ORTHOGONALLY ADDITIVE POLYNOMIALS ON NON-COMMUTATIVE L^p-SPACES

MARÍA LUISA C. GODOY UNIVERSIDAD DE GRANADA

ABSTRACT. Let \mathcal{M} be a von Neumann algebra with a normal semifinite faithful trace τ . We prove that every continuous *m*-homogeneous polynomial P from $L^p(\mathcal{M},\tau)$, with 0 , into each topological linear space <math>X with the property that P(x+y) = P(x)+P(y) whenever x and y are mutually orthogonal positive elements of $L^p(\mathcal{M},\tau)$ can be represented in the form $P(x) = \Phi(x^m)$ ($x \in L^p(\mathcal{M},\tau)$) for some continuous linear map Φ from $L^{p/m}(\mathcal{M},\tau)$ into X.

This result is an extension of the result published by Sundaresan in 1991, which gave a representation for polynomials on $L^p[0,1]$ or ℓ^p , with $1 \leq p < \infty$. Our result is much more general since we not only ensure representation in non-commutative L^p -spaces, but we also contemplate the cases in which the spaces are not Banach spaces.

This is a joint work with J. Alaminos and A. R. Villena.