HOJA 6. PRÁCTICAS DE CÁLCULO INTEGRAL

GRUPO E+F, CURSO 2006-2007

1. Sea $A = [0,1] \times [0,1] \longrightarrow \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} 2y & \text{si } x \in \mathbb{R} \setminus \mathbb{Q}; \\ 1 & \text{si } x \in \mathbb{Q}. \end{cases}$$

- (a) Decidir si f es integrable en A.
- (b) Calcular $\int_0^1 (\int_0^1 f(x,y) dy) dx$ si existe. (c) Calcular $\int_0^1 (\int_0^1 f(x,y) dx) dy$ si existe.
- 2. ¿Es cierto que cualquier subconjunto acotado de \mathbb{R}^2 tiene volumen cero cuando se le considera como subconjunto de \mathbb{R}^3 ?
- 3. Decidir si las functiones que siguen son integrables en los conjuntos indicados:
 - (a) $f: A \longrightarrow \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} y & \text{si } x \in \mathbb{R} \setminus \mathbb{Q}; \\ x & \text{si } x \in \mathbb{Q}, \end{cases}$$

con
$$A = \{(x, y) : \frac{x^2}{2} + \frac{y^2}{3} \le 1\}.$$

(b) $q: B \longrightarrow \mathbb{R}$ definida por

$$g(x,y) = \begin{cases} 0 & \text{si } x^2 + y^2 < 1/2 \text{ o bien } y = 0; \\ x \sin(\frac{1}{y}) & \text{en otro caso,} \end{cases}$$

con
$$B = \{(x, y) : x^2 + y^2 \le 1\}.$$

(c) $h: C \longrightarrow \mathbb{R}$ definida por

$$h(x,y) = \begin{cases} 1 & \text{si } x \le y; \\ x & \text{si } y < x, \end{cases}$$

con
$$C = \{(x, y) : |x| \le 1, |y| \le 1\}.$$

- 4. Calcular el volumen del sólido acotado por el plano xz, el plano yz, el plano xy, los planos x = 1 e y = 1 y la superficie $z = x^2 + y^4$.
- **5.** Calcular la integral $\int_A (xy)^2 \cos x^3 dx dy$, donde $A = [0,1] \times [0,1]$.
- 6. Calcular las siguientes integrales iteradas y dibujar las regiones A determinadas por los límites de integración:
 - (a) $\int_0^1 (\int_1^{e^x} (x+y)dy) dx$; (b) $\int_0^1 (\int_{x^3}^{x^2} ydy) dx$.
- 7. Sea D la región acotada por los ejes positivos x e y y la recta 3x + 4y = 10. Calcular $\int_D (x^2 + y^2) dx dy.$

8. Sea D la región dada como el conjunto de los (x,y) del plano tales que $-\varphi(x) \leq y \leq \varphi(x)$ y $a \leq x \leq b$, donde φ es una función continua no negativa en el intervalo [a,b]. Sea $f:D \longrightarrow \mathbb{R}$ una función continua en D tal que f(x,y)=-f(x,-y) para todo $(x,y)\in D$. Probar que

$$\int_D f(x,y)dxdy = 0.$$

- 9. Dibujar la región correspondiente a cada una de las sigientes integrales dobles, cambiar el orden de integración y evaluar la integral usando el orden que sea más adecuado:

 - (a) $\int_0^1 (\int_x^1 xy dy) dx$ (b) $\int_0^1 (\int_{2-y}^1 (x+y)^2 dx) dy$ (c) $\int_{-1}^1 (\int_{|y|}^1 (x+y)^2 dx) dy$
- 10. Calcular $\int_W x^2 \cos z dx dy dz$, donde W es la región acotada por los planos $z=0,\,z=\pi,$ y = 0, x = 0 y x + y = 1.
- 11. Integrar f(x, y, z) = xy + yz + zx sobre la porción del primer octante $x \ge 0, y \ge 0, z \ge 0$ cortada por el elipsoide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

12. Utilizar integrales triples para hallar el volumen del sólido T de \mathbb{R}^3 limitado superiormente por el cilindro parabólico $z = 4 - y^2$ e inferiormente por el paraboloide elíptico $z = x^2 + 3y^2$.