TWO EXTENSIONS OF SELF-EXPANDED MAPS

ROBERT DEVILLE

UNIVERSITY OF BORDEAUX

Our aim is to present a joint work with A. Daniilidis and E. Durand-Cartagena on two generalizations of the notion of self-expanded maps and to study the properties of such maps. Let us recall that if (M,d) be a metric space and I be an interval, a curve $\gamma:I\to M$ is self-expanded if, for all $\tau\in I$, the map $t\mapsto d(\gamma(t),\gamma(\tau))$ is non decreasing on $I\cap[\tau,+\infty)$. If the curve $\gamma:I\to\mathbb{R}^n$ has right derivative - denoted γ' - at each point, then γ is self-expanded if and only if, for all t,τ in I such that $t<\tau$, we have $\langle \gamma'(\tau),\gamma(t)-\gamma(\tau)\rangle\leq 0$. Whenever M is a compact subset of a Riemannian manifold, or whenever M is a compact subset of a finite dimensional vector normed space, all self-expanded maps with values in M have finite length. We introduce two definitions generalizing the notion of self-expanded maps. Given $\lambda\in[0,1[$ and an interval I, a curve $\gamma:I\to\mathbb{R}^d$ is called a λ -curve if for every $t_1\leq t_2\leq t_3$ in I we have

$$d(\gamma(t_1), \gamma(t_2)) \le d(\gamma(t_1), \gamma(t_3)) + \lambda d(\gamma(t_2), \gamma(t_3))$$

Bounded λ -curves in the euclidean space have finite length whenever $\lambda < 1/d$. A continuous curve γ , having right derivative at each point, is a λ -eel if, for every $(t,\tau) \in I^2$ such that $t < \tau$,

$$\langle \gamma'(\tau), \gamma(t) - \gamma(\tau) \rangle \le \lambda ||\gamma'(\tau)|| ||\gamma(t) - \gamma(\tau)||$$

If $\alpha = \arccos(\lambda)$, $\gamma: I \to \mathbb{R}^n$ is a λ -eel if, for every $\tau \in I$, the open cone $C(\tau, \alpha)$ of origin $\gamma(\tau)$, direction $\gamma'(\tau)$ and of angle α does not meet $\Gamma(\tau)$. A λ -curve is a λ -eel, but the converse is false. Whenever $\lambda \geq \frac{1}{\sqrt{5}}$, we present the construction of a λ -eel γ with values in the unit ball of \mathbb{R}^3 , and of infinite length. On the other hand, if $\gamma: I \to \mathbb{R}^2$ is a λ -ell for some $\lambda < 1$, and if $\gamma(I)$ is bounded, then the length of γ is finite.