection points between Γα and

Γεβ = Φε(Γβ) is bounded from above by N0.

Theorem 1.21. [FS05] Let (X,L) be a transversely Lipschitz lamination

in a Kähler homogeneous compact surface (M , ω) with no closed leaves

satisfying Condition 1. For every harmonic directed current T of mass

one Q(T, T ) = 0.

Proof. We know that if T is a (1, 1) positive directed harmonic current

it can be written as

T =

∫
A

[Γα]hαdµ(α)

in a flow box ∆ × A, where hα is a positive harmonic function in the

plaque Γα. Hence, the pushforward of the current Tε = (Φε)∗(T ) in a
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flow box can be written as

Tε =

∫
A

h′β[Γεβ]dµ′(β).

And the geometric self-intersection is defined in the flow box evaluated

on a function φ as follows

T ∧g Tε(φ) =

∫ ∑
p∈Jεα,β

hα(p)h′β
ε
(p)dµ(α)dµ′(β)

where J εα,β are the intersection points between Γα and Γεβ.

Since the lamination verifies Condition 1, the number of intersection

points is bounded by N0 which independent of ε. Therefore,

|(T ∧g Tε)(φ)| ≤ K‖φ‖∞
∫
dmin(Γα,Γβ)≤Cε

N0dµ(α)dµ(β)→ 0

because µ has no mass on single points.

Now, we need to prove that Q(T, T ) =
∫
T ∧ T = 0. Since we are

working on homogeneous Kähler surfaces, it is enough to prove this for

smoothings T δ, T δ
′

ε , Q(T δ, T δ
′

ε )→ 0 when δ, δ′ are small enough compared

to ε, and δ, δ′ and ε go to 0.

The estimate on the geometric wedge product is stable under small

translations Tε of T , so we can think of smoothing a current as an average

of small translations.

Let φ be a test function supported in some local flow box. By defini-

tion, the value of the geometric wedge product on φ is

〈T ∧ Tε〉g(φ) =

∫ ∑
p∈Jεα,β

hα(p)h′β
ε
(p)dµ(α)dµ′(β).

But if we fix a plaque Γεβ we can look for points in it which are also points

of a plaque Γα and we write the intersection product as

〈T ∧ Tε〉g(φ) =

∫ (∫
Γεβ

[φhαh
′
β
ε
](p)i∂∂ log |w − fα(z)|dµ(α)

)
dµ′(β).

These expressions are small when ε is small. The same applies when we

do this for translations within small neighborhoods U(ε) of the identity

in Aut0(M) and their smooth averages T δ. So, if we consider φT δ as a

smooth test form we get

〈Tε, φT δ〉 =

∫ (∫
Γεβ

[φhεβ](p)T δ

)
dµ(β).
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Repeating the process, considering the averaging over small translations

of Tε, we get that T δ
′

ε ∧ T δ(φ) → 0 when δ, δ′ << ε and ε → 0. Since

this argument is made over flow boxes, we need to consider a partition

of unity associated to the covering by flow boxes of the function φ such

that we can obtain that this limit is zero in every flow box. Hence,

T δ
′

ε ∧ T δ = Q(T δ
′

ε , T
δ)→ 0. Therefore Q(T, T ) = 0.

Hence, we can state

Theorem 1.22 ([FS05]). Let (X,L) be a C1 laminated compact set in

P2, without compact curves, then X has a unique positive directed closed

harmonic current T of mass 1.

The hypothesis mentions neither minimality nor closed currents be-

cause by Hurder-Mitsumatsu [HM91], absence of compact curves implies

no directed positive closed currents, and in P2 there is only one X ′ ⊂ X

minimal set (see [Zak01], for instance).

Note, that the proof of the theorem above is done on regular flow

boxes. If we want to extend the result to laminations with singularities,

we need to control the behavior close to the singularities, which is the

only place where the intersection could be not 0.

We will show that Condition 1 holds for transversely Lipschitz lam-

inations embedded in homogeneous compact Kähler surfaces. However,

this is not always the case for every lamination. For laminations which

are just transversely continuous, we can obtain weaker results.

Definition 1.23. A harmonic directed current T which can be written

in flow boxes as T =
∫
hα[Γα]dµ(α), has finite transverse energy if in

some local flow box∫
log |α− β|dµ(α)dµ(β) > −∞.

Condition 2. There exist:

- A family of automorphisms Φε of M such that Φε → id when ε→ 0,

- a covering by flow boxes U ,

- a big positive number A > 0,

- and a small positive number ε0 > 0

such that for every ε with |ε| < ε0 and for every pair of plaques Γα and

Γβ in a flow box of U , the number of intersection points between Γα and

Γεβ = Φε(Vβ) is bounded from above by A log 1
|ε| .
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Therefore, we can state a theorem analogous to Theorem 1.21 for

general laminations.

Theorem 1.24. [FS05] Let (X,L) be a lamination in (M , ω), a Kähler

homogeneous compact surface with no closed leaves satisfying Condition

2. For every harmonic directed current T of finite transverse energy and

mass one, the self-intersection is Q(T, T ) = 0.

The proof is mostly the same as the one in the transversely Lipschitz

case, but they differ on the estimates of the geometric self-intersection.

See [FS05].

In [FS08], the case of holomorphic foliations with only hyperbolic sin-

gularities is considered. If the family of automorphisms satisfies certain

general conditions that we will mention later, then the authors prove

that the self-intersection in a neighbourhoood of the singularities is zero.

Therefore, once we have proved that non singular transversely Lipschitz

laminations embedded in these surfaces satisfy Condition 1, in order to

prove the case with hyperbolic singularities, we just need to verify that

these laminations also satisfy this Condition outside the singular neigh-

borhoods. But the family of automorphisms must verify these general

conditions mentioned above.
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Chapter 2

Main Theorem

2.1 Statement and overview of the Theo-

rem

The main theorem of this dissertation is the following

Theorem 2.1. Let (M, ω) be a homogeneous compact Kähler surface

containing a minimal transversely Lipschitz lamination L by Riemann

surfaces with hyperbolic singularities. If there are no closed currents di-

rected by L, then there is a unique directed harmonic current of mass

one.

It was explained in the preliminaries that our aim is to prove that

every lamination transversely Lipschitz satisfies Condition 1 outside the

singular neighborhoods, so we can apply Theorem 1.21 and get that the

self-intersection of every directed harmonic current ought to be zero.

Once we prove this, by the intersection theory explained in the prelimi-

naries, we obtain the theorem above.

This theorem will be proven separately for each one of the surfaces

under consideration, namely P1×P1, T2 and P1×T1, which together with

the proof for P2 carried out in [FS05] and [FS08], complete the theorem

for every Kähler homogeneous compact surface.

The common feature in the surfaces under consideration is their nat-

ural product structure. In the case without singularities, we will just

need to consider a family of automorphisms that moves only horizon-

tally or vertically, whereas the case with singularities will require a more

complicated family of automorphisms. However, in both cases there will

be a big open coordinate chart whose closure is the total surface and,

25
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in this big coordinate chart, the family of automorphisms will be seen

as a family of translations. Hence, our main study will be focused ion

the behavior of these laminations under translations. This is completely

different than the situation in the case of P2 where the key was obtaining

good expresions of the lamination close to a line which was fixed by the

family of automorphisms under consideration.

Although the case with singularities includes the non singular case, we

deal with both cases separately. The arguments differ in the choice of the

family of automorphims. The families we choose in the non singular case

are much easier than the ones in the case with singularities, so dealing

with both cases independently allows us to understand the arguments

better.

2.2 Lemmas and remarks

Let (X,L, E) be a lamination embedded in a surface M , and p ∈ X \ E
a regular point. If (z, w) are local coordinates around p = (z0, w0) and

a
∂

∂z
+ b

∂

∂w

is a tangent vector to the lamination at p with b 6= 0, then we can take a

polydisk ∆δ,δ′ centered at (z0, w0) such that {z = z0} is a local transversal

and the plaques are parametrized as

Γw = {(z, fw(z)), z ∈ ∆δ,δ′(z0)}.

These are the sort of flow boxes we will consider in our arguments. Lo-

cally, the lamination can be seen as a holomorphic motion (see Example

3).

Proposition 2.2 (Bers-Royden [BR86]). If we have a lamination in the

unit polydisk of C2 where the leaves are

Γw = {(z, fw(z)), z ∈ ∆}

satisfying fw(0) = w and f0(z) ≡ 0 then the function F (z, w) = fw(z) is

a holomorphic motion and we get the estimate

|w0 − w1|
1+|z|
1−|z|

K
≤ |fw0(z)− fw1(z)| ≤ K|w0 − w1|

1−|z|
1+|z| .
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Consequently, if we just consider the polydisk ∆δ/2,δ′ we get the foll-

lowing remark.

Remark 2.2.1. We can always find a flow box around every regular point

small enough to satisfy that

|w0 − w1|2

C
≤ |fw0(z)− fw1(z)| ≤ C|w0 − w1|

1
2 .

Note that the constant C is not exactly the constant K in the proposition,

because we have to normalize the domain.

Remark 2.2.2. In the case of a transversely Lipschitz lamination the es-

timate is stronger

|w0 − w1|
C

≤ |fw0(z)− fw1(z)| ≤ C|w0 − w1|.

These considerations show the importance local estimates will have

in the proofs. We still need to recall two lemmas from [FS05] which will

be essential for our argument.

Lemma 2.3. There is a number 1 > c0 > 0 such that, for every holo-

morphic function g defined on the unit disk D, with |g| < 1 and having

N zeros on D1/2, then |g| < cN0 on D1/2.

Proof. Define Mα(z) = z+α
1+zα

, the Möbius biholomorphism of the disk

which sends 0 to α. Then by defining

c0 = sup
|α|≤1/2,|z|≤1/2

|M−α(z)| < 1,

we will see that we obtain the desired estimated.

Indeed, suppose that g has a zero at a with |a| < 1/2. If we set

f(z) = g(Ma(z)), f is a holomorphic function that goes from the unit disk

to the unit disk with f(0) = 0, hence by Schwarz’s lemma, |z| > |f(z)| =
|g(Ma(z))| on the disk. Therefore, |M−a(z)| > |g(Ma(M−a(z)))| = |g(z)|
for |z| < 1.

Now, suppose that g has another zero at b. By applying Schwarz’s

lemma to the function g
M−a
◦Mb, we get that | g(Mb(z))

M−a(Mb(z))
| < |z|. Now,

by undoing the substitution, we get | g(z)
M−a(z)

| < |M−b(z)|. Hence |g(z)| <
|M−a(z)M−b(z)|.

Thus, if a1, a2 . . . , aN are zeros of g on D1/2, by repeating this process,

we obtain that |g(z)| < |
∏N

i=1M−ai(z)| on |z| < 1. Then, |g(z)| < cN0 for

|z| < 1/2 if we take c0 as above.
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Lemma 2.4. Let g be a holomorphic function on the disk D with |g| < 1.

If |g| < η < 1 on D1/4 then |g| < √η on D1/2.

Proof. Note that log |g| ≤ log η when |z| ≤ 1/4. Since log |g(z)| −
log η log |z|

log 1/4
is subharmonic in the annulus 1/4 < |z| < 1, it reaches its

maximum on its boundary. Then, log |g(z)|− log η log |z|
log 1/4

< 0 in the annu-

lus, so log |g| < max
{

log η log |z|
log 1/4

, log η
}

. This implies that if |z| < 1/2,

then log |g| < log η/2.

The first lemma will allow us to relate transversal distances with

the number of zeros, whereas the second one will be very important in

controlling the estimates when moving among flow boxes.

2.3 Nonsingular Case

2.3.1 Complex Tori

We want to study minimal laminations by Riemann surfaces embedded

holomorphically in two dimensional tori. Then T2 = C2

Λ
, and we have

a locally injective projection π : C2 → T2 which induces the complex

structure on T2. Foliations on complex tori has been widely studied

and classified. The classification for non singular foliations is done in the

article of Ghys [Ghy96] and singular holomorphic foliations were classified

by Brunella in [Bru10]. Regarding the case of 2-dimensional tori, one can

see that only algebraic tori carry holomorphic foliations of codimension

1 with singularites.

Since the embedding is holomorphic, the flow boxes are open sets U

on C2 where π is injective and we can write every plaque as a graph of a

holomorphic function of z (horizontal flow box) or w (vertical flow box).

Explicitly:

Definition 2.5. We say that a polydisk U = ∆δ(p1)×∆δ′(p2) ⊂ C2 is a

horizontal flow box for a lamination (X,L) ⊂ T2 centered at p = (p1, p2)

if π|U is injective and the plaques of L in π(U) are

Γw = {π(p1 + z, w + fw(z)), z ∈ ∆δ}

for every w ∈ π({p1} ×∆δ′(p2))∩X with fw holomorphic and satisfying

fw(0) = 0. We can define analogously the notion of vertical flow boxes.
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Definition 2.6. We say a point p of the lamination is horizontal if (1, 0)

is a tangent vector to the lamination in p. If (0, 1) is a tangent vector to

the lamination we say that p is a vertical point.

Definition 2.7. Let (X,L) be a laminated compact set in T2. We say

that the lamination has invariant complex line segments if there is an

affine line Y in C2 and U ⊂ C2 open set, such that Y ∩U ⊂ π−1(X)∩U .

A typical situation with invariant complex line segments is a lam-

ination where every leaf lifts to an affine complex line in the covering

C2. We will refer to this situation as holomorphically flat laminations.

In this sense, there is a paper of Ohsawa [Ohs06] where he proves that

every C∞ Levi-flat in T2 contains a complex segment. Hence if the foli-

ation induced is minimal, it can only be holomorphically flat. Note that

all the leaves of holomorphically flat laminations are parabolic. Hence,

in these cases there is always a directed closed current.

Moreover, if we recall the discussion about foliations on complex tori

in the beginning of this subsection and we look at their classification

[Ghy96], it is easy to see that nonsingular holomorphic foliations in tori

have always holomorphically flat leaves. Hence, these foliations will not

satisfy our hypotheses. However, in [Bru10], the author proves that every

leaf in a codimension 1 non singular holomorphic foliation in Tn with

n ≥ 3 accumulates towards the singular set, leaving unsolved the case of

Tn when n = 2. If there is a leaf that does not accumulate towards the

singular set, it induces a structure of non singular lamination in a set

of T2 which is not a holomorphic foliation of the whole torus, and this

lamination still might satisfy our hypotheses.

As we know, T2 is a complex connected Lie group, so the connected

component of the identity of the group of automorphisms of the surface

T2 is Aut0(T2) = T2, and we will denote by

τ(ε1,ε2)(x1, x2) = (x1 + ε1, x2 + ε2)

a translation on C2 where x1, x2, ε1, ε2 ∈ C. These translations induce

the automorphisms on T2.

Proposition 2.8. Let (X,L) be a minimal lamination by Riemann sur-

faces embedded on a torus T2 = C2/Λ. If there exists εn → 0 such that

τ(0,εn)(L) = L, then either every point is vertical or there are no vertical

points.
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Proof. Suppose there is a p = (p1, p2) with vertical tangent. We can find a

vertical flow box, ψp : Tp×∆δ → C2 where ψp(z, w)→ (z+fz(w), p2+w),

with π injective on the image of ψp.

Consider the plaque Γp passing through p. There are two options.

The first one is that, for n big enough, the moved plaque Γεnp is another

plaque on the flow box. In this situation, the local transversal distance

between Γp and Γεnp is

dz(Γp,Γ
εn
p ) = |p1 + fp1(w)− p1 − fp1(w − εn)| > 0

for every n and for every z. But this means that
fp1 (z)−fp1 (z−εn)

εn
has no

zeros for any n big enough. On the other hand, this sequence converges

uniformly to f ′p1(w), which has a zero at w = 0. Therefore, by Hurwitz’s

theorem, f ′p1(w) = 0 for every z in the flow box. By analytical continu-

ation, every point of the leaf is vertical and, because of the minimality,

every point in the lamination is vertical.

The second option would be that for n big enough, the translation

induces an automorphism on each leaf. In that case, the leaves are all

vertical as well.

Hence, if there were no vertical points, the lamination could be cov-

ered by horizontal flow boxes only, and for every point p we get a holomor-

phic function by analytic continuation, fLp such that π(z, fLp(z)), z ∈ C
parametrizes Lp. On the other hand, if every point is vertical, then the

lamination is holomorphically flat.

Proposition 2.9. Let L be a leaf of a lamination (X,L) embedded in a

torus T2 and suppose that there is a holomorphic function fL : C → C
that parametrizes L by π(z, fL(z)). Then fL is linear. Then L contains

a holomorphically flat laminated set.

Proof. Applying Hurwitz’s Theorem, we can ensure that either L con-

tains a vertical leaf (namely a leaf whose points are vertical) or every

leaf in L is a horizontal graph. If we are in the first situation, we have

already obtained the desired statement. Hence, let us suppose that we

are in the second one. If every leaf in L is a horizontal graph, then it

means that there are no vertical points in it. Thus, assuming f ′L is not

constant, there is a sequence zn with |f ′L(zn)| → ∞. But π(zn, fL(zn))

has a convergent subsequence in L, π(znk , fL(znk)) → (z0, w0) ∈ T2 and

the unitary tangent in each point π(znk , fL(znk)) is



2.3. NONSINGULAR CASE 31

(1, f ′(znk))√
1 + ‖f ′(znk)‖

.

This sequence converges to the vector (0, 1) which is the unitary tan-

gent vector to the lamination at (z0, w0). Therefore it is a vertical point,

which lead us to a contradiction with the theorem assumptions.

This contradiction arises from the fact that f ′L was supposed un-

bounded. So it is bounded and by Liouville’s theorem it is constant.

Thus, the lamination induced on L is holomorphically flat.

We can conclude that a lamination on a torus has no invariant com-

plex segments if and only if every leaf has horizontal and vertical points.

Equivalently, a minimal lamination L has no complex segments if and

only if there exists a neighborhood of the identity U ⊂ Aut0(T2) such

that the minimal lamination L is not invariant for any automorphism

Φ ∈ U .

Theorem 2.10. If (X,L) is a transversely Lipschitz lamination by Rie-

mann surfaces in T2 without invariant complex line segments, then it

satisfies Condition 1 for Φε horizontal or vertical translations.

Proof. Since L has no complex segments, every leaf has vertical and

horizontal points. For every vertical point pv, we can take a relatively

compact vertical flow box Tpv ×∆δ such that f ′α has a finite number Kpv

of zeros on ∆δ/2 for every α ∈ Tpv due to the absence of complex invariant

line segments. These flow boxes will be called special vertical flow boxes.

Since the set of the vertical points is closed, it is also compact, so it

admits a finite covering by special flow boxes. We make an analogous

argument for horizontal points, and, in this way, collecting all the flow

boxes we obtain a relatively compact open set of the lamination, and the

complement can be covered by polydisks which can be seen as horizontal

or vertical flow boxes for our convenience.

Lemma 2.11. Considering the family of horizontal translations, for ev-

ery p = (p0, p1) horizontal point, there exist:

- a horizontal flow box Up, where the plaques are expressed like Γt1 =

(p0 + z, t+ ft(z)),

- a natural number Np,

- a real number εp > 0
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such that Γt1 and Γεt2 intersect each other at most in Np points, and Γt1
and Γεt1 always intersect each other, for every t1, t2 in the transversal if

|ε| < εp.

Proof. We start by considering a horizontal flow box ∆′δ(p0) × T ′(p1).

The plaque passing through p = (p0, p1), Γp1 = (p0 + z, p1 + fp1(z))

satisfies that f ′p1(0) = 0, and f ′p1 has Np > 0 zeros in ∆δ′/2(p0).

Since
fp1 (z)−fp1 (z−ε)

ε
→ f ′p1(z) when ε → 0, by Hurwitz’s theorem,

there exists ε′0 such that
fp1 (z)−fp1 (z−ε)

ε
has Np zeros in ∆δ′/2(p0) for ε with

modulus smaller than ε′0. This condition holds for every close enough

plaques.

Next, we shrink the flow box to ∆δ(p0) × T (p1) in order to verify

that there are a ξ > 0 and a ε0 < ε′0 such that∣∣∣∣ft(z)− ft(z − ε)
ε

∣∣∣∣ > ξ

for every t in the transversal, |ε| < ε0 and z ∈ ∂∆δ/2(p0) and still satis-

fying that ft(z)−ft(z−ε)
ε

has Np zeros inside ∆δ/2(p0).

Then, if Γt1 ,Γ
ε
t2

intersect in N points, by Lemma 2.3, dz(Γt1 ,Γ
ε
t2

) <

cN |ε|, if z ∈ ∆δ/2(p0). Then

cN |ε| > dz(Γt1 ,Γ
ε
t2

) > dz(Γt2 ,Γ
ε
t2

)− dz(Γt2 ,Γt1) > ξ|ε| − dz(Γt1 ,Γt2).

Then, we get that dz(Γt1 ,Γt2) > (ξ−cN)|ε| in ∂∆δ/2(p0). By Lipchitzness,

dz(Γt1 ,Γt2) >
(ξ−cN )|ε|

C2 for every z ∈ ∆δ/2(p0).

On the other hand,

dz(Γt2 ,Γ
ε
t2

) > dz(Γt1 ,Γt2)− dz(Γt1 ,Γεt2) >
(
ξ − cN

C2
− cN

)
|ε|.

Therefore, if N is big enough, this last number is positive, which would

imply that Γt2 and Γεt2 would not intersect, so we would get a contradic-

tion.

Since the set of horizontal points is compact, we can find a finite

covering by flow boxes U1, . . . , Ukh centered in p1, . . . , pkh respectively as

we did in the previous lemma. Let us call Nh = maxiNpi , and εh =

mini εpi .

We can reason analogously for vertical points and vertical transla-

tions, and we get a covering by flow boxes V1, . . . , Vl, Nv and εv in the

same way. Finally, take ε0 = min(εh, εv) and N1 = max{Nh, Nv}.
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For ε < ε0, τ(0,ε)(z, w) = (z, w + ε) is a vertical translation, and we

suppose that we have a horizontal flow box where we have N ′ intersection

points between two plaques, Γα,Γβ when we move one of them by the

translation Γεβ = τ(0,ε)(Γβ). In this case, the transversal distance defined

on every z ∈ ∆δ is dz(Γβ,Γα) = |α + fα(z) − β − fβ(z)|, and as L is a

transversely Lipschitz lamination, we have

|α− β|
C

< dz(Γα,Γβ) < C|α− β|

for certain global constant C independent of the flow box. Since Γα and

Γεβ intersect, there is z0 with dz0(Γα,Γβ) = ε. Hence

ε

C2
< dz(Γα,Γβ) < C2ε.

There is also a constant b > 1 such that the following holds: if Γ1 and

Γ2 are two plaques in a flow box with dz(Γ1,Γ2), the transversal distance

on it, and Γ′1,Γ
′
2 are their continuations in an adjacent flow box with the

transversal distance d′z(Γ1,Γ2) then

min d′z(Γ
′
1,Γ

′
2)

b
≤ min dz(Γ1,Γ2) ≤ max dz(Γ1,Γ2) ≤ bmax d′z(Γ

′
1,Γ

′
2).

This b depends on neither the flow box nor the plaques.

As we have a finite covering, and every leaf has vertical points, we

can reach a special vertical flow box following a path with at most M

changes of flow boxes where M is a global bound. Hence, we get

|ε|
C2bM

< dz(Γα0 ,Γβ0) < C2bM |ε|

where α0 and β0 are the analytic continuation of the plaques.

Due to the transversal Lipschitzness of the lamination, we can find a

global constant K ′ such that, for every flow box continuing Γα and Γβ,

say Γα′ ,Γβ′ we have
dz(Γα′ ,Γβ′)

K ′|ε|
<

1

b2
.

By Lemma 2.3, there is c < 1 such that

dz(Γα,Γ
ε
β)

K ′|ε|
< cN

′
<

1

b2
,

then we can see this transversal distance in the next plaques, and con-

sidering the distortion, it satisfies that

d′z(Γα′ ,Γ
ε
β′)

K ′|ε|
< bcN

′
< 1.
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Hence, in a bigger disk, by Lemma 2.4, they would differ at most by

(bcN
′
)1/2. Repeating the argument until we arrive to the vertical special

flow box, we get that d′z(Γα0 ,Γ
ε
β0

) < K ′|ε|b2cN
′/2M .

So, we should have that, by triangular inequality,

dz(Γβ0 ,Γ
ε
β0

) ≥ dz(Γα0 ,Γβ0)− dz(Γα0 ,Γ
ε
β0

) ≥
(

1

C2bM
−K ′b2cN

′/2M
)
|ε|

but, if N ′ is big enough to make 1
C2bM

> K ′|ε|b2cN
′/2M , this would mean

that Γβ′ ,Γ
ε
β′ does not intersect each other, but they do. Therefore, mak-

ing N0 = max{N ′, N1}, we obtain the N0 appearing in Condition 1 for

vertical translations.

This argument can be made analogously for horizontal translations.

Theorem 2.12. Let (X,L) be a lamination by Riemann surfaces in T2

without invariant complex line segments. Then the lamination satisfies

Condition 2

Proof. The proof is similar to the previous one, but the estimates are

slightly different. We will try to be consistent with the notation of the

Theorem 2.10. Here, since the lamination is a holomorphic motion, we

can take horizontal and vertical flow boxes as we said before, such that

|α− β|2

C
≤ |α + fα(z)− β − fβ(z)| ≤ C|α− β|1/2.

We can consider a covering by flow boxes as before, where these inequal-

ities hold for transversal distances, and taking ε0 small enough to assure

that a plaque on a special horizontal flow box and the same plaque moved

by a horizontal translation have to intersect each other.

We need to understand the behavior of the lamination under the

action of τ(ε,0). Assume that we have N crossing points on a vertical flow

box. In this case, the following inequality holds

ε4

K
≤ dz(Γα,Γβ) ≤ K|ε|1/4

for certain K > 2 non depending on ε. Then, we can reach a special

horizontal flow box by a path in at most M changes of flow boxes and α′

and β′ are the corresponding plaques in this flow box. Hence

|ε|4M

KMbM
< dz(Γ

′
α,Γ

′
β) < bMKM |ε|1/4M .
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By similar arguments, we can find a constant c verifiying the estimate

dz(Γα,Γ
ε
β)

K|ε|1/4M
< cN <

1

b2
.

Hence, as in the Lipschitz case,

dz(Γ
′
α,Γ

′ε
β ) < b2cN/2

M

K|ε|1/4M .

But, by triangular inequality again,

dz(Γ
′
β,Γ

′ε
β ) > dz(Γ

′
α,Γ

′
β)− dz(Γ′α,Γ′εβ ) >

|ε|4M

KMbM
− b2cN/2

M

K|ε|1/4M

and if

N >
(4M − (1/4)M) log |ε|

1/2M log c
− log(2bM+2KM+1)

1/2M log c
= A log

1

|ε|
+B

then dz(Γ
′
β,Γ

′ε
β ) > |ε|4M

2KM bM
> 0, hence Γ′β,Γ

′ε
β would not intersect each

other. The contradiction arises if N is too big compared to − log |ε|.

Corollary 2.13. Let (X,L) be a transversely Lipschitz lamination in T2

with no directed positive closed currents. Then there is a unique harmonic

current T of mass one directed by the lamination. In particular, there is

only one minimal set.

2.3.2 Products of curves

In this section we will deal with the case of P1×P1 and T1×P1. We have

a slightly different definition of verticality and horizontality here, but

it is still natural based on their standard parametrizations. We define

φ1 : C → P1 as φ1(w) = [1 : w], and φ2 : C → P1 as φ2(z) = [z : 1].

For T1, since π : C→ T1 is locally injective, there exists δ > 0 such that

π|∆δ(z) is injective for every z ∈ C. So, every p in X = P1 × P1,T1 × P1

admits a parametrization ϕ = (ϕ1, ϕ2) where ϕi are injective restrictions

to disks of those functions.

Definition 2.14. An open subset U ⊂ X is a horizontal flow box centered

on p = (p1, p2) if there is a parametrization as above with ϕ(z0, w0) =

(p1, p2), a disk D1 centered at 0, a subset A contained on a disk D2

centered at 0, such that the plaques of L|U are parametrized by ϕ(z0 +

z, w0 + α + fα(z)) for every α ∈ A.
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Definition 2.15. We will say that a point p of the lamination is hori-

zontal if π2(TpL) = 0.

We define analogously vertical flow boxes and vertical points, and

we can cover our lamination by horizontal or vertical flow boxes. Note

that if p is a horizontal point we can take a horizontal flow box on a

neighborhood of p, and if ϕ(z0, w0) = p, then f ′0(0) = 0.

Proposition 2.16. Every minimal lamination (X,L) in T1 × P1 either

has horizontal points, or is T1×{p}. Furthermore, if (X,L) is embedded

in P1 × P1 and there is a leaf L without horizontal points, then L =

(f(p), p) is a closed leaf for f : P1 → P1 holomorphic.

Proof. The proof is analogous to Proposition 2.8. We can consider a

covering only with vertical flow boxes and, beginning with a vertical

plaque Γα with a parametrization ϕ(fα(z), z), we can extend fα to obtain

a holomorphic function from P1 to the first factor of the surface. If the

first factor is P1, this function is rational, but if the first factor is T1 there

are no nonconstant holomorphic functions from P1 to T1.

Clearly, the same is true for vertical points in P1 × P1. So every

lamination (X,L) embedded in it without compact curves has vertical

and horizontal points.

Theorem 2.17. Let (X,L) be a lamination without compact leaves hav-

ing only one minimal set in M = P1 × P1 . Suppose that the point

p = ([1 : 0], [1 : 0]) is neither vertical nor horizontal and belongs to

the minimal set. Let Φε be the automorphism of P1 × P1 defined as

Φε([z1 : z2], [w1 : w2]) = ([z1 + εz2 : z2], [w1 : w2]). Then, the lami-

nation verifies Condition 1 if it is transversely Lipschitz or Condition 2

otherwise, for this family of automorphisms.

Proof. We will explain the Lipschitz case. The only difference with non

Lipschitz case is that the last one has slightly more complicated inequal-

ities as we could see in Theorem 2.12.

First of all, we notice that [1 : 0] × P1 is invariant for every Φε and

we consider a flow box B0 centered at p.

ϕ : ∆δ × A→ B0 ⊂ P1 × P1

(z, w) 7→ ([1 : z], [1 : fw(z) + w])
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small enough to hold that 0 < |f
′
0(0)

2
| < |f ′w(z)| < 2|f ′0(0)|. We cover

P1×P1\B0 by horizontal or vertical flow boxes, and we obtain a covering

B = {Bi}.
The automorphism Φε sends (z, w) to ( z

1+εz
, w), so the transversal

distance between a plaque Γβ of L and Γεβ, the same one moved by Φε, is

dz(Γβ,Γ
ε
β) =

∣∣∣∣β + fβ(z)− β − fβ
(

z

1− εz

)∣∣∣∣
=

∣∣∣∣fβ(z)− fβ
(

z

1− εz

)∣∣∣∣
≥ k

∣∣∣∣z − z

1− εz

∣∣∣∣
= k

∣∣∣∣ε z2

1− εz

∣∣∣∣
for k = |f ′0(0)|/4 if ε small enough.

In this situation,

max
|z|≤δ

dz(Γβ,Γ
ε
β) = max

|z|=δ
dz(Γβ,Γ

ε
β) ≥ k|ε||δ|2/2.

Now, we repeat the argument. Consider two plaques Γα and Γεβ which

intersect each other in N points. Following a path, we reach B0 in at

most M changes of flow boxes which is independent of the plaques. Let α′

and β′ be the analytic continuation of the original plaques, and by same

reasoning of Theorem 2.10, we obtain that, dz(Γ
ε
β′ ,Γα′) ≤ K ′|ε|b2cN

′/2M

if |z| ≤ δ, in fact for z = 0, d0(Γεβ′ ,Γα′) = |α′ − β′| ≤ K ′|ε|b2cN
′/2M , then

dz(Γα′ ,Γβ′) ≤ C|α′ − β′| ≤ CK ′|ε|b2cN
′/2M .

Finally, ∣∣∣∣kεδ2

2

∣∣∣∣ ≤ max
|z|≤δ

dz(Γ
ε
β′ ,Γβ′)

≤ max
|z|≤δ

dz(Γ
ε
β′ ,Γα′) + max

|z|≤δ
dz(Γβ′ ,Γα′)

≤ K ′|ε|b2cN
′/2M + CK ′|ε|b2cN

′/2M

then if N is big enough to hold k|ε||δ|2/2 > (C + 1)K ′|ε|b2cN
′/2M , a

contradiction arises. So the number of intersection points is bounded by

certain N0.
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Theorem 2.18. Let (X,L) be a lamination without compact leaves and

having only one minimal set embedded in M = T1×P1. Let Φε([z1], [w1 :

w2]) = ([z1 + ε], [w1 : w2]) be a family of automorphisms. Then, the

lamination verifies Condition 1 if it is Lipschitz or Condition 2 otherwise,

for this family of automorphisms.

Proof. The proof of this theorem is similar to theorems 2.10 and 2.12.

Since L has no compact leaves, there are non horizontal points. Hence,

we just need to take a finite covering of the horizontal points by special

horizontal flow boxes, find ε0 small enough to hold that every plaque in

these flow boxes intersects itself when we move it by Φε if |ε| < ε0, and

get the same contradiction we obtain in theorems 2.10 and 2.12.

2.3.3 End of the argument

In the past two subsections, we prove that, under different hypotheses,

laminations embedded on the surfaces under study satisfy Conditions 1

or 2, depending on whether the lamination is transversely Lipschitz or

not. As stated at the beginning of this section, and proven in the previous

one, this is sufficient to ensure the unicity of positive harmonic currents

directed by the lamination. Let us state explicitely the theorem that we

have obtained with the wider generality we have so far.

Theorem 2.19. Let L be a transversely Lipschitz lamination. If we are

in one of the following situations

- it has a unique minimal set, it is embedded in P1 × P1 without

invariant closed curves,

- it has a unique minimal set, it is embedded in P1 × T1 without

invariant closed curves,

- or it is embedded in T2 without invariant complex segments, then

every harmonic current of mass one T directed by the lamination satisfies

Q(T, T ) = 0.

If the lamination is not transversely Lipschitz, then every harmonic

current of mass one T directed by the lamination with finite transverse

energy satisfies that Q(T, T ).

Corollary 2.20. Let L be a transversely Lipschitz lamination by Rie-

mann surfaces without directed closed currents. If we are in one of the

following situations
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- it has a unique minimal set and is embedded in P1 × P1,

- it has a unique minimal set and is embedded in P1 × T1,

- or it is embedded in T2, then

the lamination has only one directed harmonic current of mass one.

Note that, in the case of T2, this Corollary implies the unicity of the

minimal set. In the last section, we will sharpen these results and obtain

some interesting corollaries.

2.4 Singular Case

We need to prove Condition 1 outside the singular neighborhoods and ap-

ply the results of [FS05] to them. For this reason, we need to control the

situation in the singular neighborhoods and the family of automorphisms

given in the previous section could not give this control. Therefore, we

need to study a wider class of automorphisms in order to get the desired

result.

2.4.1 Case of P1 × P1

We consider P1 × P1 with the Fubini-Study metric in each factor. Since

it is a product space then T (P1 × P1) = TP1 × TP1. Hence, we have a

notion of verticality and horizontality in the tangent bundle defined in

the natural way.

Assume that the lines [1 : 0] × P1 and P1 × [1 : 0] do not contain

any singularity, p = ([1 : 0], [1 : 0]) ∈ L and TpL is neither vertical nor

horizontal.

Therefore, we have four different charts covering P1 × P1, ψi : C2 →
P1 × P1 for i = 1, 2, 3, 4 defined as follows:

a) ψ1(z, w) = ([z : 1], [w : 1]),

b) ψ2(z, w) = ([1 : z], [w : 1]),

c) ψ3(z, w) = ([z : 1], [1 : w]),

d) ψ4(z, w) = ([1 : z], [1 : w]).
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P1 × P1

P1 × P1 P1 × P1

P1 × P1

ψ1 ψ2

ψ4 ψ3

Figure 2.1: Sketch of the covering of P1 × P1

Clearly every singularity is contained in the image of ψ1.

The family of automorphisms we are searching for is

Φε([z1 : z2], [w1 : w2]) = ([z1 + εv1z2 : z2], [w1 + εv2w2 : w2])

for a suitable vector (v1, v2). However, we have to choose it carefully

according to the behavior of the lamination in a neighborhood of a sin-

gularity.

Let s1, s2, . . . , sn be the singularities. Since they are hyperbolic, there

exist AiA a linearizable neighborhood around ψ−1
1 (siA) and a change of

coordinates φiA : AiA → ∆2
δ,δ′ with φiA(ψ−1

iA
(siA)) = (0, 0) such that in the

new coordinates (z′, w′), the leaves of the lamination are integral varieties

of the 1-form w′dz′−λiAz′dw′, with this λiA veryfing that λiA 6∈ R. Hence,

the separatrices are {w′ = 0} and {z′ = 0}. Φε would act as a translation

by (εv1, εv2) in ψ−1
1 (AiA) = ∆2

δ,δ′ , namely Φε(z, w) = (z + εv1, w + εv2).

Next we define ΦiA
ε = φ−1

iA
ΦεφiA , and ΦiA

ε has to hold the condi-

tions of [FS10]: it can be written as (α(ε), β(ε)) + (z′, w′) + εO(z′, w′)

with α′(0), β′(0) 6= 0 and β′(0)
α′(0)

6= λiA . Notice that (α′(0), β′(0)) =

(Dφ−1
iA

)Φε(0,0)(v1, v2) =: (viA1 , v
iA
2 ). The third element of the sum appears

if and only if φiA is not linear. In fact, it is not linear because in that

case the lamination would have a directed closed current, the integration

current on the separatrix, which would be a projective line. These con-
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ditions must hold around every singularity. Therefore we have to choose

a vector (v1, v2) such that:

(i) viA1 , v
iA
2 6= 0 and

v
iA
2

v
iA
1

6= λiA ,

(ii) (v1, v2) is unitary,

(iii) v1, v2 6= 0 and (v2, v1) is not a tangent vector to the lamination at

p,

(iv) (v1, v2) is tangent to the lamination at certain point p′ ∈ C2 \
(
⋃
AiA).

So, we have fixed (v1, v2) and we have the family of automorphisms Φε.

The next step is choosing a good covering of the lamination L as follows:

(1) We already have linearizable neighborhoods of the singularities where

[FS10] can be applied, we will denote them by AiA . We will call them

singular neighborhoods.

(2) We need a neighborhood U0 of p, because it is a fixed point for every

element of the family of automorphisms. We will find it by using ψ4.

(3) Afterwards, we cover P1 × [1 : 0] \ U0 via ψ3 with two types of

flow boxes, horizontal W a
jW

and and vertical W t
iW

. The superindices

come from “along” and “transversal”, referring to the behavior of

the laminations with respect to the automorphisms.

(4) Same for [1 : 0]× P1 \ U0 with ψ2. We obtain V t
iV

and V a
jV

.

(5) And finally, by using ψ1, we consider flow boxes Ba
jB

and Bt
iB

covering

the rest of the points of P1 × P1 depending on whether every plaque

is transversal to the motion or not, respectively.

Lemma 2.21. There is a flow box U0 centered at p = ([1 : 0], [1 : 0])

biholomorphic to ∆δ×T and an ε′0 > 0 such that, if Γw and Γεw′ intersect

each other in N ′0 points, then the vertical distance in |z| = δ verifies

dz(Γw,Γw′) > c0|ε|

with certain c0 > 0 for every ε with |ε| < ε′0.
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s1 s2

(v1, v2)

Figure 2.2: Election of the vector

Proof. We will use ψ4. Consider a horizontal flow box U ′0 = ∆δ × T

centered at p; ∆δ is a disk centered at 0, and T is a topological space

containing 0. The points in the flow box can be written as (z, w+fw(z)),

where fw are holomorphic functions satisfying fw(0) = 0 for every w ∈ T .

Since f ′0(0) 6= 0 and (v2, v1) is not a scalar multiple of (1, f ′0(0)), we

can choose U0 verifying that m < |f ′w(z)| < M , |f ′w(z) − v1
v2
| > m0 > 0

for every (z, w) ∈ ∆δ × T , and as fw(z) = gw(z)z for certain holo-

morphic function gw varying continuously with w. Furthermore, we can

also require m < |gw(z)| < M and |gw(z) − v1
v2
| > m0 > 0 for every

(z, w) ∈ ∆δ ×T .

Now, we want to find δ0 small enough to get that if Γw and Γεw′

intersect each other in N0 points, then the vertical distance in z satisfies

dz(Γw,Γw′) > dz(Γw′ ,Γ
ε
w′)− dz(Γw,Γεw′) > c0|ε|

with certain c0 > 0 for every z with |z| = δ0. The idea is to find a lower

bound for dz. Since L is transversely Lipschitz, we can find the bound

for Γ0 and later shrink the transversal to ensure that every plaque holds

the inequality.

In the domain of ψ4,

Φε(z, w) =

(
z

1 + εv1z
,

w

1 + εv2w

)
,

then

Γε0 =

{(
z

1 + εv1z
,

f0(z)

1 + εv2f0(z)

)
, z ∈ ∆δ

}
.
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Hence, if we fix z ∈ ∆δ such that z′ = z
1+εv1z

∈ ∆δ, then z = z′

1−εv1z′ .

Thus, the transversal distance at a point z is

dz(Γ0,Γ
ε
0) =

∣∣∣∣∣f0(z)−
f0( z

1−εv1z )

1 + εv2f0( z
1−εv1z )

∣∣∣∣∣ .
We can write it as follows

dz(Γ0,Γ
ε
0) =

∣∣∣∣∣zg0(z)−
( z

1−εv1z )g0( z
1−εv1z )

1 + zεv2
1−εv1zg0( z

1−εv1z )

∣∣∣∣∣
=

∣∣∣∣∣∣zg0(z)−
zg0( z

1−εv1z )

1 + zε
(
−v1 + v2g0( z

1−εv1z )
)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
z
[
g0(z)− εzg0(z)

(
v2g0

(
z

1−εv1z

)
− v1

)
− g0

(
z

1−εv1z

)]
1 + εz

(
−v1 + v2g0

(
z

1−εv1z

))
∣∣∣∣∣∣

≥

∣∣∣∣∣∣ z

1 + zε
(
−v1 + v2g0

(
z

1−εv1z

))
∣∣∣∣∣∣ (F −G) ,

where

F :=

∣∣∣∣εzg0(z)

(
v2g0

(
z

1− εv1z

)
− v1

)∣∣∣∣ ,
G :=

∣∣∣∣g0(z)− g
(

z

1− εv1z

)∣∣∣∣ .
We are searching for a lower bound of this last expression. F is obviously

greater than |ε||z|mm0|v2| so we have to find an upper bound for G. We

observe that z
1−εv1z = z + εv1z2

1−εv1z , and considering Taylor expansion of g0

at 0, we obtain that

∣∣∣∣g0(z)− g
(

z

1− εv1z

)∣∣∣∣ =

∣∣∣∣∣
∞∑
n=p

anz
n −

∞∑
n=p

an

(
z +

εv1z
2

1− εv1z

)n∣∣∣∣∣
= |εv1z

p+1hε(z)|,

with |hε(z)| bounded by a number M0 > 0 for every z in the disk and

every ε small enough.
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Thus, by replacing these bounds in the previous expression,

dz(Γ0,Γ
ε
0) ≥ |z| [|ε||z|m|v2|m0 − |εv1z

p+1h(z)|]

1 + zε
(
−v1 + v2g0

(
z

1−εv1z

))
≥ |εz2|

1 + zε
(
−v1 + v2g0

(
z

1−εv1z

))(mm0|v2| − v1|z|pM0).

Now, we choose ε′0 such that if |ε| < ε′0 then

1

1 + zε
(
−v1 + v2g0

(
z

1−εv1z

)) > 1

2
,

for every z ∈ ∆δ, and if we set δ to satisfy that mm0|v0| > 2|v1|δpM0,

then

min
|z|=δ

dz(Γ0,Γ
ε
0) >

δ2|ε|mM0|v2|
4

.

Therefore

min
|z|=δ

dz(Γw,Γw′) ≥

≥min
|z|=δ

dz(Γw′ ,Γ
ε
w′)−max

|z|=δ
dz(Γw,Γ

ε
w′)

then, by applying Lemma 2.3,

min
|z|=δ

dz(Γw,Γw′) ≥
δ2|ε|mM0|v2|

4
− cN0 K|ε|.

Hence if N ′0 is big enough and N > N ′0,

min
|z|=δ

dz(Γw,Γw′) ≥
δ2|ε|mM0|v2|

8
> 0.

Consequently, the number c0 we were searching for is

c0 =
δ2mM0|v2|

8
.

Lemma 2.22. There is a covering of P1 × [1 : 0] \ U0 by flow boxes of

two different types, W a
jW

and W t
iW

and an ε1 > 0, verifying that for every

ε such that |ε| < ε1,

• if Γw is a plaque in W a
jW

then Γεw ∩ Γw 6= ∅;



2.4. SINGULAR CASE 45

• if Γz and Γz′ are plaques in W t
iW

satisfying that max dw(Γz,Γ
ε
z′) <

|v1||ε|
2

then min dw(Γz,Γz′) >
|v1||ε|

2
.

Proof. In order to prove this lemma we use ψ3. In this chart, an auto-

morphism behaves as Φε(z, w) = (z + εv1,
w

1+εv1w
) which is a horizontal

translation in w = 0. We want to cover the points of w = 0 which are

not in U0. It is a compact set, so we will find a finite covering.

If q is a point with horizontal tangent, we take a horizontal flow box

centered at q where f ′0(z) = 0 if and only if z = 0. We will proof that for

ε small enough, Γ0 and Γε0 intersect each other and by Hurwitz’s theorem

(see A) we can find a flow box centered at q verifying this for every plaque

in it.

We can write Γ0 = {(z, f0(z)), z ∈ ∆δ′} with f0(0) = 0 and f ′(0) = 0

and Γε0 = {(z + εv1,
f0(z)

1+εv2f0(z)
), z ∈ ∆δ′}, so we want to compute if the

function

f0(z)− f0(z − εv1)

1 + εv2f0(z − εv1)

has any zero. The number of zeros of that function is the same as the

number of zeros of

gε0(z) =
1

ε

(
f0(z)− f0(z − εv1)

1 + εv2f0(z − εv1)

)
=

1

ε

(
f0(z)− f0(z − εv1)− f 2

0 (z − εv1)εv2

1 + εv2f0(z − εv1)

)
.

Then, limε→0 g
ε
0(z) = f ′0(z)v1−f 2

0 (z)v2 which has a finite number of zeroes

in ∆δ. By Hurwitz’s theorem again, there is ε1 such that if |ε| < ε1, gε0(z)

has the same number of zeros than the limit. Then Γε0 and Γ0 intersect

each other, as do nearby enough plaques. We cover these points by flow

boxes W a
jW

.

Now, if q is a non horizontal point in w = 0, we can take a vertical

flow box around it (z + fz(w), w) and Γεz = (z + εv1 + fz(w), w
1+εv2w

). If

max dw(Γz,Γ
ε
z′) < |v1ε|/2, then

min dw(Γz,Γz′) ≥ min dw(Γz,Γ
ε
z′)−max dw(Γz′ ,Γ

ε
z′) = |εv1|−|v1ε|/2 > |εv1|/2.

In this way we obtain the flow boxes W t
iW

.

So, finally, we can cover {w = 0} \ U0 by a finite number of flow

boxes.

We can cover [1 : 0]× P1 analogously and obtain the same result for

open sets V t
iV

and V a
jV

.
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Lemma 2.23. There is a covering of [1 : 0] × P1 \ U0 by flow boxes of

two different types, V a
jV

and V t
iV

and an ε2 > 0, verifying that for every ε

such that |ε| < ε2,

• if Γz is a plaque in V a
jV

then Γεz ∩ Γz 6= ∅;

• if Γw and Γw′ are plaques in V t
iV

satisfying that max dz(Γw,Γ
ε
w′) <

|v2||ε|
2

then min dz(Γw,Γw′) >
|v2||ε|

2
.

Define W :=
⋃

(W a
jW

) ∪
⋃

(W t
iW

) and V :=
⋃

(V a
jV

) ∪
⋃

(V t
iV

).

Lemma 2.24. There is a covering of P1 × P1 \ (U0 ∪ V ∪ W ∪ A) by

flow boxes of two different types, Ba
jB

and Bt
iB

, and an ε3 > 0 such that

if |ε| < ε3,

• if Γw is a plaque in Ba
jB

then Γεw ∩ Γw 6= ∅;

• if Γz and Γz′ are plaques in Bt
iB

satisfying max dw(Γz,Γ
ε
z′) <

|ε|
2

then min dw(Γz,Γz′) >
|ε|
2

Proof. We use ψ1 because every point of P1 × P1 \ (U0 ∪ W ∪ V ∪ A)

is on its domain. In this chart, Φε works as a translation by the vector

(εv1, εv2), and there is a point p′ on this open set whose tangent space

contains (v1, v2).

We change coordinates for simplicity. Let us consider the linear

change of coordinates R : C2 → C2 sending (v1, v2) to (1, 0) and (−v2, v1)

to (0, 1). We have obtained new coordinates (z′, w′) such that our family

of automorphisms is a family of horizontal translations. Then, we can

argue as we did in Theorem 2.10. We cover our new horizontal points on

these new coordinates with flow boxes Ba
jB

. The rest of the points are

transversal to the motions, hence they can be covered with flow boxes

Bt
iB

.

The estimates appearing in the statement for Bt
iB

follow from Remark

2.2.2 and the fact that dw(Γz,Γ
ε
z) = ε. This finishes the proof of the

lemma.

Although we have several types of flow boxes covering the lamination

in P1×P1, we can split them in three main types: flow boxes along the au-

tomorphisms which are W a
jW
, V a

jV
, Ba

jB
, transversal to the automorphisms

W t
iW
, V t

iV
, Bt

iB
, U0 and a singular flow box AiA for each singularity. We

set ε0 = min{ε1, ε2, ε3, ε′0} and c4 = min{c′0, |v1|/2, |v2|/2, 1/2}. Now we

are ready to prove that Condition 1 holds for M = P1 × P1 outside the

singular neighborhoods for the chosen family of automorphisms.
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(v1, v2)

Figure 2.3: Behaviour of the lamination with respect to the automor-

phisms

Theorem 2.25. Let L be a minimal transversely Lipschitz lamination

with only hyperbolic singularities in P1 × P1 and without directed closed

currents. Then, it satisfies Condition 1 outside the singular neighbor-

hoods.

Proof. For the sake of simplicity, throughout the proof we will denote

by dmax(Γ1,Γ2) the maximum of the transversal distances in a flow box

between the plaques Γ1,Γ2, and dmin(Γ1,Γ2) the minimum.

By Lemma 2.3, if Γ1 Γε2 are plaques in the same regular flow box

which intersect each other in N points, then the transversal distance

satisfies that dmax(Γ1,Γ
ε
2) < cN |ε|A, for certain constants c < 1 and

A > 0 not depending on the flow box. There exists b > 0 such that the

distortion of the transversal distance in a change of flow boxes is bounded

from above by b and by 1/b from below. This b arises from combining

the constant in Remark 2.2.2 and the distortion of the distance when

we change coordinates on the surface. Finally, there is also M ∈ N
holding that, for every plaque in a flow box along the motion, we can

find a path from this plaque to a plaque in a flow box transversal to the

motion passing through at most M changes of flow boxes avoiding AiA
and U0 (unless we had started in U0). This number M can also be chosen

holding the same statement when starting from a flow box transversal to

the motion and finishing in a tangential one.

Now, suppose two plaques, Γ1 and Γ2 in a flow box transversal to the

motion satisfying that Γ1 and Γε2 have N > N ′0 intersection points for an

ε with |ε| < ε0. Hence dmax(Γ1,Γ
ε
2) < cNA|ε|. Consider a path as we said
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before joining this flow box transversal to the motion with another one

along the motion, and let Γ′1 and Γ′2 be the corresponding continuation

of the plaques. Then, by applying Lemma 2.4 when changing flow boxes,

dmax(Γ
′
1,Γ

ε′
2 ) < bMcN/2

M |ε|A. Nevertheless, if cNA < c4 by the previous

lemmas dmin(Γ1,Γ2) > c4|ε|. Following the path we can also conclude

that dmin(Γ1,Γ2) > |ε|c4
bM

. Then,

dmin(Γ′1,Γ
ε′

1 ) > dmin(Γ′1,Γ
′
2)− dmax(Γ′1,Γε

′

2 ) ≥ |ε|
( c4

bM
− bMcN/2MA

)
There is N1 ∈ N such that if N > N1, the right side of the inequality

above is bigger than zero, but if this happens, it would mean that Γ′1 and

Γε
′

1 do not have a common point. But they do if |ε| < ε0. So N cannot

be arbitrarily large.

Now, we argue when we start in a flow box along the motion. Consider

Γ1 and Γ2 in it such that Γ1 and Γε2 intersect each other at N points.

They also verify that dmax(Γ1,Γ
ε
2) < cN |ε|A. We construct a path to a

transversal flow box, and we reach the continuation of the plaques Γ′1
and Γ′2. They hold that dmax(Γ

′
1,Γ

ε′
2 ) < AbMcN/2

M |ε|. Hence, there exists

N ′2 ∈ N such that, if N > N ′2, then cN/2
M
AbM < c4. Therefore, by the

previous lemmas, dmin(Γ′1,Γ
′
2) > c4|ε|. We follow the path back to the

original flow box and we get that dmin(Γ2,Γ
ε
2) > (c4/b

M − cNA)|ε|. So

there is N2 > N ′2 holding that c4/b
M − cNA > 0 for every N > N2. But

this would mean that there are no intersection points between Γ2 and Γε2.

The same contradiction arises.

In order to obtain the N0 in Condition 1, take N0 = max{N1, N2}.

2.4.2 Case of T1 × P1 and T2

These four different local behaviors we saw in the previous section de-

scribe also every behavior appearing in the two remaining surfaces to be

studied. So we just need to put them in the right situation. Let us begin

with T1 × P1.

Let Π1 : T1 × P1 → T1 and Π2 : T1 × P1 → P1 be the projections

on each factor and π : C → T1 be the canonical projection in T1. Let

s1, . . . , sn be the singularities of the lamination. We can find an automor-

phism of T1 × P1 such that T1 × [1 : 0] does not contain any singularity,

and an open simply connected relatively compact set U of C, which is

a neighborhood of a fundamental domain for the equivalence relation

defining T1, containing only one preimage by π of the singularities.
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In this case, we are going to search for a family of automorphisms as

Φε([z], [w1 : w2]) = ([z + v1ε], [w1 + εv2w2 : w2]).

So, in the chart ψ2(z, w) = ([z], [w : 1]) the automorphisms act as trans-

lations by a vector (εv1, εv2). Thus, if we choose (v1, v2) satisfying the

conditions i),ii) and iv) required in the case of P1 × P1, we can argue in

a similar way: firstly, we need to cover T1 × [1 : 0] in a special way and

then, the rest of the points are a compact set in the other chart where

the automorphisms act as translations, so we can cover it as we did for

P1 × P1.

Lemma 2.26. There is a covering of T1 × [1 : 0] by flow boxes of two

different types, V a
jV

and V t
iV

and an ε1 > 0, holding that if |ε| < ε1,

• if Γz is a plaque in V a
jV

then Γεz ∩ Γz 6= ∅;

• if Γw and Γw′ are plaques in V t
iV

satisfying that max dw(Γz,Γ
ε
z′) <

|v1||ε|
2

then min dw(Γz,Γz′) >
|v1||ε|

2
.

Proof. We work with ψ1. In this chart Φε(z, w) = (z+εv1,
w

1+εv1w
). Hence,

is a horizontal translation in w = 0. Notice that this is the same situation

we dealed with in Lemma 2.23, therefore the proof is the same.

We set V =
⋃
V a
jV
∪
⋃
V t
iV

.

Lemma 2.27. There is a covering of T1 × P1 \ V by flow boxes of two

different types, Ba
jB

and Bt
iB

, and an ε2 > 0 such that if |ε| < ε2,

• if Γw is a plaque in Ba
jB

then Γεw ∩ Γw 6= ∅;

• if Γz and Γz′ are plaques in Bt
iB

satisfying that max dw(Γz,Γ
ε
z′) <

|ε|
2

then min dw(Γz,Γz′) >
|ε|
2
.

The behavior in the chart given by ψ2 is a translation, so the proof

is the same as in Lemma 2.24. Setting ε0 = min{ε1, ε2}, both lemmas

together let us prove the analogous to Theorem 2.25 for M = P1 × T1

by the same reasoning.

Finally, we deal with the case of T2. Let Λ be a lattice in C2, and

let π : C2 → C2/Λ = T2 be the canonical projection. If L is a minimal

lamination with hyperbolic singularities embedded in T2, we can consider
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a simply connected relatively compact open neighborhood U of (0, 0) in

C2 covering a fundamental domain of the equivalence relation defining

T2, and containing only one preimage of the singularities inside it and

none on its boundary. The family of automorphisms we will consider is

Φε[(z, w)] = [(z + εv1, w + εv2)], with (v1, v2) chosen as before. Φε lifts

to a translation Φ̃ε : C2 → C2. We can argue as we did in Lemma 2.24

and we get the analogous to Theorem 2.25 when M = T2 in the same

way.



Chapter 3

Corollaries and Applications

3.1 Non singular case

One of the hypothesis of the statement of the Main Theorem in the non

singular case of P1 × P1 and P1 × T1 is the unicity of a minimal set for

the lamination which seems to be a very strong condition. However, a

modification of the proof chosing a different family of automorphisms

leads us to a more interesting statement.

Theorem 3.1. Every transversely Lipschitz lamination by Riemann sur-

faces without compact curves embedded in P1 × P1 satisfies Condition 1.

Recall from Theorem 1.21 that this Theorem 3.1 would imply that ev-

ery directed harmonic current of mass one verifies that its self-intersection

is Q(T, T ) = 0. Hence, if there are no closed currents there is only one

harmonic positive current of mass one directed by the lamination. In

particular, there is only one minimal set.

Whereas the proof included in Section 2 is similar to the case of P2,

this new proof is more similar to the case of T2 where the statement

above was already proven.

Proof. The key of this new proof is the fact that the adherence of every

leaf has horizontal and vertical points, otherwise the lamination would

contain a compact leaf.

Consider the family of automorphisms

Φε = ([z0 : z1], [w0 : w1]) = ([z0 + εz1 : z1], [w0 : w1])

The surface P1 × P1 is parametrized with the charts of subsection 2.4.1.

The automorphisms in ϕ1 and ϕ3 behave like horizontal translations,

51
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then we need to control the behavior on a neighborhood of the fixed line

[1 : 0] × P1 with the parametrizations φ1 and φ2. The automorphisms

have the following expression in both of them

(z, w)→
(

z

1 + εz
, w

)
.

We will begin the proof by covering the horizontal points of the fixed

line.

The set of horizontal points on [1 : 0] × P1 is compact, thus we just

need to find a good neighborhood around every point and then to extract

a finite subcovering.

Without loss of generality, we can work with ϕ2. Suppose p = ([1 :

0], [1 : p1]) is a horizontal point. We can take a flow box around p such

that the plaques are

Γt = {([1 : z], [1 : ft(z)])}

with ft(0) = t and f ′p1(0) = 0. Moved plaques have the expression

Γεt =

{(
[1 : z] ,

[
1 : ft

(
z

1 + εz

)])}
.

Therefore, we need to estimate the number of zeroes of ft1(z)−ft2
(

z
1−εz

)
.

Let us define

gε(t1, t2, z) =
ft1(z)− ft2

(
z

1−εz

)
ε

.

Note that limε→0 gε(t, t, z) = −f ′t(z)z2 for every z in the flow box.

Then, we can consider δ0 > 0 such that |f ′p1(z)| > ξ for every z with

|z| = δ0
2

, and f ′p1(z) has N0 zeros on |z| < δ0/2.

By Hurwitz’s theorem, we can take ε0 such that, for every ε with

|ε| < ε0 and |z| = δ0/2 then

M/2 > |gε(p1, p1, z)| >
ξδ2

0

8
,

and gε(p1, p1, z) has N0 + 2 zeros in |z| < δ0/2 for every ε with |ε| < ε0.

Now, take a transversal Tp1 where gε(t, t, z) has the same number of

zeros on |z| < δ0/2 than gε(p1, p1, z) for every t ∈ Tp1 and every |ε| < ε0.

We can shrink it to a smaller transversal T ′
p1

which is relatively compact

on Tp1 and verifies that

M > |gε(t, t, z)| > ξδ2
0

16
,
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in |z| = δ0/2 for every t ∈ T ′
p1

. Then, if Γt1 and Γεt2 intersect each other

in ∆δ0/2, there exists a z0 ∈ ∆δ0/2 such that

gε(t1, t2, z0) = ft1(z0)− ft2(
z

1− εz
) = 0.

Hence |ft1(z0) − ft2(z0)| = |ft2( z
1−εz ) − ft2(z0)| ≤ M |ε|. Using the Lip-

chitzness, d(Γt1 ,Γt2) ≤ C2M |ε|.
Therefore |ft1(z)− ft2

(
z

1−εz

)
| < (C2 + 1)M |ε|, so if they intersect N

times in ∆δ0/2 by Lemma 2.3 d(Γt1 ,Γ
ε
t2

) < cNp1|ε| with cp1 < 1 independent

of t1, t2. Since z = 0 is fixed for all the automorphims d(Γt1 ,Γt2) <

C2cNp1 |ε|, we get

|ε|ξδ
2
0

16
< min
|z|=δ0/2

∣∣∣∣ft2(z)− ft2
(

z

1− εz

)∣∣∣∣ ≤

≤ max
|z|<δ0/2

∣∣∣∣ft1(z)− ft2
(

z

1− εz

)∣∣∣∣+ max
|z|<δ0/2

|ft1(z)− ft2(z)| ≤

≤ (C2 + 1)cN |ε|

Therefore, if N is bigger than a suitable positive integer N1, we would

get a contradiction. Finally, we take Np1 = max{N0 + 2, N1}.
We can do this argument in order to obtain a neighborhood of every

horizontal point in [1 : 0]× P1. So we can obtain a finite subcovering by

flow boxes U1 . . . Ul, an εh > 0 and a number Nh such that, two plaques

Γt1 and Γεt2 have less than Nh intersection points, and if t1 = t2, they

have at least one for every ε with |ε| < ε0.

Once the horizontal points are covered, we need to cover the rest of

the points of the fixed line. The set [1 : 0]×P1 \
⋃l
i=1 Ui is also compact,

hence, by previous arguments, we will find a flow box around every point

q in this set with the desired properties.

Around every of these points, we can take a vertical flow box, where

the plaques are described like Γt = (ft(w), w). Then, when moved by

the automorphisms Γεt =
(

ft(w)
1+εft(w)

, w
)

, the transversal distance between

both is

dw(Γt1 ,Γ
ε
t2

) =

∣∣∣∣ft1(w)− ft2(w) + εft1(w)ft2(w)

1 + εft2(w)

∣∣∣∣ .
We take a flow box Tq × ∆δ0 such that there is ξ > 0 with 1 >

|ft(w)| > ξ for every t ∈ Tq, |w| = δ0
2

and |ε| < ε0.

Let us suppose that Γt1 and Γεt2 intersect each other in N points in

∆δ0/2, then d(Γt1 ,Γ
ε
t2

) < cN |ε| with c < 1.
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On the other hand

cN |ε| ≥ max
|w|<δ0/2

∣∣∣∣ft1(w)− ft2(w) + εft1(w)ft2(w)

1 + εft2(w)

∣∣∣∣ =

= max
|w|=δ0/2

∣∣∣∣ft1(z)− ft2(w) + εft1(w)ft2(w)

1 + εft2(w)

∣∣∣∣ ≥
≥ max
|w|=δ0/2

−|ft1(w)− ft2(w)|+ |ε||ft1(w)ft2(w)|
|1 + εft2(w)|

≥

≥ max
|w|=δ0/2

−|ft1(w)− ft2(w)|+ |ε||ft1(w)ft2(w)|
2

≥

≥ 1

2

[
min
|w|=δ0/2

|ε||ft1(w)ft2(w)| − max
|w|=δ0/2

|ft1(w)− ft2(w)|
]
≥

≥ |ε|ξ
2

2
− max
|z|=δ0/2

dz(Γ1,Γ2)

2
≥

≥ |ε|ξ
2

2
− min
|z|=δ0/2

dz(Γ1,Γ2)

2C2
,

where C is the Lipschitz constant of the lamination. Hence, we get that

min
|z|=δ0/2

dz(Γ1,Γ2) ≥ ξ2 − 2cN |ε|
C2

.

Then, if N is big enough min|z|=δ0/2 dz(Γ1,Γ2) ≥ ξ2|ε|
2C2 .

In this way, we can find a finite covering of these points V1, . . . , Vk, a

positive integer Nv and a positive number ξv > 0 such that, if Γt1 and

Γεt2 intersect each other in more than Nv points, then

dz(Γt1 ,Γt2) >
ξ2
v |ε|

2C2

for every z in the boundary of the plaques. Let us simplify the constan

m = ξ2v
2C2

Once we have covered [1 : 0]×P1 with U1, . . . , Ul, V1, . . . , Vk, we need

to cover the rest of the points, namely P1 × P1 \
(⋃l

i=1 Ui ∪
⋃k
j=1 Vj

)
.

Around these points the local behavior is as a horizontal translation,

thus we can cover them as we did in the case of the torus 2.10.

Finally, suppose there are two plaques Γ1,Γ
ε
2 with more than N in-

tersection points, with this N > max{Nh, Np1 , Nv}. This situation can-

not occur in a horizontal flow box. Therefore, let us suppose that we

are in a vertical flow box. Then, it implies that d(Γ1,Γ2) > m|ε| and

d(Γ1,Γ
ε
2) < cN |ε|. By analytic continuation we will reach a flow box
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containing a horizontal point after a finite number of changes of flow

boxes M and Γ′1, Γ′2 denote their analytic continuation. Using previous

estimates d(Γ′1,Γ
′
2) > m|ε|

bM
and d(Γ′1,Γ

′ε
2 ) < bMcN |ε|.

But in this case, this would mean that d(Γ′2,Γ
′ε
2 ) ≥ ( m

bM
− bMcN)|ε|,

so N cannot be arbitrarily large.

This new statement for P1 × P1 is complemented with the following

corollary.

Corollary 3.2. Let (X,L) be a transversely Lipschitz lamination by Rie-

mann surfaces without compact leaves in M = P1 × P1. Then there are

no directed closed current of mass one.

Proof. We know that if T is a closed current of mass one T = Ω+∂S+∂S

for a unique �−harmonic form Ω and ∂S = 0. As we proved previ-

ously, every directed harmonic current T satisfies Q(T, T ) = 0. Then,∫
T ∧ T =

∫
Ω ∧ Ω = 0.

The dimension of H1,1(P1 × P1) is two. It is generated by ω1 =√
−1dz1 ∧ dz1 and ω2 =

√
−1dz2 ∧ dz2 the Kähler forms on each factor

satisfying that ω = ω1 +ω2 is the Kähler form on P1×P1 with
∫
ω ∧ ω =

1. In fact 2ω1 and 2ω2 are the only two �-harmonic forms with self-

intersection 0 and mass 1. Hence, Ω must be either 2ω1 or 2ω2.

Suppose, without loss of generality, that Ω = 2ω1. We will establish

that T is directed by dz1 and, therefore, the lamination has a compact

leaf like {p} × P1.

As T = 2ω1 + ∂S + ∂S, then
∫
T ∧ (

√
−1dz1 ∧ dz1) = 0. Due to the

positivity of T , we can assure that the positive measure T ∧
√
−1dz1∧dz1

is 0.

Consider U a flow box in an affine chart (z1, z2). Inside this flow box,

T is directed by a (1, 0) form γ = adz1 + bdz2 for certain continuous

complex valued functions a, b, namely the current T ∧ γ of bidimension

(0, 1) is 0.

If b = 0, there is nothing to prove, so we suppose that supp b is not

empty. By applying gdz1 to T ∧ γ with supp g ⊂ supp b, we get

0 = T ∧ (adz1 + bdz2)(gdz1) = T (gb dz2 ∧ dz1) = T ∧ (dz2 ∧ dz1)(gb),

for every g. Then T ∧ (dz2 ∧ dz1) = 0. By conjugacy we get T ∧ (dz1 ∧
dz2) = 0. This implies that T ∧ dz1 = 0 on every flow box. Hence, T is

directed by {dz1 = 0}.
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By joining both results we get the following corollary.

Corollary 3.3. If L is a transversely Lipschitz lamination by Riemann

surfaces in P1×P1 without invariant compact leaves, there is only one di-

rected positive harmonic current. In particular there is only one minimal

set.

3.2 Singular case

It is well known that foliations on P2 without algebraic leaves and having

only hyperbolic singularities are generic in the space of foliations of P2

(see for instance [LN88]). However, only recently, Coutinho and Pereira

in [CP06] extended this result for foliations by curves in arbitrarely pro-

jective varieties. This is the opposite situation to the non singular case,

namely we do not know any examples of laminations embedded in the

surfaces under consideration, but the singular case we considered hap-

pens to be the generic situation.

Proposition 3.4. Let X be a minimal lamination containing a hyperbolic

singularity. If X admits a directed closed current, X is a closed leaf.

Furthermore, we can prove the following

Proposition 3.5. Let F a holomorphic foliation with only hyperbolic

singularities on P1 × P1 without invariant closed curves. Then there is

only one possibly singular minimal set. Therefore there exists a unique

harmonic current directed by the foliation.

Proof. Suppose there are two minimal sets X and X ′, and consider the

lamination L given by the union of both of them. Since they come from

a holomorphic foliation, L is transversely Lipschitz. Now, we can assume

that p = ([1 : 0], [1 : 0]) ∈ L and P1 × {p} ∪ {p} × P1 does not contain

any singularity of L.

In this setting, if we consider a vector (v1, v2) holding the three first

conditions stated in Subsection 2.4.1, and making the substitution of the

fourth one for

• (v1, v2) is tangent to the lamination in a point p1 ∈ X and in a

point p2 ∈ X ′
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we can repeat the same reasoning as before, and we obtain thatQ(T, T ) =

0 for every harmonic current directed by L. Since L does not admit any

directed closed current, there exists a unique positive harmonic current

of measure one T and its support is a minimal set. Hence, there is only

one minimal set.

Given that foliations with only hyperbolic singularities without alge-

braic leaves are generic in these surfaces, the main theorem can be applied

generically. Although the genericity of this foliations is already proven

in [CP06], the proof is quite complicated. Therefore, we would like to

include here an easier proof for P1 × P1, obtained essentially following

the steps of the proof for P2 given in [Per07].

3.2.1 Genericity of Foliations in P1 × P1

Let (d1, d2) be a pair of integers, and consider X = (x0 : x1) and

Y = (y0 : y1), homogeneous coordinates of P1. We denote by Λr1,r2

the bihomogeneous polinomials of bidegree (r1, r2) and a holomorphic

foliation F of bidegree (d1, d2) on P1 × P1 is defined by a vector field

X = A
∂

∂x0

+B
∂

∂x1

+ C
∂

∂y0

+D
∂

∂y1

where A,B ∈ Λd1,d2−1 and C,D ∈ Λd1−1,d2 . We will denote X1 = A ∂
∂x0

+

B ∂
∂x1

and X2 = C ∂
∂y0

+D ∂
∂y1

.

Two different vector fields X and X′ induce the same foliation on

P1 × P1 if

X− X′ = g1

(
x0

∂

∂x0

+ x1
∂

∂x1

)
+ g2

(
y0

∂

∂y0

+ y1
∂

∂y1

)
with g1, g2 of bidegree (d1 − 1, d2 − 1).

If the foliation has isolated singularities, we will say that F is satu-

rated. Following [CS11], if F is a saturated foliation of bidegree (d1, d2)

then it has 2d1d2 + 2 singularities.

Let Σd1,d2 be the vector space of vector fields inducing a foliation of

bidegree (d1, d2). It is easy to check that dimCΣd1,d2 = 2d1d2 + 2d1 + 2d2.

Since X,X′ ∈ Σd1,d2 induce the same foliation in P1 × P1 if X = λX′, the

space of foliations of bidegree (d1, d2), Fol(d1, d2) is a projective space of

dimension 2d1d2 + 2d2 + 2d1 − 1.

An algebraic curve C of bidegree (r1, r2) in P1 × P1 is given by the

zeroes of a bihomogeneous polynomial f ∈ Λr1,r2 .
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If X induces a foliation F of bidegree (d1, d2) in P1× P1, the curve C

is invariant for X = X1 + X2 if there are h1, h2 such that Xi(f) = hif for

i = 1, 2, bidegree of h1 = (r1 − 1, r2) and bidegree of h2 = (r1, r2 − 1).

Define the following sets

Cr1,r2(d1, d2) = {F ∈ Fol(d1, d2),

F has an invariant curve of bidegree (r1, r2)}

and

Dr1,r2(d1, d2) = {(x,F) ∈ P1 × P1 × Fol(d1, d2),

x belongs to an invariant curve of bidegree (r1, r2)}

Proposition 3.6. The sets Cr1,r2(d1, d2) and Dr1,r2(d1, d2) are closed al-

gebraic sets.

Proof. Define the set

Zr1,r2(d1, d2) = {(x, [(X, h1, h2)], [f ]) such that

X1(f) = h1f, X2(f) = h2f and f(x) = 0}

which is a closed algebraic subset of P1 × P1 × P(Σd1,d2 × Λr1−1,r2 ×
Λr1,r2−1)× P(Λr1,r2). For the sake of simplicity, we will denote by Σ0 the

set Σd1,d2 × Λr1−1,r2 × Λr1,r2−1. Consider the projection

π : P1 × P1 × P(Σ0)× P(Λr1,r2)→ P1 × P1 × Fol(d1, d2)× P(Λr1,r2).

The indeterminacy locus of π does not intersect Zr1,r2(d1, d2); hence, π

restricted to Zr1,r2(d1, d2) is regular and holomorphic.

Given that Zr1,r2(d1, d2) is a closed set then so it is π(Zr1,r2(d1, d2)). In

this setting, Cr1,r2(d1, d2) is the image of π1 : Zr1,r2(d1, d2)→ Fol(d1, d2)

and Dr1,r2(d1, d2) is the image of π2 : Zr1,r2(d1, d2)→ P1×P1×Fol(d1, d2).

Let S(d1, d2) = {(x,F) ∈ P1×P1×Fol(d1, d2) such that x ∈ SingF}.

Proposition 3.7. For every d1, d2 ≥ 1, S(d1, d2) is an invariant irre-

ducible variety of codimension 2 in P1 × P1 × Fol(d1, d2).
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Proof. Consider the projection Π : S(d1, d2)→ P1 × P1.

Π−1(x) is a subvariety of {x}×Fol(d1, d2) contained in S(d1, d2) which

is isomorphic to a projective space.

Since P1 × P1 is homogeneous, all the fibers are smooth, irreducible

and biholomorphic. Therefore S(d1, d2) is irreducible (see [Sha94]).

Now, we will show that this set has codimension two. We just need to

analize the fiber over p = ([0 : 1], [0 : 1]) and see that it has codimension

two in {p} × Fol(d1, d2).

Let H ∈ Λd1−1,d2−1 be a bihomogeneous polynomial not vanishing at

p and consider the vector fields

X = H

(
x1

∂

∂x0

+ x0
∂

∂x1

)
+H

(
y1

∂

∂y0

+ y0
∂

∂y1

)
X′ = H

(
x1

∂

∂x0

+ x0
∂

∂x1

)
−H

(
y1

∂

∂y0

+ y0
∂

∂y1

)
Thus, X(p) and X′(p) generate the tangent space of the foliations not

vanishing at p. Therefore, the space of foliations having a singularity at

p have codimension 2.

By the Theorem of the index of Camacho-Sad [CS82], if C is an

invariant curve of bidegree (d1, d2) with d1, d2 6= 0 then it contains a

singularity of the foliation.

Proposition 3.8. Suppose that there exists (r1, r2) for r1, r2 ≥ 1 such

that Cr1,r2(d1, d2) = Fol(d1, d2), with d1, d2 ≥ 1. Then,

S(d1, d2) ⊂ Dr1,r2(d1, d2).

Proof. Suppose Cr1,r2(d1, d2) = Fol(d1, d2) and consider the projection

Π : P1 × P1 × Fol(d1, d2)→ Fol(d1, d2).

Then,

Π(S(d1, d2) ∩ Dr1,r2(d1, d2)) = Cr1,r2(d1, d2) = Fol(d1, d2).

Since S(d1, d2) has codimension 2 and is irreducible, then S(d1, d2) ∩
Dr1,r2(d1, d2) = S(d1, d2). In this case, there would be an invariant curve

of bidegree (r1, r2) through every singularity .

Let F be the foliation of P2 given by the holomorphic 1-form in C3

Ω =

= xd1−1yd2−1z(x+y+z)

(
λ
dx

x
+µ

dy

y
+γ

dz

z
− (λ+µ+γ)

dx+ dy + dz

x+ y + z

)
.
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It is shown in [Per07] that there is no algebraic leaf passing through

the singular point [λ : µ : γ] if λ, µ, γ are Z linearly independent. Since

the line {z = 0} is invariant for the foliation and [1 : 0 : 0], [0 : 1 : 0]

are singular points in it, we can blow up the points and blow down the

line to get a foliation F ′ of P1 × P1 of bidegree (d1, d2) having a singular

point that does not admit any invariant algebraic curve passing through

it.

Therefore S(d1, d2) 6⊂ Dr1,r2(d1, d2) for d1, d2 > 1, and by Proposition

3.8 we get that Cr1,r2 6= Fol(d1, d2) for every r1, r2. Thus, its complemen-

tary is a Zariski open set of Fol(d1, d2) for every r1, r2 > 0. Therefore,

by Baire’s theorem ⋂
r1,r2=1

(Fol(d1, d2) \ Cr1,r2(d1, d2))

is a dense set in Fol(d1, d2).



Appendix A

Complex and Functional

Analysis

We want to include here a small appendix containing some topics on

Complex and Functional Analysis that appeared on this thesis. Func-

tional Analysis have appeared in a very fleeting but important way in

the preliminaries and Complex Analysis, in particular Hurwitz’s Theo-

rem, is crucial in the proofs of our theorems. This Appendix is far from

being exhaustive, however it might become useful in the understanding of

the previous discussion. For deeper details and information on Complex

Analysis see [Con78] and [Rud91] on Functional Analysis, for instance.

A.1 Complex Analysis

Since the study of the laminations carried out in this thesis is mainly

local, we recall some of the results of basic Complex Analysis we needed

to achieve our aim.

We begin this section recalling the well-known

Theorem A.1 (Cauchy’s Integral Formula). Let f : D → C be a holo-

morphic function with D ⊂ C a simply connected open set and γ a simple

Jordan curve on D. For every point p in the interior of the curve γ

f(p) =
1

2π
√
−1

∫
γ

f(ξ)

(ξ − p)
dξ.

In addition,

f (k)(p) =
1

2π
√
−1

∫
γ

f(ξ)

(ξ − p)k+1
dξ.
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The first part of the theorem allows us to recover the value of a

holomorphic function by mean of surrounding values, and the second

one implies that the same occurs for the derivatives in a fixed point.

Hence, if we have a sequence of holomorphic functions that converges

uniformly on compact sets to another one, their derivatives coverge as

well.

This property is an example of the rigidity of holomorphic functions,

and the next Theorem is another example of this phenomenon.

Theorem A.2 (Liouville’s Theorem). Let f : C → C a holomorphic

function. If f is bounded then f is constant.

The Fundamental Theorem of Algebra can be proven as a consequence

of Liouville’s Theorem.

This rigidity showed on the previous theorem involves only functions

which are holomorphic in the entire complex plane. However, the Maxi-

mum Modulus Principle covers the rest of the cases.

Theorem A.3 (Maximum Modulus Principle). If f : D → C is holo-

morphic in a open set and p ∈ D satisfies that |f(p)| ≥ |f(z)| for every

z ∈ D. Then, f is constant.

For instance, as a direct consequence of this Principle, we can assure

that for every holomorphic function defined on a bounded open set, the

maximum modulus is reached on the boundary.

The unit disk is the most special case of bounded open set, thus it

deserves special atention. The following theorem studies this situation.

Theorem A.4 (Schwarz’s Lemma). Let f : D → D be a holomorphic

function from the unit disk to itself with f(0) = 0. Then |f(0)| ≤ 1 and

|f(z)| ≤ |z| for every z ∈ D.

Moreover, if |f ′(0)| = 1 or |f(p)| = |p| for some p 6= 0 then there

exists c ∈ C with |c| = 1 such that f(z) = cz for every z ∈ D.

Along this thesis we faced several times with converging sequences of

holomorphic functions. They were just plaques that accumulate towards

each others or functions describing the distance among them in order

to obtain the intersection points between plaques. Therefore, in order to

bound the number of these zeros, we invoked time after time the following

Theorem A.5 (Hurwitz). Let D be an open set and a subsequence

{fn}n∈N → f uniformly on compacts. Suppose f 6≡ 0 and there is a



A.2. FUNCTIONAL ANALYSIS 63

closed disk centered on a of radius R, B̄(a,R) contained in D verifying

that f(z) 6= 0 for |z − a| = R. Then, there exists a natural number N0

such that for every n ≥ N0, fn and f have the same number of zeros in

B(a,R).

Moreover, as a inmediate consequence we obtain the following:

Corollary A.6. Let fn : D → C and f : D → C be holomorphic

functions for n ∈ N. If fn → f and fn(z) 6= 0 for every z ∈ D, then

either f ≡ 0 or f(z) 6= 0 for every z ∈ D.

A.2 Functional Analysis

Let X be a vector space over a field K endowed with a norm ‖ · ‖ which

induces a topology on X. If this norm is complete we say that X is a

Banach space.

Theorem A.7. Let X be a Banach space. The unit ball B1 = {x ∈
X, ‖x‖ ≤ 1} is compact if and only if dimX <∞.

We denote by X ′ the dual of a normed space, namely

X ′ = {T : X → K,with T linear and continuous}.

The elements T of the dual space X ′ are called functionals.

Proposition A.8. A linear functional is continuous if and only if

sup
x∈B1

‖T (x)‖ <∞

with the defined norm.

Therefore, on X ′ we can define a norm, in the following way ‖|T |‖ =

supx∈B1
‖T (x)‖. Any dual space of a normed space is Banach with this

norm.

Moreover, we can defined the bidual of a normed space X ′′, as the

dual space of the dual X ′′ = (X ′)′ and its norm is defined likewise.

A normed space can be identified with a subspace of X ′′. For every

x ∈ X, we define the linear functional on X ′

Lx(T ) = T (x), x ∈ X.
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In this way, X is embedded in X ′′ which is a Banach space. Thus, we

can define X̃ the Banach completion of a normed space, as the smallest

Banach space containing X.

On a vector normed space X whose dual is X ′, we can define a new

topology on X, the so-called weak topology. This is the coarsest topology

on X such that T ∈ X ′ is still continuous on X.

In the same spirit, we define the weak* topology on X ′ as the coarsest

topology such that Lx(T ) is continous for every x ∈ X.

Theorem A.9 (Hahn-Banach). Let X be a topological vector space over

K = C or R and A,B be convex non-empty disjoints subsets of X.

- If A is open, then there exists λ : X → K and t ∈ R such that

Re(λ(a)) < t ≤ Re(λ(b)) for every a ∈ A and b ∈ B.

- If X is locally convex, A is compact and B is closed then there

exists a continuous linear map λ : V → K and s, t ∈ R such that

Re(λ(a) < t < s < Re(λ(b) for every a ∈ A and b ∈ B.

Although the unit ball of a normed space is not compact unless it is

finite dimensional, we have the following:

Theorem A.10 (Banach-Alaoglu). Let X be a Banach space with a

norm ‖·‖ and B1 the unit ball. Then B1 is compact in the weak* topology.

This theorem above, allows us to extract a convergent subsequence

for a sequence of linear functionals.

In the literature concerning currents (see [Dem]), authors use the

term weak topology instead of weak*, as we defined in this appendix.

We preserved the usual notation for currents in the discussion, and the

usual notation in Functional Analysis in the Appendix.
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