CÁLCULO DIFERENCIAL. EXAMEN FINAL DE FEBRERO, 09/02/2010.

TEST Y PREGUNTA DE TEORÍA

- I) Decir si las siguientes afirmaciones son verdaderas o falsas.
- 1. Existen espacios métricos completos que no son compactos.
- **2.** El conjunto $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x = ny, n \in \mathbb{N}\}$ es compacto.
- **3.** Si $f: \mathbb{R}^n \to \mathbb{R}^m$ es continua y A es acotado entonces f(A) es acotado.
- **4.** Si $f: \mathbb{R}^n \to \mathbb{R}^m$ es diferenciable y $\partial f_j/\partial x_i$ está acotada en \mathbb{R}^n para todo $i \in \{1, ..., n\}, j \in \{1, ..., m\}$ entonces f es Lipschitziana.
- **5.** Existe $f: \mathbb{R}^n \to \{21, 5\} \cup \{8, 5\} \cup \{17, 9, 12\} \cup \{12, 1, 16\} \cup \{2, 1, 3\} \cup \{1, 12\} \cup \{1, 16\}$ continua y sobrevectiva.
- **6.** Si $f, g \in C^1(\mathbb{R}^2)$ satisfacen que $|\partial f/\partial x| \leq 1/8 \geq |\partial f/\partial y|$ y $|\partial g/\partial x| \leq 1/8 \geq |\partial g/\partial y|$, entonces existe un único $(x_0, y_0) \in \mathbb{R}^2$ tal que $(f(x_0, y_0), g(x_0, y_0)) = (x_0, y_0)$.
- 7. Si $f: \mathbb{R}^n \to \mathbb{R}$ tiene derivadas parciales de segundo orden en \mathbb{R}^n y éstas son continuas en un punto $a \in \mathbb{R}^n$ entonces la aplicación $\frac{\partial f}{\partial x_1}: \mathbb{R}^n \to \mathbb{R}$ es diferenciable en a.
- 8. Si $f: \mathbb{R}^2 \to \mathbb{R}^2$ es de clase C^1 e inyectiva y satisface $\det(Df(x)) \neq 0$ para todo $x \in \mathbb{R}^n$ entonces $f(\mathbb{R}^2)$ es abierto y f posee una inversa $f^{-1}: f(\mathbb{R}^2) \to \mathbb{R}^2$ de clase C^1 .
- **9.** Si $f, g : \mathbb{R}^4 \to \mathbb{R}$ son de clase C^1 y los vectores $\nabla f(x), \nabla g(x)$ son linealmente independientes para todo $x \in \mathbb{R}^4$ con f(x) = g(x) = 1 entonces

$$M = \{ x \in \mathbb{R}^4 : f(x) = g(x) = 1 \}$$

es una variedad diferenciable de dimensión 2 en \mathbb{R}^4 .

10. Si $f : \mathbb{R}^2 \to \mathbb{R}$ es de clase C^2 , f(0,0) = 0 y $\nabla f(0,0) = (0,0)$, entonces $\lim_{x\to 0} \lim_{y\to 0} f(x,y)/xy = \lim_{x\to 0} f(x,y)/xy$.

Este test supone 2,5 puntos de la nota del examen. Cada pregunta acertada suma 0,25 puntos, y cada pregunta fallada resta 0,15. Las preguntas no respondidas ni suman ni restan puntos.

II) Sea $f: \mathbb{R}^n \to \mathbb{R}$ de clase C^2 tal que $\nabla f(a) = 0$ y $D^2 f(a)$ es definida positiva. Probar que entonces f tiene un mínimo local en a.

Esta pregunta supone otros 2,5 puntos de la nota del examen.