ALGEBRAS OF SYMMETRIC ANALYTIC FUNCTIONS (BIS).

RICHARD M. ARON

KENT STATE UNIVERSITY, USA.

ABSTRACT. Let X be a complex Banach space with basis $\{e_n\}$ and open unit ball B. We also suppose that the basis is symmetric, that $\|\sum_n a_n e_n\| = \|\sum_n a_{\sigma n} e_n\|$ for every permutation σ on \mathbb{N} and every $\sum_n a_{\sigma n} e_n \in X$. In a number of papers, we have-with colleagues-studied \mathbb{C} -valued holomorphic functions f on X that are symmetric; that is, $f(\sum_n a_n e_n) = f(\sum_n a_{\sigma n} e_n)$ for all convergent $\sum_n a_n e_n$ and all permutation σ .

In this talk, we will describe new, related work in two directions:

(i) Holomorphic functions $f : B \to B$ (or $f : X \to X$) having the property that for any element g in a group G of holomorphic mappings $B \to B$ (or $X \to X$), $f = f \circ g$;

(ii) Symmetric holomorphic functions on \mathbb{D}^2 or B_2 in \mathbb{C}^2 . This second part can be regarded as a special case of (i), in which G is the two element group consisting of the identity and the map $(z_1, z_2) \rightsquigarrow (z_2, z_1)$. This part is also related to work of Agler and Young on the symmetrized bidisc.