EXTENDING BILINEAR MAPS ON BANACH SPACES BY HOMOLOGY

RICARDO GARCÍA UNIVERSIDAD DE EXTREMADURA

ABSTRACT. Given two Banach spaces X and Y let $\mathcal{L}(X, Y)$ denote the vector space of linear continuous operators acting between them; its derived functor is the one that assigns to each couple X; Y the vector space $\operatorname{Ext}(X,Y)$ of exact sequences $0 \to Y \to \Box \to X \to 0$ modulo equivalence; let us agree that the second derived functors will be called $\operatorname{Ext}^2(X,Y)$.

Several important Banach space problems and results adopt the form Ext(X, Y) = 0 (or Ext(X, Y) = 0). For instance,

- Sobczyk's theorem: $Ext(c_0, X) = 0$ for every separable Banach space X.
- Lindenstrauss's lifting principle: $Ext(L_1(\mu), X) = 0$ for every ultrasummand X.
- The Enflo-Lindenstrauss-Pisier and Kalton-Peck construction: $\text{Ext}(\ell_2, \ell_2) \neq 0$.
- The Johnson-Zippin's theorem: $\operatorname{Ext}(H^*, \mathcal{L}_{\infty}) = 0$ for every subspace H of c_0 .

In general, a basic Banach space question is whether Ext(X, Y) = 0 for a given couple of Banach spaces X; Y. Similar questions for Ext^2 have not been treated. Let us write $\text{Ext}^2(X, Y) = 0$ to mean that all elements FG of $\text{Ext}^2(X, Y)$ are 0.

Palamodov's Problem 6 in [2] says: Is $\text{Ext}^2(\cdot, E) = 0$ for any Fréchet space? Let us answer it in the negative even in the domain of Banach spaces. Perhaps the most interesting situation is the Hilbert space case:

Problem. Is $\text{Ext}^{2}(\ell_{2}, \ell_{2}) = 0$?

for which a few partial results can be obtained. The following unexpected connection wich extension of bilinear forms is proved in [1]:

Theorem. Ext²(ℓ_2, ℓ_2) = 0 if and only if whenever $\ell_1/D_2 = \ell_2$, every bilinear form defined on D_2 can be extended to a bilinear form on ℓ_1 .

Joint work with Jesús MF Castillo (University of Extremadura).

This work was supported by projects MTM2016-76958-C2-1-P and IB16056 of Junta de Extremadura.

References

- J.M.F. Castillo and R García, Bilinear forms in the homology of Banach spaces, preprint 2017.
- [2] V. Palamodov, The projective limit functor in the category of topological linear spaces. (Russian) Mat. Sb. (N.S.) 75 (117) 1968, 567–603 (English Transl. Math-USSR-Sb 4 (1968) 529-558).