PRINCIPAL IDEALS IN ALGEBRAS OF LORCH ANALYTIC MAPPINGS

GUILHERME V. S. MAURO LUIZA A. MORAES

UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA (UNILA), BRAZIL UNIVERSIDADE FEDERAL DO RIO DE JANEIRO (UFRJ), BRAZIL

ABSTRACT. If E is a commutative complex Banach algebra with unit and U is an open (non empty) connected subset of E, a mapping $f: U \to E$ is analytic in U in the sense of Lorch if given any $a \in U$ there exists $\rho > 0$ and there exist unique elements $a_n \in E$, such that $B_{\rho}(a) \subset U$ and $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$, for all $z \in E$ satisfying $||z-a|| < \rho$.

The definition of Lorch analytic mapping extends to unitary commutative complex Banach algebras the classical definition of analytic function on \mathbb{C} in a very natural way and a considerable portion of the classical theory of analytic functions carries over to the Lorch analytic mappings.

Let $\mathcal{H}_L(U, E)$ denote the set of all $f : E \to E$ that are Lorch analytic in U, considered as a subalgebra of the algebra C(U, E) of continuous mappings from U into E.

We endow the algebra $\mathcal{H}_L(U, E)$ with a convenient topology τ_d which coincides with the topology τ_b when U = E or $U = B_r(z_0) = \{z \in E; ||z - z_0|| < r\} (z_0 \in E, r > 0).$

An interesting result of the classical theory of analytic functions states that the closed ideals in $(\mathcal{H}(G), \tau_0)$ (where G is an open connected subset of \mathbb{C}) are precisely the principal ideals.

As $(\mathcal{H}_L(U, E), \tau_d) = (\mathcal{H}(U), \tau_0)$ when $E = \mathbb{C}$ and U is an open connected subset of E, it is natural to ask how the closed ideals and the principal ideals of $(\mathcal{H}_L(U, E), \tau_d)$ are related.

In this talk we will be concerned with this question.