APPROXIMATING CONTINUOUS FUNCTIONS WITH SMOOTH ONES WITHOUT CRITICAL POINTS

DANIEL AZAGRA TADEUSZ DOBROWOLSKI MIGUEL GARCÍA-BRAVO

UNIVERSIDAD COMPLUTENSE DE MADRID PITTSBURGH STATE UNIVERSITY UNIVERSIDAD AUTÓNOMA DE MADRID/ICMAT

ABSTRACT. The Morse-Sard theorem states that if $f: \mathbb{R}^n \to \mathbb{R}^m$ is of class C^k , k=n-m+1 then the set of critical values of f has Lebesgue measure zero in \mathbb{R}^m . This theorem fails in infinite dimension, although S. Smale proved a version of the theorem for differentiable functions whose derivatives were Fredholm operators. This is a very strong hypothesis that restrics the range of applications drastically. However in many cases it is not important if a function has the Morse-Sard property or not but if it can be approximated by smooth functions with the Morse-Sard property.

In 2004 Azagra and Cepedllo proved that every continous function from l_2 to \mathbb{R}^m can be approximated by a C^∞ -function without any critical point. In 2007 Azagra and Jimńez-Sevilla proved the same for continuous $f: E \to \mathbb{R}$ where E is a Banach space with separable dual. In this talk we will extend these results to show that the same is true for continuous $f: E \to F$ where E is a Banach space from a large class (including all classical Banach spaces) and the target space F is a quotient of E.

Theorem 1. Let E be one of the classical Banach spaces c_0 , ℓ_p or L^p , 1 . Let <math>F be a Banach space, and assume that there exists a bounded linear operator from E onto F. Then, for every continuous mapping $f: E \to F$ and every continuous function $\varepsilon: E \to (0, \infty)$ there exists a C^k mapping $g: E \to F$ such that $||f(x) - g(x)|| \le \varepsilon(x)$ and $Dg(x): E \to F$ is a surjective linear operator for every $x \in E$. (Here k denotes the order of smoothness of the space E).

The proof will rely in part on a new result about extractibility of subsets from the space E. Namely that given a closed subset X in E that is locally contained in graphs of continuous functions defined in subspaces of infinite codimension in E (and taking values in their orthonal complements), given an open set U with $X \subseteq U$ and given an open cover \mathcal{G} , then there exists a C^{∞} -diffeomorphism from $E \setminus X$ onto E which is the identity outside U and refines \mathcal{G} .