Explicit formulas for $C^{1,1}$ and $C^{1,\omega}_{conv}$ extensions of 1-jets in Hilbert and superreflexive spaces

D. Azagra, E. Le Gruyer, C. Mudarra

ICMAT-Universidad Complutense de Madrid, INSA de Rennes, ICMAT

11th Whitney Extension Problems Workshop Trinity College, Dublin, August 2018

Two related problems

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C_{conv}^{1,\omega}$ extensions of 1-jets 11th Whitney Extension Problems W.

Problem ($C^{1,1}$ convex extension of 1-jets)

Given *E* a subset of a Hilbert space *X*, and a 1-jet (f, G) on *E* (meaning a pair of functions $f : E \to \mathbb{R}$ and $G : E \to X$), how can we tell whether there is a $C^{1,1}$ *convex* function $F : X \to \mathbb{R}$ which extends this jet (meaning that F(x) = f(x) and $\nabla F(x) = G(x)$ for all $x \in E$)?

Problem ($C^{1,1}$ extension of 1-jets)

Given *E* a subset of a Hilbert space *X*, and a 1-jet (f, G) on *E*, how can we tell whether there is a $C^{1,1}$ function $F : X \to \mathbb{R}$ which extends (f, G)?

Why are these two problems related?

Recall a well known result: a function $F : X \to \mathbb{R}$ is of class $C^{1,1}$, with $\operatorname{Lip}(\nabla F) \leq M$, if and only if $F + \frac{M}{2} \| \cdot \|^2$ is convex and $F - \frac{M}{2} \| \cdot \|^2$ is concave.

So, if we are given a 1-jet (f, G) defined on $E \subset X$ which can be extended to $(F, \nabla F)$ with $F \in C^{1,1}(X)$ and $\operatorname{Lip}(\nabla F) \leq M$, then the function $H = F + \frac{M}{2} \| \cdot \|^2$ will be convex and of class $C^{1,1}$.

Conversely, if we can find a convex and $C^{1,1}$ function H such that $(H, \nabla H)$ is an extension of the jet $E \ni y \mapsto (f(y) + \frac{M}{2} ||y||^2, G(y) + My),$

then

 $X \ni y \mapsto (H(y) - \frac{M}{2} ||y||^2, \nabla H(y) - My)$ will be a $C^{1,1}$ extension of (f, G).

As we will see, it's easier to solve first the $C_{conv}^{1,1}$ extension problem for jets, with an explicit formula, and then use this formula and the previous remarks to solve the $C^{1,1}$ extension problem for jets.

Previous solutions to these problems

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C_{conv}^{1,\omega}$ extensions of 1-jets 11th Whitney Extension Problems W.

The $C^{1,1}$ version of the classical Whitney extension theorem theorem tells us that there exists a function $F \in C^{1,1}(\mathbb{R}^n)$ with F = f on C and $\nabla F = G$ on E if and only there exists a constant M > 0 such that

 $|f(x) - f(y) - \langle G(y), x - y \rangle| \le M |x - y|^2, \text{ and } |G(x) - G(y)| \le M |x - y|$ for all $x, y \in E$.

We can trivially extend (f, G) to the closure \overline{E} of E so that the inequalities hold on \overline{C} with the same constant M. The function F can be explicitly defined by

$$F(x) = \begin{cases} f(x) & \text{if } x \in \overline{C} \\ \sum_{Q \in \mathcal{Q}} \left(f(x_Q) + \langle G(x_Q), x - x_Q \rangle \right) \varphi_Q(x) & \text{if } x \in \mathbb{R}^n \setminus \overline{C}, \end{cases}$$

where Q is a family of *Whitney cubes* that cover the complement of the closure \overline{C} of C, $\{\varphi_Q\}_{Q \in Q}$ is the usual Whitney partition of unity associated to Q, and x_Q is a point of \overline{C} which minimizes the distance of \overline{C} to the cube Q.

Recall also that $\operatorname{Lip}(\nabla F) \leq k(n)M$, where k(n) is a constant depending only on *n* (but with $\lim_{n\to\infty} k(n) = \infty$).

In 1973 J.C. Wells improved this result and extended it to Hilbert spaces.

Theorem (Wells, 1973)

Let *E* be an arbitrary subset of a Hilbert space *X*, and $f : E \to \mathbb{R}$, $G : E \to X$. There exists $F \in C^{1,1}(X)$ such that $F_{|_E} = f$ and $(\nabla F)_{|_E} = G$ if and only if there exists M > 0 so that

$$f(y) \le f(x) + \frac{1}{2} \langle G(x) + G(y), y - x \rangle + \frac{M}{4} ||x - y||^2 - \frac{1}{4M} ||G(x) - G(y)||^2$$
(W^{1,1})

for all $x, y \in E$. Also, F is a maximal extension: if H is another $C^{1,1}$ function with $H_{|_E} = f$, $(\nabla H)_{|_E} = G$, and $Lip(\nabla H) \leq M$, then $H \leq F$.

We will say jet (f, G) on $E \subset X$ satisfies condition $(W^{1,1})$ if it satisfies the inequality of the theorem.

It can be checked that this condition is absolutely equivalent to the condition in the $C^{1,1}$ version of Whitney's extension theorem.

Well's proof was quite complicated, and didn't provide any explicit formula for the extension when *E* is infinite.

Well's proof was quite complicated, and didn't provide any explicit formula for the extension when *E* is infinite.

In 2009 Erwan Le Gruyer showed, by very different means, another version of Well's result.

Theorem (Erwan Le Gruyer, 2009)

Given a Hilbert space X, a subset E of X, and functions $f : E \to \mathbb{R}$, G: $E \to X$, a necessary and sufficient condition for the 1-jet (f, G) to have a $C^{1,1}$ extension $(F, \nabla F)$ to the whole space X is that

$$\Gamma(f, G, E) := \sup_{x, y \in E} \left(\sqrt{A_{x, y}^2 + B_{x, y}^2} + |A_{x, y}| \right) < \infty,$$
(2.1)

where

$$A_{x,y} = \frac{2(f(x) - f(y)) + \langle G(x) + G(y), y - x \rangle}{\|x - y\|^2} \quad and$$
$$B_{x,y} = \frac{\|G(x) - G(y)\|}{\|x - y\|} \quad for \ all \quad x, y \in E, x \neq y.$$

Moreover, $\Gamma(F, \nabla F, X) = \Gamma(f, G, E) = ||(f, G)||_E$, where

 $\|(f,G)\|_E := \inf\{\operatorname{Lip}(\nabla H) : H \in C^{1,1}(X) \text{ and } (H,\nabla H) = (f,G) \text{ on } E\}$

is the trace seminorm of the jet (f, G) on E.

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C^{0,\omega}_{conv}$ extensions of 1-jets 11th Whitney Extension Problems W.

The number $\Gamma(f, G, E)$ is the smallest M > 0 for which (f, G) satisfies Well's condition $(W^{1,1})$ with constant M > 0.

In particular Le Gruyer's condition is also absolutely equivalent to the condition in the $C^{1,1}$ version of Whitney's extension theorem.

Le Gruyer's theorem didn't provide any explicit formula for the extension either (it uses Zorn's lemma).

What about the convex case?

Theorem (Azagra-Mudarra, 2016)

Let *E* be a subset of \mathbb{R}^n , and $f : E \to \mathbb{R}$, $G : E \to \mathbb{R}^n$ be functions. There exists a convex function $F \in C^{1,\omega}(\mathbb{R}^n)$ if and only if there exists M > 0 such that, for all $x, y \in E$,

$$f(x) - f(y) - \langle G(y), x - y \rangle \ge \frac{1}{2} |G(x) - G(y)| \omega^{-1} \left(\frac{1}{2M} |G(x) - G(y)| \right).$$

Moreover, $\sup_{x\neq y} \frac{|\nabla F(x) - \nabla F(y)|}{|x-y|} \le k(n)M.$

Here, as in Whitney's theorem, k(n) only depends on n, but goes to ∞ as $n \to \infty$ (not surprising, as Whitney's extension techniques were used in the proof, which was constructive).

We say that (f, G) satisfies condition $(CW^{1,\omega})$ if it satisfies the inequality of the theorem for some M > 0.

When $\omega(t) = t$ we call this condition $(CW^{1,1})$:

$$f(x) - f(y) - \langle G(y), x - y \rangle \ge \frac{1}{2M} |G(x) - G(y)|^2.$$

By using Le Gruyer's technique it can be shown that in the $C_{\text{conv}}^{1,1}$ case the above theorem is true for any Hilbert space, and with k(n) = 1 (optimal constant). However, again the proof is not constructive.

A constructive proof and a formula with optimal constants was provided by

Theorem (Daniilidis-Haddou-Le Gruyer-Ley, 2017)

If (f, G) is a 1-jet defined on a subset E of a Hilbert space and (f, G) satisfies $(CW^{1,1})$ for some M then the formula

$$F(x) = \sup_{\varepsilon \in (0, \frac{1}{M})} \inf_{z \in X} \sup_{y \in X} \sup_{u \in E} \{f(u) + \langle G(u), z - u \rangle - \frac{\|y - z\|^2}{2\varepsilon} + \frac{\|z - x\|^2}{2\varepsilon} \}$$

defines a $C^{1,1}(X)$ convex function such that $(F, \nabla F)$ extends (f, G), and Lip $\nabla F \leq M$.

New results

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C^{0,\omega}_{con\omega}$ extensions of 1-jets 11th Whitney Extension Problems W.

Unfortunately the previous formula does not work for nonlinear $\omega(t)$. At the same time we proved:

Theorem (Azagra-Le Gruyer-Mudarra, 2017)

A jet (f, G) defined on a subset E of a Hilbert space X has a $C^{1,\omega}$ convex extension from E to X if and only if it satisfies condition $(CW^{1,\omega})$ on E. The formula

$$F(x) = conv \left(\inf_{y \in E} \{ f(y) + \langle G(y), x - y \rangle + M\varphi \left(\|x - y\| \right) \} \right)$$

where $\varphi(t) = \int_0^t \omega(s) ds$, defines such an extension, with the property that

$$\sup_{x,y\in E, x\neq y} \frac{\|\nabla F(x) - \nabla F(y)\|}{\omega\left(\|x-y\|\right)} \le 8M.$$

Recall that

 $conv(g)(x) = sup\{h(x) : h \text{ is convex and continuous, } h \le g\}.$ Another expression for conv(g) is given by

$$\operatorname{conv}(g)(x) = \inf\left\{\sum_{j=1}^{k} \lambda_j g(x_j) : \lambda_j \ge 0, \sum_{j=1}^{k} \lambda_j = 1, x = \sum_{j=1}^{k} \lambda_j x_j, k \in \mathbb{N}\right\}$$

New results

In the most important case that $\omega(t) = t$ we can find optimal constants:

Theorem (Azagra-Le Guyer-Mudarra, 2017)

Let (f, G) be a 1-jet defined on an arbitrary subset E of a Hilbert space X. There exists $F \in C_{conv}^{1,1}$ such that $(F, \nabla F)$ extends (f, G) if and only if

$$f(x) \ge f(y) + \langle G(y), x - y \rangle + \frac{1}{2M} |G(x) - G(y)|^2 \quad \text{for all} \quad x, y \in E,$$

where

$$M = M(G, E) := \sup_{x, y \in E, \, x \neq y} \frac{|G(x) - G(y)|}{|x - y|}$$

The function

$$F(x) = conv\left(\inf_{y \in E} \{f(y) + \langle G(y), x - y \rangle + \frac{M}{2}|x - y|^2\}\right)$$

defines such an extension, with the property that $Lip(\nabla F) \leq M$. Moreover, for any other such extension H, we have $H \leq F$.

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C^{1,\omega}_{conv}$ extensions of 1-jets 11th Whitney Extension Problems W.

Corollary (Wells 1973, Le Gruyer 2009, Azagra-Le Gruyer-Mudarra 2017)

Let *E* be an arbitrary subset of a Hilbert space *X*, and $f : E \to \mathbb{R}$, $G : E \to X$. There exists $F \in C^{1,1}(X)$ such that $F_{|_E} = f$ and $(\nabla F)_{|_E} = G$ if and only if there exists M > 0 so that

$$f(y) \le f(x) + \frac{1}{2} \langle G(x) + G(y), y - x \rangle + \frac{M}{4} |x - y|^2 - \frac{1}{4M} |G(x) - G(y)|^2 \quad (W^{1,1})$$

for all $x, y \in E$. Moreover,

$$F = conv(g) - \frac{M}{2} |\cdot|^2, \text{ where}$$

$$g(x) = \inf_{y \in E} \{f(y) + \langle G(y), x - y \rangle + \frac{M}{2} |x - y|^2\} + \frac{M}{2} |x|^2, \quad x \in X,$$

defines such an extension, with the additional property that $Lip(\nabla F) \leq M$. Also, F is a maximal extension: if H is another $C^{1,1}$ function with $H_{|_E} = f$, $(\nabla H)_{|_E} = G$, and $Lip(\nabla H) \leq M$, then $H \leq F$. Key to the proof of the Corollary: it's well known that $F : X \to \mathbb{R}$ is of class $C^{1,1}$, with $\operatorname{Lip}(\nabla F) \leq M$, if and only if $F + \frac{M}{2} |\cdot|^2$ is convex and $F - \frac{M}{2} |\cdot|^2$ is concave. This result generalizes to jets:

Lemma

Given an arbitrary subset E of a Hilbert space X and a 1-jet (f, G) defined on E, we have:

(f, G) satisfies $(W^{1,1})$ on E, with constant M > 0, if and only if the 1-jet (\tilde{f}, \tilde{G}) defined by $\tilde{f} = f + \frac{M}{2} |\cdot|^2$, $\tilde{G} = G + MI$, satisfies $(CW^{1,1})$ on E with constant 2M.

(See "Further details" below.)

Necessity of $(W^{1,1})$

Proposition

- (*i*) If (f, G) satisfies $(W^{1,1})$ on E with constant M, then G is M-Lipschitz on E.
- (*ii*) If F is a function of class $C^{1,1}(X)$ with $Lip(\nabla F) \leq M$, then $(F, \nabla F)$ satisfies $(W^{1,1})$ on E = X with constant M.

Shown by Wells (or see "Further details" below).

New results

Proof of the Corollary: (f, G) satisfies $(W^{1,1})$ with constant M if and only if $(\tilde{f}, \tilde{G}) := (f + \frac{M}{2} | \cdot |^2, g + MI)$ satisfies $(CW^{1,1})$ with constant 2M. Then, by the $C^{1,1}$ convex extension theorem for jets,

$$\tilde{F} = \operatorname{conv}(\tilde{g}), \quad \tilde{g}(x) = \inf_{y \in E} \{\tilde{f}(y) + \langle \tilde{G}(y), x - y \rangle + M |x - y|^2\}, \quad x \in X,$$

is convex and of class $C^{1,1}$ with $(\tilde{F}, \nabla \tilde{F}) = (\tilde{f}, \tilde{G})$ on E, and $\operatorname{Lip}(\nabla \tilde{F}) \leq 2M$. By an easy calculation,

$$\tilde{g}(x) = \inf_{y \in E} \{ f(y) + \langle G(y), x - y \rangle + \frac{M}{2} |x - y|^2 \} + \frac{M}{2} |x|^2, \quad x \in X.$$

Now, by the necessity of $(CW^{1,1})$, $(\tilde{F}, \nabla \tilde{F})$ satisfies condition $(CW^{1,1})$ with constant 2*M* on *X*. Thus, if

$$F(x) = \tilde{F}(x) - \frac{M}{2}|x|^2, \quad x \in X$$

then (again by the preceding lemma) $(F, \nabla F)$ satisfies $(W^{1,1})$ with constant M on X. Hence, by the previous proposition, F is of class $C^{1,1}(X)$, with $\operatorname{Lip}(\nabla F) \leq M$. From the definition of $\tilde{f}, \tilde{G}, \tilde{F}$ and F it is immediate that F = f and $\nabla F = G$ on E.

(For the maximality of *F*, see "Further details below".)

New results

Sketch of the proof of the $C_{conv}^{1,1}(X)$ extension result for 1-jets Necessity:

 $f(x) = f(y) + \langle \nabla f(y), x - y \rangle \implies \nabla f(x) = \nabla f(y)$

A quantitative refinement of this geometrical idea leads to

$$f(x) \ge f(y) + \langle G(y), x - y \rangle + \frac{1}{2M} |G(x) - G(y)|^2$$
 for all x, y .

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C_{conv}^{1,0}$ extensions of 1-jets 11th Whitney Extension Problems W.

Sketch of the proof of the $C_{conv}^{1,1}(X)$ extension result for 1-jets Sufficiency: let's first recall some known facts.

Proposition

For a continuous convex function $f : X \to \mathbb{R}$, the following statements are equivalent.

(i) There exists M > 0 such that

 $f(x+h) + f(x-h) - 2f(x) \le M|h|^2$ for all $x, h \in X$.

(*ii*) *f* is differentiable on X with $\text{Lip}(\nabla f) \leq M$.

Sketch of the proof of the $C_{conv}^{1,1}(X)$ extension result for 1-jets Sufficiency: some useful results.

Theorem ($C^{1,1}$ convex envelopes)

Let X be a Banach space. Suppose that a function $g : X \to \mathbb{R}$ *has a convex continuous minorant, and satisfies*

 $g(x+h) + g(x-h) - 2g(x) \le M|h|^2$ for all $x, h \in X$.

Then H := conv(g) is a continuous convex function satisfying the same property. Hence H is of class $C^{1,1}(X)$, with $Lip(\nabla \psi) \leq M$.

In particular, for a function $\varphi \in C^{1,1}(X)$, we have that $conv(\varphi) \in C^{1,1}(X)$, with $Lip(\nabla conv(\varphi)) \leq Lip(\nabla \varphi)$.

New results

Proof of the $C^{1,1}$ **smoothness of this convex envelope:** Given $x, h \in X$ and $\varepsilon > 0$, we can find $n \in \mathbb{N}, x_1, \dots, x_n \in X$ and $\lambda_1, \dots, \lambda_n > 0$ such that

$$H(x) \ge \sum_{i=1}^{n} \lambda_i g(x_i) - \varepsilon, \quad \sum_{i=1}^{n} \lambda_i = 1 \text{ and } \sum_{i=1}^{n} \lambda_i x_i = x.$$

Since $x \pm h = \sum_{i=1}^{n} \lambda_i (x_i \pm h)$, we have $H(x \pm h) \le \sum_{i=1}^{n} \lambda_i g(x_i \pm h)$. Therefore

$$H(x+h) + H(x-h) - 2H(x) \le \sum_{i=1}^{n} \lambda_i (g(x_i+h) + g(x_i-h) - 2g(x_i)) + 2\varepsilon,$$

and by the assumption on g we have

$$g(x_i + h) + g(x_i - h) - 2g(x_i) \le M|h|^2$$
 $i = 1, ..., n.$

Thus

$$H(x+h) + H(x-h) - 2H(x) \le M|h|^2 + 2\varepsilon,$$
 (3.1)

and since ε is arbitrary we get the inequality of the statement.

New results

Sketch of the proof of the $C_{conv}^{1,1}(X)$ extension result for 1-jets Sufficiency:

Define m(x) = sup_{y∈E} {f(y) + ⟨G(y), x - y}, the minimal convex extension of (f, G). This function is not necessarily differentiable.
 Use condition (CW^{1,1}) to check that, for all y, z ∈ E, x ∈ X,

$$f(z) + \langle G(z), x - z \rangle \leq f(y) + \langle G(y), x - y \rangle + \frac{M}{2} |x - y|^2.$$

Hence (taking $\inf_{z \in E}$ on the left and then $\inf_{y \in E}$ on the right)

$$m(x) \le \inf_{y \in E} \{ f(y) + \langle G(y), x - y \rangle + \frac{M}{2} |x - y|^2 \} =: g(x)$$

for all $x \in X$. Besides $f \le m \le g \le f$ on E, and in particular m = f = g on E. Since m is convex, $m \le F := \operatorname{conv}(g) \le g$. Therefore F = f on E. **3.** Check that $g(x + h) + g(x - h) - 2g(x) \le M|h|^2$. This inequality is preserved when we take $F = \operatorname{conv}(g)$. Since F is convex, this implies $F \in C^{1,1}(X)$. Also check that $\nabla F(x) = G(x)$ for every $x \in E$.

Details

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C^{0,\omega}_{con\omega}$ extensions of 1-jets 11th Whitney Extension Problems W.

Details: Step 2.

Lemma

We have that $f(z) + \langle G(z), x - z \rangle \leq f(y) + \langle G(y), x - y \rangle + \frac{M}{2} |x - y|^2$ for every $y, z \in E, x \in X$.

Proof: Given $y, z \in E, x \in X$, condition $(CW^{1,1})$ implies

$$\begin{split} f(y) + \langle G(y), x - y \rangle &+ \frac{M}{2} |x - y|^2 \\ \geq f(z) + \langle G(z), y - z \rangle &+ \frac{1}{2M} |G(y) - G(z)|^2 + \langle G(y), x - y \rangle + \frac{M}{2} |x - y|^2 = \\ f(z) + \langle G(z), x - z \rangle &+ \frac{1}{2M} |G(y) - G(z)|^2 + \langle G(z) - G(y), y - x \rangle + \frac{M}{2} |x - y|^2 \\ &= f(z) + \langle G(z), x - z \rangle + \frac{1}{2M} |G(y) - G(z) + 2M(y - x)|^2 \\ \geq f(z) + \langle G(z), x - z \rangle. \end{split}$$

Details

Details: Step 3.

Lemma

We have
$$g(x+h) + g(x-h) - 2g(x) \le M|h|^2$$
 for all $x, h \in X$.

Proof: Given $x, h \in X$ and $\varepsilon > 0$, by definition of g, we can pick $y \in E$ with

$$g(x) \ge f(y) + \langle G(y), x - y \rangle + \frac{M}{2} |x - y|^2 - \varepsilon.$$

We then have

$$g(x+h) + g(x-h) - 2g(x) \le f(y) + \langle G(y), x+h-y \rangle + \frac{M}{2} |x+h-y|^2 + f(y) + \langle G(y), x-h-y \rangle + \frac{M}{2} |x-h-y|^2 - 2 (f(y) + \langle G(y), x-y \rangle + \frac{M}{2} |x-y|^2) + 2\varepsilon = \frac{M}{2} (|x+h-y|^2 + |x-h-y|^2 - 2|x-y|^2) + 2\varepsilon = M|h|^2 + 2\varepsilon.$$

Details: Step 3.

Also note that $m \le F$ on *X* and F = m on *E*, where *m* is convex and *F* is differentiable on *X*. This implies that *m* is differentiable on *E* with $\nabla m(x) = \nabla F(x)$ for all $x \in E$.

It is clear, by definition of *m*, that $G(x) \in \partial m(x)$ (the subdifferential of *m* at *x*) for every $x \in E$, and these observations show that $\nabla F = G$ on *E*.

Similar $C^{1,\alpha}$ convex extension results in superreflexive spaces

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C_{conv}^{1,\omega}$ extensions of 1-jets 11th Whitney Extension Problems W.

Theorem (Azagra-Le Gruyer-Mudarra, 2017)

Let E be a subset of a superreflexive Banach space (with a power-type uniformly differentiable equivalent norm, i.e., for some $\alpha \in (0, 1]$, $||x + h||^{1+\alpha} + ||x - h||^{1+\alpha} - 2||x||^{1+\alpha} \leq C||h||^{1+\alpha}$ for all x, h). Then (f, G) has an extension $(F, \nabla F)$, with F convex and of class $C^{1,\alpha}(X)$, if and only if

$$f(x) \ge f(y) + G(y)(x - y) + \frac{\alpha}{(1 + \alpha)M^{1/\alpha}} \|G(x) - G(y)\|_*^{1 + \frac{1}{\alpha}} \quad x, y \in E,$$

where $M = M_{\alpha}(G) := \sup_{x \neq y, x, y \in E} \frac{\|G(x) - G(y)\|_{*}}{\|x - y\|^{\alpha}} < \infty$. Moreover, the formula

$$F(x) = conv\left(\inf_{y \in E} \{f(y) + G(y)(x-y) + \frac{M}{1+\alpha} \|x-y\|^{1+\alpha}\}\right),$$

defines such an extension, with $M_{\alpha}(DF) \leq \frac{2^{1+\alpha}C}{1+\alpha}M$.

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and C_{conv} extensions of 1-jets 11th Whitney Extension Problems W.

Unfortunately, one cannot use the same kind of method as in the $C^{1,1}$ case to solve $C^{1,\alpha}$ extension problems for general (not necessarily convex) 1-jets in Hilbert spaces.

The exponent $\alpha = 1$ is miraculous in this respect: it is not true in general that, given a function $f \in C^{1,\alpha}(\mathbb{R})$, there exists a constant *C* such that $f + C |\cdot|^{1+\alpha}$ is convex.

Example

Let
$$0 < \alpha < 1$$
 and define $f : \mathbb{R} \to \mathbb{R}$ *by*

$$f(t) = \begin{cases} 0 & \text{if } t \le 1 \\ -(t-1)^{1+\alpha} & \text{if } t \ge 1. \end{cases}$$

Then $f \in C^{1,\alpha}(\mathbb{R})$, but there is no constant C > 0 for which $f + C| \cdot |^{1+\alpha}$ is convex.

Two applications of the $C^{1,1}$ results

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C_{conv}^{1,\omega}$ extensions of 1-jets 11th Whitney Extension Problems W.

Corollary (Kirszbraun's Theorem with an explicit formula)

Let X, Y be two Hilbert spaces, E a subset of X and $G : E \to Y$ a Lipschitz mapping. There exists $\tilde{G} : X \to Y$ with $\tilde{G} = G$ on E and $\operatorname{Lip}(\tilde{G}) = \operatorname{Lip}(G)$. In fact, if $P_Y : X \times Y \to Y$ denotes the natural projection $P_Y(x, y) = y$, then the function

$$\widetilde{G} := P_Y(\nabla(conv(g) - \frac{M}{2} \|\cdot\|^2)),$$

where

$$g(x, y) = \inf_{z \in E} \{ \langle G(z), y \rangle + \frac{M}{2} \| (x - z, y) \|^2 \} + \frac{M}{2} \| (x, y) \|^2 \}$$

extends G from E to X.

Proof of this version of Kirszbraun's theorem:

Consider the 1-jet (f^*, G^*) defined on $E \times \{0\} \subset X \times Y$ by $f^*(x, 0) = 0$ and $G^*(x, 0) = (0, G(x))$. If M := Lip(G), one easily checks that (f^*, G^*) satisfies condition $(W^{1,1})$ on $E \times \{0\}$ with constant M. Therefore the function

$$F = \operatorname{conv}(g) - \frac{M}{2} \| \cdot \|^2, \qquad \text{where} \qquad g(x, y) = \\ \inf_{z \in E} \{ f^*(z, 0) + \langle G^*(z, 0), (x - z, y) \rangle + \frac{M}{2} \| (x - z, y) \|^2 \} + \frac{M}{2} \| (x, y) \|^2,$$

is of class $C^{1,1}(X \times Y)$ with $(F, \nabla F) = (f^*, G^*)$ on $E \times \{0\}$ and $\operatorname{Lip}(\nabla F) \leq M$. The expression defining *g* can be simplified as below and therefore

$$\widetilde{G} := P_Y(\nabla(\operatorname{conv}(g) - \frac{M}{2} \| \cdot \|^2))$$
 extends G to X.

Here, $g(x, y) = \inf_{z \in E} \{ \langle G(z), y \rangle + \frac{M}{2} \| (x - z, y) \|^2 \} + \frac{M}{2} \| (x, y) \|^2.$

Theorem (Finding $C^{1,1}$ convex hypersurfaces with prescribed tangent hyperplanes at a given subset of a Hilbert space)

Let *E* be an arbitrary subset of a Hilbert space *X*, and let $N : E \to S_X$ be a mapping. Then the following statements are equivalent.

- There exists a $C^{1,1}$ convex hypersurface S such that $E \subseteq S$ and N(x) is outwardly normal to S at x for every $x \in E$.
- **2** There exists some $\delta > 0$ such that

$$\langle N(y), y - x \rangle \ge \delta \|N(y) - N(x)\|^2$$
 for all $x, y \in E$.

Moreover, if we further assume that E is bounded then S can be taken to be closed.

An equivalent reformulation of this result which was suggested to us by Arie Israel is the following.

Theorem

Let *E* be a subset of a Hilbert space *X*, and let \mathcal{H} be a collection of affine hyperplanes of *X* such that every $H \in \mathcal{H}$ passes through some point $x_H \in E$. The following statements are equivalent:

- There exists a convex hypersurface S of class $C^{1,1}$ in X such that X has bounded principal curvatures and H is tangent to S at x_H for every $H \in \mathcal{H}$.
- There exists some M > 0 such that, for every couple H₁, H₂ of hyperplanes in H, there exists a convex hypersurface S(H₁, H₂) of class C^{1,1} such that the principal curvatures of S(H₁, H₂) are bounded by M and S(H₁, H₂) is tangent to H₁ and H₂ at x_{H₁} and x<sub>H₂, respectively.
 </sub>

Thank you for your attention!

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C_{conv}^{1,0}$ extensions of 1-jets 11th Whitney Extension Problems W.

Further details

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and $C^{0,\omega}_{conv}$ extensions of 1-jets 11th Whitney Extension Problems W.

Further details

Details: Maximality of *F* in the $C^{1,1}$ extension result for jets. Suppose that *H* is another $C^{1,1}(X)$ function with H = f and $\nabla H = G$ on *E* and Lip $(\nabla H) \leq M$. Using these assumptions and Taylor's Theorem we get

$$H(x) + \frac{M}{2}|x|^2 \le f(y) + \langle G(y), x - y \rangle + \frac{M}{2}|x - y|^2 + \frac{M}{2}|x|^2,$$

for all $x \in X, y \in E$. Taking the infimum over $y \in E$ we get that

$$H(x) + \frac{M}{2}|x|^2 \le g(x), \quad x \in X.$$

Since *H* is $C^{1,1}(X)$ with $\operatorname{Lip}(\nabla H) \leq M$, the function $X \ni x \mapsto \tilde{H}(x) = H(x) + \frac{M}{2}|x|^2$ is convex, which implies that

$$\tilde{H} = \operatorname{conv}(\tilde{H}) \le g$$

Therefore, $\tilde{H} \leq \tilde{F} = \operatorname{conv}(g)$ on *X*, from which we obtain that $H \leq F$ on *X*.

Details: Necessity of $(W^{1,1})$. Proof: (*i*) Given $x, y \in E$, we have

$$f(y) \le f(x) + \frac{1}{2} \langle G(x) + G(y), y - x \rangle + \frac{M}{4} ||x - y||^2 - \frac{1}{4M} ||G(x) - G(y)||^2$$

$$f(x) \le f(y) + \frac{1}{2} \langle G(y) + G(x), x - y \rangle + \frac{M}{4} ||x - y||^2 - \frac{1}{4M} ||G(x) - G(y)||^2.$$

By combining both inequalities we easily get $||G(x) - G(y)|| \le M ||x - y||$. (*ii*) Fix $x, y \in X$ and $z = \frac{1}{2}(x + y) + \frac{1}{2M}(\nabla F(y) - \nabla F(x))$.

Details: Necessity of $(W^{1,1})$. Using Taylor's theorem we obtain

$$F(z) \leq F(x) + \langle \nabla F(x), \frac{1}{2}(y-x) \rangle + \frac{1}{2M} (\nabla F(y) - \nabla F(x)) \rangle$$
$$+ \frac{M}{2} \left\| \frac{1}{2}(y-x) + \frac{1}{2M} (\nabla F(y) - \nabla F(x)) \right\|^2$$

and

$$F(z) \ge F(y) + \langle \nabla F(y), \frac{1}{2}(x-y) \rangle + \frac{1}{2M} (\nabla F(y) - \nabla F(x)) \rangle - \frac{M}{2} \| \frac{1}{2}(x-y) + \frac{1}{2M} (\nabla F(y) - \nabla F(x)) \|^{2}.$$

Details: Necessity of $(W^{1,1})$. Then we get

$$\begin{split} F(y) &\leq F(x) + \langle \nabla F(x), \frac{1}{2}(y-x) \rangle + \frac{1}{2M} (\nabla F(y) - \nabla F(x)) \rangle \\ &+ \frac{M}{2} \left\| \frac{1}{2}(y-x) \rangle + \frac{1}{2M} (\nabla F(y) - \nabla F(x)) \right\|^2 \\ &- \langle \nabla F(y), \frac{1}{2}(x-y) \rangle - \frac{1}{2M} (\nabla F(y) - \nabla F(x)) \rangle \\ &+ \frac{M}{2} \left\| \frac{1}{2}(x-y) + \frac{1}{2M} (\nabla F(y) - \nabla F(x)) \right\|^2 \\ &= F(x) + \frac{1}{2} \langle \nabla F(x) + \nabla F(y), y - x \rangle + \\ &+ \frac{M}{4} \|x-y\|^2 - \frac{1}{4M} \|\nabla F(x) - \nabla F(y)\|^2 \end{split}$$

Details: Relationship between $(CW^{1,1})$ and $(W^{1,1})$.

Lemma

(f, G) satisfies $(W^{1,1})$ on E, with constant M > 0, if and only if (\tilde{f}, \tilde{G}) , defined by $\tilde{f}(x) = f(x) + \frac{M}{2} ||x||^2$, $\tilde{G}(x) = G(x) + Mx$, $x \in E$, satisfies property $(CW^{1,1})$ on E, with constant 2M.

Further details

Details: **Relationship between** $(CW^{1,1})$ and $(W^{1,1})$. Proof: Suppose first that (f, G) satisfies $(W^{1,1})$ on E with constant M > 0. We have, for all $x, y \in E$,

$$\begin{split} \tilde{f}(x) &- \tilde{f}(y) - \langle \tilde{G}(y), x - y \rangle - \frac{1}{4M} \| \tilde{G}(x) - \tilde{G}(y) \|^2 \\ &= f(x) - f(y) + \frac{M}{2} \| x \|^2 - \frac{M}{2} \| y \|^2 - \langle G(y) + My, x - y \rangle \\ &- \frac{1}{4M} \| G(x) - G(y) + M(x - y) \|^2 \\ &\geq \frac{1}{2} \langle G(x) + G(y), x - y \rangle - \frac{M}{4} \| x - y \|^2 + \frac{1}{4M} \| G(x) - G(y) \|^2 \\ &+ f(x) - f(y) + \frac{M}{2} \| x \|^2 - \frac{M}{2} \| y \|^2 - \langle G(y) + My, x - y \rangle \\ &- \frac{1}{4M} \| G(x) - G(y) + M(x - y) \|^2 \\ &= \frac{M}{2} \| x \|^2 + \frac{M}{2} \| y \|^2 - M \langle x, y \rangle - \frac{M}{2} \| x - y \|^2 = 0. \end{split}$$

Further details

Details: **Relationship between** $(CW^{1,1})$ and $(W^{1,1})$. Conversely, if (\tilde{f}, \tilde{G}) satisfies $(CW^{1,1})$ on *E* with constant 2*M*, we have

$$\begin{split} f(x) &+ \frac{1}{2} \langle G(x) + G(y), y - x \rangle + \frac{M}{4} \|x - y\|^2 - \frac{1}{4M} \|G(x) - G(y)\|^2 - f(y) \\ &= \tilde{f}(x) - \frac{M}{2} \|x\|^2 + \frac{1}{2} \langle \tilde{G}(x) + \tilde{G}(y) - M(x + y), y - x \rangle + \frac{M}{4} \|x - y\|^2 \\ &- \frac{1}{4M} \|\tilde{G}(x) - \tilde{G}(y) - M(x - y)\|^2 - \tilde{f}(y) + \frac{M}{2} \|y\|^2 \\ &= \tilde{f}(x) - \tilde{f}(y) + \frac{1}{2} \langle \tilde{G}(x) + \tilde{G}(y), y - x \rangle + \frac{M}{4} \|x - y\|^2 \\ &- \frac{1}{4M} \|\tilde{G}(x) - \tilde{G}(y) - M(x - y)\|^2 \\ &\geq \langle \tilde{G}(y), x - y \rangle + \frac{1}{4M} \|\tilde{G}(x) - \tilde{G}(y)\|^2 + \frac{1}{2} \langle \tilde{G}(x) + \tilde{G}(y), y - x \rangle \\ &+ \frac{M}{4} \|x - y\|^2 - \frac{1}{4M} \|\tilde{G}(x) - \tilde{G}(y) - M(x - y)\|^2 = 0. \end{split}$$

Let *E* be a subset of a Hilbert space *X* and $(f, G) : E \to \mathbb{R} \times X$ be a 1-jet. Given M > 0, we will say that (f, G) satisfies the condition $(W_M^{1,1})$ on *E* if the inequality

$$f(y) \le f(x) + \frac{1}{2} \langle G(x) + G(y), y - x \rangle + \frac{M}{4} ||x - y||^2 - \frac{1}{4M} ||G(x) - G(y)||^2,$$

holds for every $x, y \in E$. Also, given $M_1, M_2 > 0$, we will say that (f, G) satisfies the condition $(W_{M_1,M_2}^{1,1})$ on *E* provided that the inequalities

$$|f(y) - f(x) - \langle G(x), y - x \rangle| \le M_1 ||x - y||^2, \quad ||G(x) - G(y)|| \le M_2 ||x - y||,$$

are satisfied for every $x, y \in E$.

Claim

$$(W_M^{1,1}) \implies (\widetilde{W_{\frac{M}{2},M}^{1,1}})$$

First, we have that, for all $x, y \in E$,

$$f(y) \le f(x) + \frac{1}{2} \langle G(x) + G(y), y - x \rangle + \frac{M}{4} ||x - y||^2 - \frac{1}{4M} ||G(x) - G(y)||^2$$

and

$$f(x) \le f(y) + \frac{1}{2} \langle G(y) + G(x), x - y \rangle + \frac{M}{4} \|y - x\|^2 - \frac{1}{4M} \|G(y) - G(x)\|^2$$

By summing both inequalities we get $||G(x) - G(y)|| \le M ||x - y||$. On the other hand, by using $(W_M^{1,1})$, we can write

$$\begin{split} f(y) &-f(x) - \langle G(x), y - x \rangle \leq \frac{1}{2} \langle G(x) + G(y), y - x \rangle - \langle G(x), y - x \rangle \\ &+ \frac{M}{4} \|x - y\|^2 - \frac{1}{4M} \|G(x) - G(y)\|^2 \\ &= \frac{1}{2} \langle G(y) - G(x), y - x \rangle + \frac{M}{4} \|x - y\|^2 - \frac{1}{4M} \|G(x) - G(y)\|^2 \\ &= \frac{M}{2} \|x - y\|^2 - \frac{M}{4} \left(\|x - y\|^2 + \frac{1}{M^2} \|G(x) - G(y)\|^2 - 2 \langle \frac{1}{M} (G(y) - G(x)), y - y \rangle \right) \\ &= \frac{M}{2} \|x - y\|^2 - \frac{M}{4} \left\| \frac{1}{M} (G(x) - G(y)) - (y - x) \right\|^2 \leq \frac{M}{2} \|x - y\|^2. \end{split}$$

Further details

Details: Absolute equivalence of $(W^{1,1})$ and the classical Whitney $C^{1,1}$ extension condition.

Also, we have

$$\begin{split} f(x) &- f(y) - \langle G(x), x - y \rangle \leq \frac{1}{2} \langle G(x) + G(y), x - y \rangle - \langle G(x), x - y \rangle \\ &+ \frac{M}{4} \|x - y\|^2 - \frac{1}{4M} \|G(x) - G(y)\|^2 \\ &= \frac{1}{2} \langle G(y) - G(x), x - y \rangle + \frac{M}{4} \|x - y\|^2 - \frac{1}{4M} \|G(x) - G(y)\|^2 \\ &= \frac{M}{2} \|x - y\|^2 - \frac{M}{4} \left(\|x - y\|^2 + \frac{1}{M^2} \|G(x) - G(y)\|^2 - 2 \langle \frac{1}{M} (G(y) - G(x)), x - y \rangle \right) \\ &= \frac{M}{2} \|x - y\|^2 - \frac{M}{4} \|\frac{1}{M} (G(x) - G(y)) - (x - y)\|^2 \leq \frac{M}{2} \|x - y\|^2. \end{split}$$

This leads us to

$$|f(y) - f(x) - \langle G(x), y - x \rangle| \le \frac{M}{2} ||x - y||^2,$$

which proves the first laim.

D. Azagra, E. Le Gruyer, C. Mudarra Explicit formulas for $C^{1,1}$ and C_{conv} extensions of 1-jets 11th Whitney Extension Problems W.

Further details

Details: Absolute equivalence of $(W^{1,1})$ and the classical Whitney $C^{1,1}$ extension condition.

Claim

$$(\widetilde{W_{M_1,M_2}^{1,1}}) \implies (W_M^{1,1}), \text{ where } M = (3 + \sqrt{10}) \max\{M_1, M_2\}.$$
Using that $f(y) - f(x) - \langle G(x), y - x \rangle \le M_1 ||x - y||^2$, we can write

$$f(y) - f(x) - \frac{1}{2} \langle G(x) + G(y), y - x \rangle - \frac{M}{4} ||x - y||^2 + \frac{1}{4M} ||G(x) - G(y)||^2$$

$$\le \langle G(x), y - x \rangle + M_1 ||x - y||^2 - \frac{1}{2} \langle G(x) + G(y), y - x \rangle - \frac{M}{4} ||x - y||^2 + \frac{1}{4M}$$

$$= \frac{1}{2} \langle G(x) - G(y), y - x \rangle + \left(M_1 - \frac{M}{4}\right) ||x - y||^2 + \frac{1}{4M} ||G(x) - G(y)||^2$$

$$\le \frac{1}{2}ab + \left(M_1 - \frac{M}{4}\right)a^2 + \frac{1}{4M}b^2,$$
where $a = ||x - y||$ and $b = ||G(x) - G(y)||$. Since G is M₂-Lipschitz, we

have the inequality $b \leq M_2 a$.

So, the last term in the above chain of inequalities is smaller than or equal to

$$(\frac{1}{2}M_2 + (M_1 - \frac{M}{4}) + \frac{1}{4M}M_2^2)a^2 \le (\frac{1}{2}K + (K - \frac{M}{4}) + \frac{1}{4M}K^2)a^2,$$

where $K = \max\{M_1, M_2\}$. Now, the last term is smaller than or equal to 0 if and only if $-M^2 + 6MK + K^2 \le 0$. But, in fact, for $M = (3 + \sqrt{10})K$ the term $-M^2 + 6MK + K^2$ is equal to 0. This proves the second Claim.