CÁLCULO INTEGRAL. HOJA 3.

FUNCIONES MEDIBLES EN \mathbb{R}^N .

- **1. Definición.** Sea $X \subseteq \mathbb{R}^n$ un conjunto medible. Se dice que $f: X \to [-\infty, +\infty]$ es medible si, para todo $t \in \mathbb{R}$, el conjunto $f^{-1}[-\infty, t) = \{x \in X : f(x) < t\}$ es medible en \mathbb{R}^n .
- **2. Proposición.** Sean $X \subseteq \mathbb{R}^n$ un conjunto medible, y $f: X \to [-\infty, +\infty]$ una función. Probar la equivalencia de las siguientes afirmaciones:
 - a) f es medible
 - b) $f^{-1}[t, +\infty]$ es medible para todo $t \in \mathbb{R}$
 - c) $f^{-1}(t, +\infty)$ es medible para todo $t \in \mathbb{R}$
 - d) $f^{-1}[-\infty, t]$ es medible para todo $t \in \mathbb{R}$
 - e) $f^{-1}(I)$ es medible para todo intervalo $I \subset [-\infty, +\infty]$.
- **3.** Probar que si f es medible entonces los conjuntos $f^{-1}(+\infty)$, $f^{-1}(-\infty)$ y $f^{-1}(\mathbb{R})$ son medibles.
- **4. Proposición.** Sea X un subconjunto medible de \mathbb{R}^n , y $f: X \to [-\infty, +\infty]$ una función. Denotemos $X_0 = f^{-1}(\mathbb{R})$. Probar que f es medible si y sólo si $f_0 := f_{|X_0}$ es una función medible y $f^{-1}(+\infty)$ y $f^{-1}(-\infty)$ son conjuntos medibles.
- **5. Teorema.** Sean $X \subseteq \mathbb{R}^n$ un conjunto medible, y $f: X \to \mathbb{R}$ una función. Probar que las afirmaciones siguientes son equivalentes:
 - a) f es medible
 - b) $f^{-1}(G)$ es medible para todo abierto G de \mathbb{R}
 - c) $f^{-1}(C)$ es medible para todo cerrado C de \mathbb{R} .
- **6. Corolario** Sea $X \subseteq \mathbb{R}^n$ medible, y sea $f: X \to \mathbb{R}$ una función continua. Entonces f es medible.
- 7. Proposición. Sean $X \subseteq \mathbb{R}^n$ medible, $f: X \to \mathbb{R}$ medible, y $g: \mathbb{R} \to \mathbb{R}$ continua. Entonces la composición $g \circ f: X \to \mathbb{R}$ es medible.
- **8. Definición.** Sea $X \subseteq \mathbb{R}^n$ medible, y sea $f: X \to \mathbb{R}^m$ una función, $f = (f_1, ..., f_m)$. Diremos que f es medible si lo es cada componente f_j , para $1 \le j \le m$.
- **9. Teorema.** Sea $X \subseteq \mathbb{R}^n$ medible, y sea $f: X \to \mathbb{R}^m$ una función. Las siguientes afirmaciones son equivalentes:
 - a) f es medible
 - b) $f^{-1}(G)$ es medible para todo abierto G de \mathbb{R}^m .
 - c) $f^{-1}(C)$ es medible para todo cerrado C de \mathbb{R}^m .
- 10. Corolario. Sea $f: X \to \mathbb{R}^m$ una función continua definida sobre un conjunto medible $X \subseteq \mathbb{R}^n$. Entonces f es medible.

- **11. Proposición.** Sean $X \subseteq \mathbb{R}^m$ un conjunto medible, $f: X \to \mathbb{R}^m$ una función medible, y $g: \mathbb{R}^m \to \mathbb{R}^k$ continua. Entonces la composición $g \circ f: X \to \mathbb{R}^k$ es medible.
- **12. Teorema.** Sean $X \subseteq \mathbb{R}^n$ un conjunto medible, y $f, g: X \to \mathbb{R}$ funciones medibles. Entonces las funciones f+g, $c \cdot f$ (con $c \in \mathbb{R}$), f-g, fg, máx $\{f,g\}$, mín $\{f,g\}$, |f|, y f/g (cuando $g \neq 0$) son medibles.
- 13. Probar que el teorema anterior sigue siendo cierto si $f, g: X \to [-\infty, +\infty]$, considerando las funciones suma, producto, etc, sólo en las regiones donde están bien definidas.
- **14. Teorema.** Sea (f_j) una sucesión de funciones medibles de X en $[-\infty, +\infty]$, donde $X \subseteq \mathbb{R}^n$ es un conjunto medible. Entonces:
 - a) $\sup_{i} f_{i}$ es medible
 - b) $\inf_{i} f_{i}$ es medible
 - c) $\limsup_{i} f_{i}$ es medible
 - d) lím $\inf_j f_j$ es medible
 - e) $\lim_{j} f_{j}$, si existe, es medible.
- **15.** Definición. Se dice que una propiedad se verifica en casi todo punto de $A \subseteq \mathbb{R}^n$ si el subconjunto de puntos de A donde no se verifica tiene medida cero.
- **16. Teorema.** Sean $f, g: X \to \mathbb{R}$ dos funciones que coinciden salvo quizás en un conjunto de medida cero (es decir, son iguales en casi todo punto de X), y supongamos que f es medible. Probar que entonces g también es medible.
- 17. Averiguar si las siguientes funciones son medibles:
 - a) $f(x,y) = e^{1/(x-y)}$ si $x \neq y$, f(x,y) = 0 si x = y.
 - b) $f(x,y)=e^{1/(x^2+y^2)}$ si $x^2+y^2\neq 1/n$ para todo $n\in\mathbb{N},$ y f(x,y)=0 en caso contrario.
 - c) $f(x) = 1 |x|^2$ si $|x| \le 5$, $f(x) = |x|^2 + 5$ en caso contrario, $x \in \mathbb{R}^n$.
 - d) $f(x,y,z) = x^2 + xy + 2z + 1$ si $xyz \notin \mathbb{Q}$, y f(x,y,z) = 1 en caso contrario.