OPERATOR INEQUALITIES. AGLER MODELS AND ERGODICITY

LUCIANO ABADIAS GLENIER BELLO-BURGUET DMITRY YAKUBOVICH

UNIVERSIDAD DE ZARAGOZA UNIVERSIDAD AUTÓNOMA DE MADRID AND ICMAT UNIVERSIDAD AUTÓNOMA DE MADRID AND ICMAT

Abstract. We discuss a kind of spectral theory for bounded linear operators T

 on a Hilbert space H satisfying$$
\begin{equation*}
\alpha\left(T^{*}, T\right):=\sum_{n=0}^{\infty} \alpha_{n} T^{* n} T^{n} \geq 0 \quad(\text { convergence in SOT) } \tag{1}
\end{equation*}
$$

where $\alpha(t)=\sum \alpha_{n} t^{n}$ is an analytic function with $\alpha_{n} \in \mathbb{R}$ and $\alpha_{0}=1$. This type of conditions has been extensively analysed, starting from pioneering work by Agler in the 80 's. There are also many papers on tuples of commuting operators. Put $k(t)=1 / \alpha(t)=\sum k_{n} t^{n}$. In 2018, Bickel, Clouâtre, Hartz and McCarthy proved (even for tuples of commuting operators) that if $\alpha_{n}<0$ for every $n \geq 1$ and the quotients k_{n+1} / k_{n} tend to 1 then (1) holds if and only if T extends to $\left(B_{k} \otimes I_{\mathcal{R}}\right) \oplus S$, where B_{k} is a backward shift on the RKHS of analytic functions associated to k, \mathcal{R} is an auxiliary Hilbert space and S is an isometry. As a complement of this result, we show that $\left(V_{D}, W\right)$ provides a minimal model of T, where V_{D} is a contraction given by

$$
V_{D} x(z):=D(I-z T)^{-1} x, \quad D:=\left(\alpha\left(T^{*}, T\right)\right)^{1 / 2}
$$

and $W:=\left(I_{H}-V_{D}^{*} V_{D}\right)^{1 / 2}$. So D plays the role of the defect operator of T. Let \mathcal{A}_{T} be the set of analytic functions α with summable Taylor coefficients such that $\sum\left|\alpha_{n}\right| T^{* n} T^{n}$ converges in SOT and let \mathcal{A}_{T}^{0} be the closure of the polynomials in \mathcal{A}_{T}. Define

$$
\mathcal{C}_{\alpha}^{w}:=\left\{T \in L(H): \alpha \in \mathcal{A}_{T}, \alpha\left(T^{*}, T\right) \geq 0\right\} .
$$

Using Gelfand Theory and a factorization lemma for polynomials, we prove the following result. Let $T \in L(H)$ with $\sigma(T) \subset \overline{\mathbb{D}}$. Suppose that $(1-t)^{a} \in \mathcal{A}_{T}$, where $a>0$, and let $\beta \in \mathcal{A}_{T}^{0}$ satisfy that $\beta(t)>0$ for every $t \in[0,1]$. If

$$
\alpha(t)=(1-t)^{a} \beta(t)
$$

and $T \in \mathcal{C}_{\alpha}^{w}$, then T is similar to an operator in $\mathcal{C}_{(1-t)^{a}}^{w}$.
This result applies to many functions α such that $k(t)$ has negative coefficients and Agler's techniques do not work. We will give some consequences for Ergodic Theory. In particular, we show that any operator in \mathcal{C}_{a}^{w} is quadratically (C, b) bounded for any $b>1-a$.

