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1. The Lp-spaces and the classical Sobolev spaces W k
p turn out to be unsufficient

for optimally sharp embedding theorems. Even in nonlimitting case p < n/k the best
embedding requires use of Lorentz spaces:

W k
p ↪→ L(q, p), q = np/(n− kp) (O’Neil [15], Dikarev [6]).

The limitting case p = n/k was studied in 60-th by Pohozhaev [17], Trudinger [20],
Peetre [16] and some others, with the help of Orlicz spaces, but the best embedding
W k

p ↪→ X was proved only, when taking

X = {f : ‖f‖X = ‖t−1/p
(
ln

e

t

)−1

f∗(t)‖Lp
< ∞

(Maz’ya [12], Hansson [8], Brezis-Wainger [3]).
Involving various function spaces as a range for embedding, it is natural to use

such spaces also in definition of Sobolev spaces in place of Lp. The corresponding
embeddings can be studied then, using methods of weak interpolation. A detailed
investigation of this problem can be found in a recent paper by Edmunds, Kerman,
Pick [7]. Rather sharp results were obtained by Cianchi [4] for Orlicz-Sobolev spaces
of the first order.
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In this talk I want to present some new results on embeddings of generalized
Sobolev spaces with applications to Orlicz spaces; a part of results was obtained
jointly with M.Milman [13].

2. Let Ω be an open set in IRn with Lebesgue measure. A Banach space A of
measurable functions f : Ω 7→ IR is called Banach function space if

f ∈ A, |g(x)| ≤ |f(x)| =⇒ g ∈ A, ‖g‖A ≤ ‖f‖A.

Let, as usual,

f∗(t) = inf{λ > 0 : mes {x ∈ Ω : |f(x)| > λ} ≤ t}, t > 0.

If A is a rearrangement-invariant (r.i.) space on (0,∞), i.e., ‖f‖A = ‖f∗‖A, then A(Ω)
consists of all measurable f(x) such that f∗(t) ∈ A. Any r.i. space is characterized
by

• fundamental function ϕA(s) = ‖χ(0,s)(t)‖A and their extension indices

πϕ = lim
s→0

lnmϕ(s)
ln s

, ρϕ = lim
s→∞

lnmϕ(s)
ln s

,

where mϕ(s) = supt ϕA(ts)
/

ϕA(t).

• dilation function dA(s) = supf∈A ‖f(t/s)‖A

/
‖f(t)‖A, defining the so-called

Boyd indices

πA = lim
s→0

ln dA(s)
ln s

, ρA = lim
s→∞

ln dA(s)
ln s

.

In general 0 ≤ πϕ ≤ πA ≤ ρA ≤ ρϕ ≤ 1, but for many important spaces (Lp, Orlicz,
Lorentz etc.) πA = πϕ and ρA = ρϕ.

We will also need the following Hardy operators

Pf(t) =
1
t

∫ t

0

f(s) ds, Qf(t) =
∫ ∞

t

f(s)
ds

s

and the notation f∗∗(t) = P (f∗)(t). We say the space A has (P ) (or (Q)) property if
the corresponding Hardy operator is bounded on A. The (P ) property is equivalent
to the inequality ρA < 1 and the (Q) property is equivalent to the inequality πA > 0.

Let k ∈ (0, n). We say the space A has Q(k) property if

Q(k,A) =
∫ ∞

1

sk/ndA

(
1
s

)
ds

s
< ∞.

This property is equivalent to the inequality πA > k/n. If A has Q(k) property then

‖t−k/nQf(t)‖A ≤ Q(k,A)‖t−k/nf(t)‖A. (1)

A similar inequality for operator P is valid without any requirements to A:

‖t−k/nPf(t)‖A ≤ n

k
‖t−k/nf(t)‖A. (2)
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Remark 1. The dilation function and Hardy operators can be defined also for non-
rearrangement invariant Banach function spaces as well as the (P ), (Q) and Q(k)
properties. The inequality (1) remains true; the inequality (2) is valid with another
constant

C =
∫ 1

0

sk/ndA

(
1
s

)
ds

in place of n/k.

3. In the last years it was revealed that various first order differential properties of
functions f(x) can be characterized, using some special differences f∗(εt)−f∗(t), 0 <
ε < 1, and f∗∗(t)− f∗(t). They can be connected by the relations

f∗(t/2)− f∗(t) ≤ 2(f∗∗(t)− f∗(t)),

f∗∗(t)− f∗(t) ≤ P
(
f∗(·/2)− f∗(·)

)
(t) + (f∗(t/2)− f∗(t)).

Thus both differences have equivalent norms in any space A with (P ) property. The
first of differences was studied and used much more than the second — by V.Kolyada
[9], Sagher-Shvartsman [19], Malý-Pick [11] and many others. The second was used
by Ulyanov [21], then by Bennett-DeVore-Sharpley [2] in connection with BMO-
spaces and recently by Bastero-Milman-Ruiz [1]. However it is more perspective in
the embedding theory due to relation (f∗∗)′(t) =

(
f∗∗(t)− f∗(t)

)/
t, whence

f∗∗(t) = Q(f∗∗ − f∗)(t) for f∗∗(∞) = 0. (3)

Our starting point will be the inequality

t−1/n
(
f∗∗(t)− f∗(t)

)
≤ c (∇f)∗∗(t) (4)

which is valid for any smooth function with f∗∗(∞) = 0. Here, as usual, ∇ stands for
gradient and (∇f)∗∗ means |∇f |∗∗. It can be derived from some general results by
Kolyada for the first kind of differences. Another way is to prove (4) first for spher-
ically symmetric (radial) functions and then to use the Polya-Szegö symmetrization
principle. For any Banach function space A, we obtain immediately

‖t−1/n
(
f∗∗(t)− f∗(t)

)
‖A ≤ c‖(∇f)∗∗(t)‖A (5)

If the space A has Q(1) property than by (1) and (3) we obtain that

‖t−1/nf∗∗(t)‖A ≤ c‖(∇f)∗∗(t)‖A

and, taking |∇f | in place of f , we come to the inequality

‖t−2/n
(
f∗∗(t)− f∗(t)

)
‖A ≤ c1‖t−1/n(∇f)∗∗(t)‖A ≤ c2‖(D2f)∗∗(t)‖A

for any f ∈ C2(Ω) with f∗∗(∞) = (∇f)∗∗(∞) = 0. Here D2 stands for vector
composed by all second derivatives.

Proceeding inductively, we come to the following main assertion.
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Theorem 2. Let A be a Banach function spaces and Ω be an open set in IRn. If A
has Q(k−1) property and a function f ∈ Ck(Ω) is such that f∗∗(∞) = (∇f)∗∗(∞) =
· · · = (Dk−1f)∗∗(∞) = 0, then

‖t−k/n
(
f∗∗(t)− f∗(t)

)
‖A ≤ c ‖(Dkf)∗∗(t)‖A. (6)

If A is a r.i. space with (P ) property then we may omit two stars in the right-hand
term. And if the boundary ∂Ω satisfies some minimal smooth conditions sufficient for
the extension theorems, then we may replace Dkf by various reduced expression, for
example, by k-th order gradient

∇kf =
{

∆k/2f for even k
∇(∆(k−1)/2)f for odd k,

where ∆ means the standard Laplace operator. We arrive at the inequality

‖t−k/n
(
f∗∗(t)− f∗(t)

)
‖A ≤ c ‖(∇kf)‖A, (7)

which in such a form was obtained together with M.Milman in [13].
The result of Theorem 2 is optimal in the following sense.

Theorem 3. Let B be a Banach function space such that dB(s) < ∞ for any s > 0
(for example, B is a r.i. space). If under conditions of Theorem 1

‖f‖B ≤ c ‖(Dkf)∗∗‖A

for all admissible f , then

‖f‖B ≤ c ‖t−k/n
(
f∗∗(t)− f∗(t)

)
‖A.

An analogous assertion holds for the case of inequality (7) with ∇kf in place of
Dkf .

4. Let now A be an Orlicz space generated by some Young function Φ(t). Then
ϕA(t) ≈ 1/Φ−1(1/t), i.e., up to equivalence of norms, any Orlicz space is uniquely
defined by his fundamental function ϕ(t) = ϕA(t) which may be taken as a parameter
defining A. Moreover, we can give an explicit formula for the norm in A expressed
via ϕ [18]:

‖f‖A = sup
‖g‖L1≤1

∫
Ω

|f(x)||g(x)|ϕ
(

1
|g(x)|

)
dx.

The Orlicz-Sobolev space W k
A(Ω) is defined as set of all functions f ∈ A such that

all their weak derivatives up to order k exist and also belong to A. This space is
usually normed by

‖f‖W k
A(Ω) =

k∑
|α|=0

∥∥∥ ∂|α|f

∂α1x1 · · · ∂αnxn

∥∥∥
A
, |α| = α1 + · · ·+ αn.

There are numerous results about embeddings of Sobolev-Orlicz spaces; as usual, one
tries to embed them into other Orlicz spaces. As we will show, if even such a result
is extremely sharp, it almost never is optimal among all possible embeddings into r.i.
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spaces. Generally speaking, the optimal embedding W k
A(Ω) ↪→ X with r.i. space X

requires involving non-Orlicz spaces.
Recall that the Boyd indices of an Orlicz space A coincide with the extension

indices πϕ and ρϕ.

Theorem 4. Let πϕ > k/n where ϕ is the fundamental function of the Orlicz space
A. Then W k

A(Ω) ↪→ X with

‖f(x)‖X = ‖t−k/nf∗∗(t)‖A

and the space X is the best possible among all r.i. spaces.

Proof. The conditions of the theorem imply that A has Q(k) property and this is
enough not only for Theorems 1 and 2 but also for the inequality (1), whence

‖t−k/nf∗∗(t)‖A = ‖t−k/nQ(f∗∗ − f∗)(t)‖A

≤ c ‖t−k/n(f∗∗(t)− f∗(t))‖A ≤ c ‖(Dkf)∗∗(t)‖A.

Optimality of this embedding follows from Theorem 2.

Investigations of Lorentz [10], Montgomery-Smith [14] and some others show that
the space X is not an Orlicz space.

The case of πϕ = k/n may be called ”limitting case of embedding”, it is equivalent
to the case p = n/k for Lp spaces. Consider an operator

Qkf(t) =
∫ ∞

t

sk/nf(s)
ds

s
.

We will need the following auxiliary assertion.

Lemma 5. Let a Banach function space A have Q(k − 1) property and let another
space X be such that Qk : A → X. Then ‖f∗∗‖X ≤ c ‖(Dkf)∗∗‖A.

Proof. Taking h(t) = t−k/n
(
f∗∗(t)− f∗(t)

)
, we obtain immediately that

Qkh(t) =
∫ ∞

t

(
f∗∗(s)− f∗(s)

) ds

s
= f∗∗(t),

whence

‖f∗∗(t)‖X = ‖Qkh(t)‖X ≤ c ‖t−k/n
(
f∗∗(t)− f∗(t)

)
‖A ≤ c ‖(Dkf)∗∗‖A.

Now all things are reduced to the study of operator Qk on a given Orlicz space A.
This operator is of joint weak type(

1,
n

n− k
;

n

k
, ∞

)
and can be studied by the methods of weak type interpolation.
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5. We will investigate the extreme case πA = k/n, involving Lorentz representation
of Orlicz spaces. For the simplicity, we consider only the case of a bounded set Ω,
assuming that |Ω| = 1. Let ω(t) = φA(t)t−1/p, then πω = 0, i.e., ω(t) is a slowly
varying function. We consider only the case when ω(t) satisfies the Lorentz condition:

∃ δ > 0 :
∫ 1

0

dt

ω−1(δω(t))
< ∞. (8)

For instance, we obtain all Orlicz spaces generated by the Young functions

Φ(u) ≈ up(lnu)γ1(ln lnu)γ2 · · · (ln ln . . . lnu)γn , u ≥ u0, (9)

where γ1, γ2, . . . γn may be arbitrary real numbers. We obtain also some more quickly
increasing functions such as

Φ(u) ≈ up elnε u for 0 < ε < 1, u ≥ u0.

As was proved by Lorentz [10], the condition (8) is necessary and sufficient for an
Orlicz space A with the fundamental function ϕA(t) = ω(t)t1/p, p > 1, to have an
equivalent (quasi)norm

‖f‖A ≈ ‖ω(t)f∗(t)‖Lp
. (10)

Weak type interpolation for Orlicz spaces, generated by the functions (9) with
one or two logarithmic factors, were studied by Bennett-Rudnick and by a group of
Czech mathematicians; optimal spaces in this interpolation were described by Cwikel-
Pustylnik [5]. The results can be plainly extended to any number of logarithmic factors
and even to arbitrary fundamental functions ϕA(t) = ω(t)t1/p with the property
ω(t2) ≈ ω(t). This leads to the following embedding theorem.

Theorem 6. Let an Orlicz space A be such that ϕA(t) = ω(t)t1/p, ω(t2) ≈ ω(t), p =
n/k. Then W k

A(Ω) ↪→ X, where X is a r.i. space with the (quasi)norm

‖f‖X = ‖ω(t)(1− ln t)−1t−1/pf∗(t)‖Lp . (11)

Moreover, this space X is best possible among all r.i. spaces, giving such an embedding
for the space W k

A(Ω).

Remark 7. The space X with the norm (11) does not satisfy the Lorentz condition
(8) and thus is not an Orlicz space. This once again justifies our assertion that the
optimal target spaces for embeddings of Orlicz-Sobolev spaces are not Orlicz spaces.

Note also that if ω(t) ≡ 1, the norm (11) coincides with the above mentioned result
of Maz’ya, Hansson and Brezis-Wainger for a sharp embedding of Sobolev space W k

p in
the limitting case p = n/k. By the way, Theorem 4 gives optimality of this embedding.

6. The target spaces of weak type interpolation for Lorentz spaces with the func-
tion ω(t), satisfying the condition (8) but increasing faster then in Theorem 4, never
were studied before. We will use the following new property of the operator Qk in
extreme cases of weak type interpolation.
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Theorem 8. Let the norm in a space A satisfy inequality (10) with p = n/k and an
increasing function ω(t) such that∫ 1

t

ds

sω(s)
≤ c

tω′(t)
.

Then Qk : A → Y , where the (quasi)norm in Y is defined by

‖f‖Y = ‖tω′(t)t−1/pf∗(t)‖Lp

and the space Y is best possible among all Lorentz spaces giving the same result.

Corollary 9. If A is an Orlicz space satisfying the conditions of Theorem 5 then
W k

A(Ω) ↪→ Y .

Let me give an example of application of the last result. We consider ω(t) =
exp{−(1 − ln t)ε} with arbitrary 0 < ε < 1. It is easy to see that ω(t2)/ω(t) → 0
as t → 0, thus we cannot apply Theorem 6. But the conditions of Theorem 8 are
fulfilled, which gives that W k

A(Ω) ↪→ Y , where

‖f‖Y = ‖(1− ln t)ε−1 exp{−(1− ln t)ε}t−1/pf∗(t)‖Lp
.
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