Explicit formulas for $C^{1,1}$ and $C_{\text {conv }}^{1, \omega}$ extensions of 1 -jets in Hilbert and superreflexive spaces

D. Azagra, E. Le Gruyer, C. Mudarra

ICMAT-Universidad Complutense de Madrid, INSA de Rennes, ICMAT

11th Whitney Extension Problems Workshop Trinity College, Dublin, August 2018

Two related problems

Problem ($C^{1,1}$ convex extension of 1-jets)

Given E a subset of a Hilbert space X, and a 1-jet (f, G) on E (meaning a pair of functions $f: E \rightarrow \mathbb{R}$ and $G: E \rightarrow X$), how can we tell whether there is a $C^{1,1}$ convex function $F: X \rightarrow \mathbb{R}$ which extends this jet (meaning that $F(x)=f(x)$ and $\nabla F(x)=G(x)$ for all $x \in E)$?

Problem ($C^{1,1}$ extension of 1-jets)

Given E a subset of a Hilbert space X, and a 1-jet (f, G) on E, how can we tell whether there is a $C^{1,1}$ function $F: X \rightarrow \mathbb{R}$ which extends (f, G) ?

Why are these two problems related?
Recall a well known result: a function $F: X \rightarrow \mathbb{R}$ is of class $C^{1,1}$, with $\operatorname{Lip}(\nabla F) \leq M$, if and only if $F+\frac{M}{2}\|\cdot\|^{2}$ is convex and $F-\frac{M}{2}\|\cdot\|^{2}$ is concave.

So, if we are given a 1-jet (f, G) defined on $E \subset X$ which can be extended to $(F, \nabla F)$ with $F \in C^{1,1}(X)$ and $\operatorname{Lip}(\nabla F) \leq M$, then the function $H=F+\frac{M}{2}\|\cdot\|^{2}$ will be convex and of class $C^{1,1}$.
Conversely, if we can find a convex and $C^{1,1}$ function H such that $(H, \nabla H)$ is an extension of the jet
$E \ni y \mapsto\left(f(y)+\frac{M}{2}\|y\|^{2}, G(y)+M y\right)$,
then
$X \ni y \mapsto\left(H(y)-\frac{M}{2}\|y\|^{2}, \nabla H(y)-M y\right)$
will be a $C^{1,1}$ extension of (f, G).
As we will see, it's easier to solve first the $C_{\text {conv }}^{1,1}$ extension problem for jets, with an explicit formula, and then use this formula and the previous remarks to solve the $C^{1,1}$ extension problem for jets.

Previous solutions to these problems

The $C^{1,1}$ version of the classical Whitney extension theorem theorem tells us that there exists a function $F \in C^{1,1}\left(\mathbb{R}^{n}\right)$ with $F=f$ on C and $\nabla F=G$ on E if and only there exists a constant $M>0$ such that
$|f(x)-f(y)-\langle G(y), x-y\rangle| \leq M|x-y|^{2}, \quad$ and $\quad|G(x)-G(y)| \leq M|x-y|$ for all $x, y \in E$.
We can trivially extend (f, G) to the closure \bar{E} of E so that the inequalities hold on \bar{C} with the same constant M. The function F can be explicitly defined by

$$
F(x)= \begin{cases}f(x) & \text { if } x \in \bar{C} \\ \sum_{Q \in \mathcal{Q}}\left(f\left(x_{Q}\right)+\left\langle G\left(x_{Q}\right), x-x_{Q}\right\rangle\right) \varphi_{Q}(x) & \text { if } x \in \mathbb{R}^{n} \backslash \bar{C}\end{cases}
$$

where \mathcal{Q} is a family of Whitney cubes that cover the complement of the closure \bar{C} of $C,\left\{\varphi_{Q}\right\}_{Q \in \mathcal{Q}}$ is the usual Whitney partition of unity associated to \mathcal{Q}, and x_{Q} is a point of \bar{C} which minimizes the distance of \bar{C} to the cube Q.
Recall also that $\operatorname{Lip}(\nabla F) \leq k(n) M$, where $k(n)$ is a constant depending only on n (but with $\lim _{n \rightarrow \infty} k(n)=\infty$).

In 1973 J.C. Wells improved this result and extended it to Hilbert spaces.

Theorem (Wells, 1973)

Let E be an arbitrary subset of a Hilbert space X, and $f: E \rightarrow \mathbb{R}$, $G: E \rightarrow X$. There exists $F \in C^{1,1}(X)$ such that $F_{\left.\right|_{E}}=f$ and $(\nabla F)_{\left.\right|_{E}}=G$ if and only if there exists $M>0$ so that
$f(y) \leq f(x)+\frac{1}{2}\langle G(x)+G(y), y-x\rangle+\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|G(x)-G(y)\|^{2}$ ($W^{1,1}$)
for all $x, y \in E$.
Also, F is a maximal extension: if H is another $C^{1,1}$ function with $H_{\left.\right|_{E}}=f$, $(\nabla H)_{\left.\right|_{E}}=G$, and $\operatorname{Lip}(\nabla H) \leq M$, then $H \leq F$.

We will say jet (f, G) on $E \subset X$ satisfies condition ($W^{1,1}$) if it satisfies the inequality of the theorem.
It can be checked that this condition is absolutely equivalent to the condition in the $C^{1,1}$ version of Whitney's extension theorem.

Well's proof was quite complicated, and didn't provide any explicit formula for the extension when E is infinite.

Well's proof was quite complicated, and didn't provide any explicit formula for the extension when E is infinite.

In 2009 Erwan Le Gruyer showed, by very different means, another version of Well's result.

Theorem (Erwan Le Gruyer, 2009)

Given a Hilbert space X, a subset E of X, and functions $f: E \rightarrow \mathbb{R}$, $G: E \rightarrow X$, a necessary and sufficient condition for the 1-jet (f, G) to have a $C^{1,1}$ extension $(F, \nabla F)$ to the whole space X is that

$$
\begin{equation*}
\Gamma(f, G, E):=\sup _{x, y \in E}\left(\sqrt{A_{x, y}^{2}+B_{x, y}^{2}}+\left|A_{x, y}\right|\right)<\infty \tag{2.1}
\end{equation*}
$$

where

$$
\begin{gathered}
A_{x, y}=\frac{2(f(x)-f(y))+\langle G(x)+G(y), y-x\rangle}{\|x-y\|^{2}} \text { and } \\
B_{x, y}=\frac{\|G(x)-G(y)\|}{\|x-y\|} \text { for all } x, y \in E, x \neq y .
\end{gathered}
$$

Moreover, $\Gamma(F, \nabla F, X)=\Gamma(f, G, E)=\|(f, G)\|_{E}$, where
$\|(f, G)\|_{E}:=\inf \left\{\operatorname{Lip}(\nabla H): H \in C^{1,1}(X)\right.$ and $(H, \nabla H)=(f, G)$ on $\left.E\right\}$ is the trace seminorm of the $j e t(f, G)$ on E.

The number $\Gamma(f, G, E)$ is the smallest $M>0$ for which (f, G) satisfies Well's condition ($W^{1,1}$) with constant $M>0$.

In particular Le Gruyer's condition is also absolutely equivalent to the condition in the $C^{1,1}$ version of Whitney's extension theorem.

Le Gruyer's theorem didn't provide any explicit formula for the extension either (it uses Zorn's lemma).

What about the convex case?

Theorem (Azagra-Mudarra, 2016)

Let E be a subset of \mathbb{R}^{n}, and $f: E \rightarrow \mathbb{R}, G: E \rightarrow \mathbb{R}^{n}$ be functions. There exists a convex function $F \in C^{1, \omega}\left(\mathbb{R}^{n}\right)$ if and only if there exists $M>0$ such that, for all $x, y \in E$,
$f(x)-f(y)-\langle G(y), x-y\rangle \geq \frac{1}{2}|G(x)-G(y)| \omega^{-1}\left(\frac{1}{2 M}|G(x)-G(y)|\right)$.
Moreover, $\sup _{x \neq y} \frac{|\nabla F(x)-\nabla F(y)|}{|x-y|} \leq k(n) M$.
Here, as in Whitney's theorem, $k(n)$ only depends on n, but goes to ∞ as $n \rightarrow \infty$ (not surprising, as Whitney's extension techniques were used in the proof, which was constructive).
We say that (f, G) satisfies condition $\left(C W^{1, \omega}\right)$ if it satisfies the inequality of the theorem for some $M>0$.

When $\omega(t)=t$ we call this condition $\left(C W^{1,1}\right)$:

$$
f(x)-f(y)-\langle G(y), x-y\rangle \geq \frac{1}{2 M}|G(x)-G(y)|^{2}
$$

By using Le Gruyer's technique it can be shown that in the $C_{\text {conv }}^{1,1}$ case the above theorem is true for any Hilbert space, and with $k(n)=1$ (optimal constant). However, again the proof is not constructive.
A constructive proof and a formula with optimal constants was provided by

Theorem (Daniilidis-Haddou-Le Gruyer-Ley, 2017)

If (f, G) is a 1 -jet defined on a subset E of a Hilbert space and (f, G) satisfies $\left(C W^{1,1}\right)$ for some M then the formula
$F(x)=\sup _{\varepsilon \in\left(0, \frac{1}{M}\right)} \inf _{z \in X} \sup _{y \in X} \sup _{u \in E}\left\{f(u)+\langle G(u), z-u\rangle-\frac{\|y-z\|^{2}}{2 \varepsilon}+\frac{\|z-x\|^{2}}{2 \varepsilon}\right\}$
defines a $C^{1,1}(X)$ convex function such that $(F, \nabla F)$ extends (f, G), and Lip $\nabla F \leq M$.

New results

Unfortunately the previous formula does not work for nonlinear $\omega(t)$. At the same time we proved:

Theorem (Azagra-Le Gruyer-Mudarra, 2017)

A jet (f, G) defined on a subset E of a Hilbert space X has a $C^{1, \omega}$ convex extension from E to X if and only if it satisfies condition $\left(C W^{1, \omega}\right)$ on E. The formula

$$
F(x)=\operatorname{conv}\left(\inf _{y \in E}\{f(y)+\langle G(y), x-y\rangle+M \varphi(\|x-y\|)\}\right)
$$

where $\varphi(t)=\int_{0}^{t} \omega(s) d s$, defines such an extension, with the property that

$$
\sup _{x, y \in E, x \neq y} \frac{\|\nabla F(x)-\nabla F(y)\|}{\omega(\|x-y\|)} \leq 8 M .
$$

Recall that

$$
\operatorname{conv}(g)(x)=\sup \{h(x): h \text { is convex and continuous, } h \leq g\}
$$

Another expression for $\operatorname{conv}(g)$ is given by

$$
\operatorname{conv}(g)(x)=\inf \left\{\sum_{j=1}^{k} \lambda_{j} g\left(x_{j}\right): \lambda_{j} \geq 0, \sum_{j=1}^{k} \lambda_{j}=1, x=\sum_{j=1}^{k} \lambda_{j} x_{j}, k \in \mathbb{N}\right\}
$$

In the most important case that $\omega(t)=t$ we can find optimal constants:

Theorem (Azagra-Le Guyer-Mudarra, 2017)

Let (f, G) be a 1-jet defined on an arbitrary subset E of a Hilbert space X. There exists $F \in C_{\text {conv }}^{1,1}$ such that $(F, \nabla F)$ extends (f, G) if and only if

$$
f(x) \geq f(y)+\langle G(y), x-y\rangle+\frac{1}{2 M}|G(x)-G(y)|^{2} \quad \text { for all } \quad x, y \in E
$$

where

$$
M=M(G, E):=\sup _{x, y \in E, x \neq y} \frac{|G(x)-G(y)|}{|x-y|} .
$$

The function

$$
F(x)=\operatorname{conv}\left(\inf _{y \in E}\left\{f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}\right\}\right)
$$

defines such an extension, with the property that $\operatorname{Lip}(\nabla F) \leq M$. Moreover, for any other such extension H, we have $H \leq F$.

Corollary (Wells 1973, Le Gruyer 2009, Azagra-Le Gruyer-Mudarra 2017)

Let E be an arbitrary subset of a Hilbert space X, and $f: E \rightarrow \mathbb{R}$, $G: E \rightarrow X$. There exists $F \in C^{1,1}(X)$ such that $F_{\left.\right|_{E}}=f$ and $(\nabla F)_{\left.\right|_{E}}=G$ if and only if there exists $M>0$ so that

$$
f(y) \leq f(x)+\frac{1}{2}\langle G(x)+G(y), y-x\rangle+\frac{M}{4}|x-y|^{2}-\frac{1}{4 M}|G(x)-G(y)|^{2}\left(W^{1,1}\right)
$$

for all $x, y \in E$. Moreover,

$$
\begin{aligned}
& F=\operatorname{conv}(g)-\frac{M}{2}|\cdot|^{2}, \text { where } \\
& g(x)=\inf _{y \in E}\left\{f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}\right\}+\frac{M}{2}|x|^{2}, \quad x \in X,
\end{aligned}
$$

defines such an extension, with the additional property that $\operatorname{Lip}(\nabla F) \leq M$. Also, F is a maximal extension: if H is another $C^{1,1}$ function with $H_{\left.\right|_{E}}=f$, $(\nabla H)_{\left.\right|_{E}}=G$, and $\operatorname{Lip}(\nabla H) \leq M$, then $H \leq F$.

Key to the proof of the Corollary: it's well known that $F: X \rightarrow \mathbb{R}$ is of class $C^{1,1}$, with $\operatorname{Lip}(\nabla F) \leq M$, if and only if $F+\frac{M}{2}|\cdot|^{2}$ is convex and $F-\frac{M}{2}|\cdot|^{2}$ is concave. This result generalizes to jets:

Lemma

Given an arbitrary subset E of a Hilbert space X and a 1-jet (f, G) defined on E, we have:
(f, G) satisfies $\left(W^{1,1}\right)$ on E, with constant $M>0$, if and only if the 1 -jet (\tilde{f}, \tilde{G}) defined by $\tilde{f}=f+\frac{M}{2}|\cdot|^{2}, \tilde{G}=G+M I$, satisfies $\left(C W^{1,1}\right)$ on E with constant $2 M$.
(See "Further details" below.)

Necessity of ($W^{1,1}$)

Proposition

(i) If (f, G) satisfies $\left(W^{1,1}\right)$ on E with constant M, then G is M-Lipschitz on E.
(ii) If F is a function of class $C^{1,1}(X)$ with $\operatorname{Lip}(\nabla F) \leq M$, then $(F, \nabla F)$ satisfies $\left(W^{1,1}\right)$ on $E=X$ with constant M.

Shown by Wells (or see "Further details" below).

Proof of the Corollary: (f, G) satisfies $\left(W^{1,1}\right)$ with constant M if and only if $(\widetilde{f}, \widetilde{G}):=\left(f+\frac{M}{2}|\cdot|^{2}, g+M I\right)$ satisfies $\left(C W^{1,1}\right)$ with constant $2 M$. Then, by the $C^{1,1}$ convex extension theorem for jets,

$$
\tilde{F}=\operatorname{conv}(\widetilde{g}), \quad \tilde{g}(x)=\inf _{y \in E}\left\{\tilde{f}(y)+\langle\tilde{G}(y), x-y\rangle+M|x-y|^{2}\right\}, \quad x \in X,
$$

is convex and of class $C^{1,1}$ with $(\tilde{F}, \nabla \tilde{F})=(\tilde{f}, \tilde{G})$ on E, and $\operatorname{Lip}(\nabla \tilde{F}) \leq 2 M$. By an easy calculation,

$$
\tilde{g}(x)=\inf _{y \in E}\left\{f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}\right\}+\frac{M}{2}|x|^{2}, \quad x \in X .
$$

Now, by the necessity of $\left(C W^{1,1}\right),(\tilde{F}, \nabla \tilde{F})$ satisfies condition $\left(C W^{1,1}\right)$ with constant $2 M$ on X. Thus, if

$$
F(x)=\tilde{F}(x)-\frac{M}{2}|x|^{2}, \quad x \in X
$$

then (again by the preceding lemma) $(F, \nabla F)$ satisfies $\left(W^{1,1}\right)$ with constant M on X. Hence, by the previous proposition, F is of class $C^{1,1}(X)$, with $\operatorname{Lip}(\nabla F) \leq M$. From the definition of $\tilde{f}, \tilde{G}, \tilde{F}$ and F it is immediate that $F=f$ and $\nabla F=G$ on E.

(For the maximality of F, see "Further details below".)

Sketch of the proof of the $C_{\text {conv }}^{1,1}(X)$ extension result for 1-jets Necessity:
$f(x)=f(y)+\langle\nabla f(y), x-y\rangle \Longrightarrow \nabla f(x)=\nabla f(y)$

A quantitative refinement of this geometrical idea leads to

$$
f(x) \geq f(y)+\langle G(y), x-y\rangle+\frac{1}{2 M}|G(x)-G(y)|^{2} \quad \text { for all } \quad x, y .
$$

Sketch of the proof of the $C_{\text {conv }}^{1,1}(X)$ extension result for 1-jets Sufficiency: let's first recall some known facts.

Proposition

For a continuous convex function $f: X \rightarrow \mathbb{R}$, the following statements are equivalent.
(i) There exists $M>0$ such that

$$
f(x+h)+f(x-h)-2 f(x) \leq M|h|^{2} \quad \text { for all } \quad x, h \in X .
$$

(ii) f is differentiable on X with $\operatorname{Lip}(\nabla f) \leq M$.

Sketch of the proof of the $C_{\text {conv }}^{1,1}(X)$ extension result for 1-jets

 Sufficiency: some useful results.
Theorem ($C^{1,1}$ convex envelopes)

Let X be a Banach space. Suppose that a function $g: X \rightarrow \mathbb{R}$ has a convex continuous minorant, and satisfies

$$
g(x+h)+g(x-h)-2 g(x) \leq M|h|^{2} \quad \text { for all } \quad x, h \in X
$$

Then $H:=\operatorname{conv}(g)$ is a continuous convex function satisfying the same property. Hence H is of class $C^{1,1}(X)$, with $\operatorname{Lip}(\nabla \psi) \leq M$.
In particular, for a function $\varphi \in C^{1,1}(X)$, we have that $\operatorname{conv}(\varphi) \in C^{1,1}(X)$, with $\operatorname{Lip}(\nabla \operatorname{conv}(\varphi)) \leq \operatorname{Lip}(\nabla \varphi)$.

Proof of the $C^{1,1}$ smoothness of this convex envelope:

Given $x, h \in X$ and $\varepsilon>0$, we can find $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in X$ and $\lambda_{1}, \ldots, \lambda_{n}>0$ such that

$$
H(x) \geq \sum_{i=1}^{n} \lambda_{i} g\left(x_{i}\right)-\varepsilon, \quad \sum_{i=1}^{n} \lambda_{i}=1 \quad \text { and } \quad \sum_{i=1}^{n} \lambda_{i} x_{i}=x .
$$

Since $x \pm h=\sum_{i=1}^{n} \lambda_{i}\left(x_{i} \pm h\right)$, we have $H(x \pm h) \leq \sum_{i=1}^{n} \lambda_{i} g\left(x_{i} \pm h\right)$. Therefore

$$
H(x+h)+H(x-h)-2 H(x) \leq \sum_{i=1}^{n} \lambda_{i}\left(g\left(x_{i}+h\right)+g\left(x_{i}-h\right)-2 g\left(x_{i}\right)\right)+2 \varepsilon
$$

and by the assumption on g we have

$$
g\left(x_{i}+h\right)+g\left(x_{i}-h\right)-2 g\left(x_{i}\right) \leq M|h|^{2} \quad i=1, \ldots, n .
$$

Thus

$$
\begin{equation*}
H(x+h)+H(x-h)-2 H(x) \leq M|h|^{2}+2 \varepsilon \tag{3.1}
\end{equation*}
$$

and since ε is arbitrary we get the inequality of the statement.

Sketch of the proof of the $C_{\text {conv }}^{1,1}(X)$ extension result for 1-jets

 Sufficiency:1. Define $m(x)=\sup _{y \in E}\{f(y)+\langle G(y), x-y\}$, the minimal convex extension of (f, G). This function is not necessarily differentiable.
2. Use condition $\left(C W^{1,1}\right)$ to check that, for all $y, z \in E, x \in X$,

$$
f(z)+\langle G(z), x-z\rangle \leq f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2} .
$$

Hence (taking $\inf _{z \in E}$ on the left and then $\inf _{y \in E}$ on the right)

$$
m(x) \leq \inf _{y \in E}\left\{f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}\right\}=: g(x)
$$

for all $x \in X$. Besides $f \leq m \leq g \leq f$ on E, and in particular $m=f=g$ on E. Since m is convex, $m \leq F:=\operatorname{conv}(g) \leq g$. Therefore $F=f$ on E.
3. Check that $g(x+h)+g(x-h)-2 g(x) \leq M|h|^{2}$. This inequality is preserved when we take $F=\operatorname{conv}(g)$. Since F is convex, this implies $F \in C^{1,1}(X)$. Also check that $\nabla F(x)=G(x)$ for every $x \in E$.

Details

Details: Step 2.

Lemma

We have that $f(z)+\langle G(z), x-z\rangle \leq f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}$ for every $y, z \in E, x \in X$.

Proof: Given $y, z \in E, x \in X$, condition $\left(C W^{1,1}\right)$ implies

$$
\begin{aligned}
& f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2} \\
& \geq f(z)+\langle G(z), y-z\rangle+\frac{1}{2 M}|G(y)-G(z)|^{2}+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}= \\
& f(z)+\langle G(z), x-z\rangle+\frac{1}{2 M}|G(y)-G(z)|^{2}+\langle G(z)-G(y), y-x\rangle+\frac{M}{2}|x-y|^{2} \\
& \quad=f(z)+\langle G(z), x-z\rangle+\frac{1}{2 M}|G(y)-G(z)+2 M(y-x)|^{2} \\
& \geq f(z)+\langle G(z), x-z\rangle
\end{aligned}
$$

Details: Step 3.

Lemma

We have $g(x+h)+g(x-h)-2 g(x) \leq M|h|^{2} \quad$ for all $\quad x, h \in X$.
Proof: Given $x, h \in X$ and $\varepsilon>0$, by definition of g, we can pick $y \in E$ with

$$
g(x) \geq f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}-\varepsilon .
$$

We then have

$$
\begin{aligned}
g(x+h)+ & g(x-h)-2 g(x) \leq f(y)+\langle G(y), x+h-y\rangle+\frac{M}{2}|x+h-y|^{2} \\
& +f(y)+\langle G(y), x-h-y\rangle+\frac{M}{2}|x-h-y|^{2} \\
& -2\left(f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}\right)+2 \varepsilon \\
= & \frac{M}{2}\left(|x+h-y|^{2}+|x-h-y|^{2}-2|x-y|^{2}\right)+2 \varepsilon \\
= & M|h|^{2}+2 \varepsilon .
\end{aligned}
$$

Details: Step 3.

Also note that $m \leq F$ on X and $F=m$ on E, where m is convex and F is differentiable on X. This implies that m is differentiable on E with $\nabla m(x)=\nabla F(x)$ for all $x \in E$.

It is clear, by definition of m, that $G(x) \in \partial m(x)$ (the subdifferential of m at x) for every $x \in E$, and these observations show that $\nabla F=G$ on E.

Similar $C^{1, \alpha}$ convex extension results in superreflexive spaces

Theorem (Azagra-Le Gruyer-Mudarra, 2017)

Let E be a subset of a superreflexive Banach space (with a power-type uniformly differentiable equivalent norm, i.e., for some $\alpha \in(0,1]$, $\|x+h\|^{1+\alpha}+\|x-h\|^{1+\alpha}-2\|x\|^{1+\alpha} \leq C\|h\|^{1+\alpha}$ for all $\left.x, h\right)$.
Then (f, G) has an extension $(F, \nabla F)$, with F convex and of class $C^{1, \alpha}(X)$, if and only if
$f(x) \geq f(y)+G(y)(x-y)+\frac{\alpha}{(1+\alpha) M^{1 / \alpha}}\|G(x)-G(y)\|_{*}^{1+\frac{1}{\alpha}} \quad x, y \in E$,
where $M=M_{\alpha}(G):=\sup _{x \neq y, x, y \in E} \frac{\|G(x)-G(y)\|_{*}}{\|x-y\|^{\alpha}}<\infty$.
Moreover, the formula

$$
F(x)=\operatorname{conv}\left(\inf _{y \in E}\left\{f(y)+G(y)(x-y)+\frac{M}{1+\alpha}\|x-y\|^{1+\alpha}\right\}\right)
$$

defines such an extension, with $M_{\alpha}(D F) \leq \frac{2^{1+\alpha} C}{1+\alpha} M$.

Unfortunately, one cannot use the same kind of method as in the $C^{1,1}$ case to solve $C^{1, \alpha}$ extension problems for general (not necessarily convex) 1-jets in Hilbert spaces.
The exponent $\alpha=1$ is miraculous in this respect: it is not true in general that, given a function $f \in C^{1, \alpha}(\mathbb{R})$, there exists a constant C such that $f+C|\cdot|^{1+\alpha}$ is convex.

Example

Let $0<\alpha<1$ and define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(t)=\left\{\begin{array}{cll}
0 & \text { if } & t \leq 1 \\
-(t-1)^{1+\alpha} & \text { if } \quad t \geq 1
\end{array}\right.
$$

Then $f \in C^{1, \alpha}(\mathbb{R})$, but there is no constant $C>0$ for which $f+C|\cdot|{ }^{1+\alpha}$ is convex.

Two applications of the $C^{1,1}$ results

Corollary (Kirszbraun's Theorem with an explicit formula)

Let X, Y be two Hilbert spaces, E a subset of X and $G: E \rightarrow Y$ a Lipschitz mapping. There exists $\widetilde{G}: X \rightarrow Y$ with $\widetilde{G}=G$ on E and $\operatorname{Lip}(\widetilde{G})=\operatorname{Lip}(G)$. In fact, if $P_{Y}: X \times Y \rightarrow Y$ denotes the natural projection $P_{Y}(x, y)=y$, then the function

$$
\widetilde{G}:=P_{Y}\left(\nabla\left(\operatorname{conv}(g)-\frac{M}{2}\|\cdot\|^{2}\right)\right),
$$

where

$$
g(x, y)=\inf _{z \in E}\left\{\langle G(z), y\rangle+\frac{M}{2}\|(x-z, y)\|^{2}\right\}+\frac{M}{2}\|(x, y)\|^{2},
$$

extends G from E to X.

Proof of this version of Kirszbraun's theorem:
Consider the 1-jet $\left(f^{*}, G^{*}\right)$ defined on $E \times\{0\} \subset X \times Y$ by $f^{*}(x, 0)=0$ and $G^{*}(x, 0)=(0, G(x))$. If $M:=\operatorname{Lip}(G)$, one easily checks that $\left(f^{*}, G^{*}\right)$ satisfies condition $\left(W^{1,1}\right)$ on $E \times\{0\}$ with constant M. Therefore the function

$$
\begin{aligned}
& F=\operatorname{conv}(g)-\frac{M}{2}\|\cdot\|^{2}, \\
& \inf _{z \in E}\left\{f^{*}(z, 0)+\left\langle G^{*}(z, 0),(x-z, y)\right\rangle+\frac{M}{2}\|(x-z, y)\|^{2}\right\}+\frac{M}{2}\|(x, y)\|^{2}
\end{aligned}
$$

is of class $C^{1,1}(X \times Y)$ with $(F, \nabla F)=\left(f^{*}, G^{*}\right)$ on $E \times\{0\}$ and $\operatorname{Lip}(\nabla F) \leq M$. The expression defining g can be simplified as below and therefore

$$
\widetilde{G}:=P_{Y}\left(\nabla\left(\operatorname{conv}(g)-\frac{M}{2}\|\cdot\|^{2}\right)\right) \text { extends } G \text { to } X .
$$

Here, $g(x, y)=\inf _{z \in E}\left\{\langle G(z), y\rangle+\frac{M}{2}\|(x-z, y)\|^{2}\right\}+\frac{M}{2}\|(x, y)\|^{2}$.

Theorem (Finding $C^{1,1}$ convex hypersurfaces with prescribed tangent hyperplanes at a given subset of a Hilbert space)

Let E be an arbitrary subset of a Hilbert space X, and let $N: E \rightarrow S_{X}$ be a mapping. Then the following statements are equivalent.
(1) There exists a $C^{1,1}$ convex hypersurface S such that $E \subseteq S$ and $N(x)$ is outwardly normal to S at x for every $x \in E$.
(2) There exists some $\delta>0$ such that

$$
\langle N(y), y-x\rangle \geq \delta\|N(y)-N(x)\|^{2} \quad \text { for all } \quad x, y \in E .
$$

Moreover, if we further assume that E is bounded then S can be taken to be closed.

An equivalent reformulation of this result which was suggested to us by Arie Israel is the following.

Theorem

Let E be a subset of a Hilbert space X, and let \mathcal{H} be a collection of affine hyperplanes of X such that every $H \in \mathcal{H}$ passes through some point $x_{H} \in E$. The following statements are equivalent:
(1) There exists a convex hypersurface S of class $C^{1,1}$ in X such that X has bounded principal curvatures and H is tangent to S at x_{H} for every $H \in \mathcal{H}$.
(2) There exists some $M>0$ such that, for every couple H_{1}, H_{2} of hyperplanes in \mathcal{H}, there exists a convex hypersurface $S\left(H_{1}, H_{2}\right)$ of class $C^{1,1}$ such that the principal curvatures of $S\left(H_{1}, H_{2}\right)$ are bounded by M and $S\left(H_{1}, H_{2}\right)$ is tangent to H_{1} and H_{2} at $x_{H_{1}}$ and $x_{H_{2}}$, respectively.

Thank you for your attention!

Further details

Details: Maximality of F in the $C^{1,1}$ extension result for jets.
Suppose that H is another $C^{1,1}(X)$ function with $H=f$ and $\nabla H=G$ on E and $\operatorname{Lip}(\nabla H) \leq M$. Using these assumptions and Taylor's Theorem we get

$$
H(x)+\frac{M}{2}|x|^{2} \leq f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}+\frac{M}{2}|x|^{2},
$$

for all $x \in X, y \in E$. Taking the infimum over $y \in E$ we get that

$$
H(x)+\frac{M}{2}|x|^{2} \leq g(x), \quad x \in X
$$

Since H is $C^{1,1}(X)$ with $\operatorname{Lip}(\nabla H) \leq M$, the function
$X \ni x \mapsto \tilde{H}(x)=H(x)+\frac{M}{2}|x|^{2}$ is convex, which implies that

$$
\tilde{H}=\operatorname{conv}(\tilde{H}) \leq g
$$

Therefore, $\tilde{H} \leq \tilde{F}=\operatorname{conv}(g)$ on X, from which we obtain that $H \leq F$ on X.

Details: Necessity of $\left(W^{1,1}\right)$.
Proof: (i) Given $x, y \in E$, we have

$$
\begin{aligned}
& f(y) \leq f(x)+\frac{1}{2}\langle G(x)+G(y), y-x\rangle+\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|G(x)-G(y)\|^{2} \\
& f(x) \leq f(y)+\frac{1}{2}\langle G(y)+G(x), x-y\rangle+\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|G(x)-G(y)\|^{2}
\end{aligned}
$$

By combining both inequalities we easily get $\|G(x)-G(y)\| \leq M\|x-y\|$.
(ii) Fix $x, y \in X$ and $z=\frac{1}{2}(x+y)+\frac{1}{2 M}(\nabla F(y)-\nabla F(x))$.

Details: Necessity of ($W^{1,1}$).
Using Taylor's theorem we obtain

$$
\begin{gathered}
\left.F(z) \leq F(x)+\left\langle\nabla F(x), \frac{1}{2}(y-x)\right\rangle+\frac{1}{2 M}(\nabla F(y)-\nabla F(x))\right\rangle \\
+\frac{M}{2}\left\|\frac{1}{2}(y-x)+\frac{1}{2 M}(\nabla F(y)-\nabla F(x))\right\|^{2}
\end{gathered}
$$

and

$$
\begin{gathered}
\left.F(z) \geq F(y)+\left\langle\nabla F(y), \frac{1}{2}(x-y)\right\rangle+\frac{1}{2 M}(\nabla F(y)-\nabla F(x))\right\rangle \\
-\frac{M}{2}\left\|\frac{1}{2}(x-y)+\frac{1}{2 M}(\nabla F(y)-\nabla F(x))\right\|^{2}
\end{gathered}
$$

Details: Necessity of $\left(W^{1,1}\right)$. Then we get

$$
\begin{aligned}
F(y) \leq & \left.F(x)+\left\langle\nabla F(x), \frac{1}{2}(y-x)\right\rangle+\frac{1}{2 M}(\nabla F(y)-\nabla F(x))\right\rangle \\
& \left.+\frac{M}{2} \| \frac{1}{2}(y-x)\right\rangle+\frac{1}{2 M}(\nabla F(y)-\nabla F(x)) \|^{2} \\
& \left.-\left\langle\nabla F(y), \frac{1}{2}(x-y)\right\rangle-\frac{1}{2 M}(\nabla F(y)-\nabla F(x))\right\rangle \\
& +\frac{M}{2}\left\|\frac{1}{2}(x-y)+\frac{1}{2 M}(\nabla F(y)-\nabla F(x))\right\|^{2} \\
= & F(x)+\frac{1}{2}\langle\nabla F(x)+\nabla F(y), y-x\rangle+ \\
& +\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|\nabla F(x)-\nabla F(y)\|^{2}
\end{aligned}
$$

Details: Relationship between $\left(C W^{1,1}\right)$ and $\left(W^{1,1}\right)$.

Lemma

(f, G) satisfies $\left(W^{1,1}\right)$ on E, with constant $M>0$, if and only if (\tilde{f}, \tilde{G}), defined by $\tilde{f}(x)=f(x)+\frac{M}{2}\|x\|^{2}, \tilde{G}(x)=G(x)+M x, x \in E$, satisfies property $\left(C W^{1,1}\right)$ on E, with constant $2 M$.

Details: Relationship between $\left(C W^{1,1}\right)$ and ($W^{1,1}$).
Proof: Suppose first that (f, G) satisfies $\left(W^{1,1}\right)$ on E with constant $M>0$. We have, for all $x, y \in E$,

$$
\begin{aligned}
& \tilde{f}(x)-\tilde{f}(y)-\langle\tilde{G}(y), x-y\rangle-\frac{1}{4 M}\|\tilde{G}(x)-\tilde{G}(y)\|^{2} \\
&= f(x)-f(y)+\frac{M}{2}\|x\|^{2}-\frac{M}{2}\|y\|^{2}-\langle G(y)+M y, x-y\rangle \\
&-\frac{1}{4 M}\|G(x)-G(y)+M(x-y)\|^{2} \\
& \geq \frac{1}{2}\langle G(x)+G(y), x-y\rangle-\frac{M}{4}\|x-y\|^{2}+\frac{1}{4 M}\|G(x)-G(y)\|^{2} \\
&+f(x)-f(y)+\frac{M}{2}\|x\|^{2}-\frac{M}{2}\|y\|^{2}-\langle G(y)+M y, x-y\rangle \\
&-\frac{1}{4 M}\|G(x)-G(y)+M(x-y)\|^{2} \\
&= \frac{M}{2}\|x\|^{2}+\frac{M}{2}\|y\|^{2}-M\langle x, y\rangle-\frac{M}{2}\|x-y\|^{2}=0 .
\end{aligned}
$$

Details: Relationship between $\left(C W^{1,1}\right)$ and ($W^{1,1}$).
Conversely, if (\tilde{f}, \tilde{G}) satisfies $\left(C W^{1,1}\right)$ on E with constant $2 M$, we have

$$
\begin{aligned}
& f(x)+\frac{1}{2}\langle G(x)+G(y), y-x\rangle+\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|G(x)-G(y)\|^{2}-f(y) \\
&= \tilde{f}(x)-\frac{M}{2}\|x\|^{2}+\frac{1}{2}\langle\tilde{G}(x)+\tilde{G}(y)-M(x+y), y-x\rangle+\frac{M}{4}\|x-y\|^{2} \\
& \quad-\frac{1}{4 M}\|\tilde{G}(x)-\tilde{G}(y)-M(x-y)\|^{2}-\tilde{f}(y)+\frac{M}{2}\|y\|^{2} \\
&=\tilde{f}(x)-\tilde{f}(y)+\frac{1}{2}\langle\tilde{G}(x)+\tilde{G}(y), y-x\rangle+\frac{M}{4}\|x-y\|^{2} \\
& \quad-\frac{1}{4 M}\|\tilde{G}(x)-\tilde{G}(y)-M(x-y)\|^{2} \\
& \geq\left.\langle\tilde{G}(y), x-y\rangle+\frac{1}{4 M}\|\tilde{G}(x)-\tilde{G}(y)\|^{2}+\frac{1}{2}\langle\tilde{G}(x)+G \tilde{(} y), y-x\right\rangle \\
& \quad+\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|\tilde{G}(x)-\tilde{G}(y)-M(x-y)\|^{2}=0 .
\end{aligned}
$$

Details: Absolute equivalence of $\left(W^{1,1}\right)$ and the classical Whitney $C^{1,1}$ extension condition.
Let E be a subset of a Hilbert space X and $(f, G): E \rightarrow \mathbb{R} \times X$ be a 1-jet. Given $M>0$, we will say that (f, G) satisfies the condition $\left(W_{M}^{1,1}\right)$ on E if the inequality
$f(y) \leq f(x)+\frac{1}{2}\langle G(x)+G(y), y-x\rangle+\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|G(x)-G(y)\|^{2}$,
holds for every $x, y \in E$. Also, given $M_{1}, M_{2}>0$, we will say that (f, G) satisfies the condition $\left(\widetilde{W_{M_{1}, M_{2}}^{1,1}}\right)$ on E provided that the inequalities

$$
|f(y)-f(x)-\langle G(x), y-x\rangle| \leq M_{1}\|x-y\|^{2}, \quad\|G(x)-G(y)\| \leq M_{2}\|x-y\|,
$$

are satisfied for every $x, y \in E$.

Details: Absolute equivalence of $\left(W^{1,1}\right)$ and the classical Whitney $C^{1,1}$ extension condition.

Claim

$$
\left.\left(W_{M}^{1,1}\right) \Longrightarrow \widetilde{\left(W_{\frac{M}{2}, M}^{1,1}\right.}\right)
$$

First, we have that, for all $x, y \in E$,
$f(y) \leq f(x)+\frac{1}{2}\langle G(x)+G(y), y-x\rangle+\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|G(x)-G(y)\|^{2}$
and

$$
f(x) \leq f(y)+\frac{1}{2}\langle G(y)+G(x), x-y\rangle+\frac{M}{4}\|y-x\|^{2}-\frac{1}{4 M}\|G(y)-G(x)\|^{2} .
$$

Details: Absolute equivalence of $\left(W^{1,1}\right)$ and the classical Whitney $C^{1,1}$ extension condition.
By summing both inequalities we get $\|G(x)-G(y)\| \leq M\|x-y\|$. On the other hand, by using $\left(W_{M}^{1,1}\right)$, we can write

$$
\begin{aligned}
& f(y)-f(x)-\langle G(x), y-x\rangle \leq \frac{1}{2}\langle G(x)+G(y), y-x\rangle-\langle G(x), y-x\rangle \\
& +\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|G(x)-G(y)\|^{2} \\
& =\frac{1}{2}\langle G(y)-G(x), y-x\rangle+\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|G(x)-G(y)\|^{2} \\
& =\frac{M}{2}\|x-y\|^{2}-\frac{M}{4}\left(\|x-y\|^{2}+\frac{1}{M^{2}}\|G(x)-G(y)\|^{2}-2\left\langle\frac{1}{M}(G(y)-G(x)), y\right.\right. \\
& =\frac{M}{2}\|x-y\|^{2}-\frac{M}{4}\left\|\frac{1}{M}(G(x)-G(y))-(y-x)\right\|^{2} \leq \frac{M}{2}\|x-y\|^{2} .
\end{aligned}
$$

Details: Absolute equivalence of $\left(W^{1,1}\right)$ and the classical Whitney $C^{1,1}$ extension condition.
Also, we have

$$
\begin{aligned}
& f(x)-f(y)-\langle G(x), x-y\rangle \leq \frac{1}{2}\langle G(x)+G(y), x-y\rangle-\langle G(x), x-y\rangle \\
& +\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|G(x)-G(y)\|^{2} \\
& =\frac{1}{2}\langle G(y)-G(x), x-y\rangle+\frac{M}{4}\|x-y\|^{2}-\frac{1}{4 M}\|G(x)-G(y)\|^{2} \\
& =\frac{M}{2}\|x-y\|^{2}-\frac{M}{4}\left(\|x-y\|^{2}+\frac{1}{M^{2}}\|G(x)-G(y)\|^{2}-2\left\langle\frac{1}{M}(G(y)-G(x)),\right.\right. \\
& =\frac{M}{2}\|x-y\|^{2}-\frac{M}{4}\left\|\frac{1}{M}(G(x)-G(y))-(x-y)\right\|^{2} \leq \frac{M}{2}\|x-y\|^{2}
\end{aligned}
$$

This leads us to

$$
|f(y)-f(x)-\langle G(x), y-x\rangle| \leq \frac{M}{2}\|x-y\|^{2}
$$

which proves the first laim.

Details: Absolute equivalence of $\left(W^{1,1}\right)$ and the classical Whitney $C^{1,1}$ extension condition.

Claim

$$
\left(\overline{W_{M_{1}, M_{2}}^{1,1}}\right) \Longrightarrow\left(W_{M}^{1,1}\right), \text { where } M=(3+\sqrt{10}) \max \left\{M_{1}, M_{2}\right\} .
$$

Using that $f(y)-f(x)-\langle G(x), y-x\rangle \leq M_{1}\|x-y\|^{2}$, we can write

$$
\begin{aligned}
& f(y)-f(x)-\frac{1}{2}\langle G(x)+G(y), y-x\rangle-\frac{M}{4}\|x-y\|^{2}+\frac{1}{4 M}\|G(x)-G(y)\|^{2} \\
& \leq\langle G(x), y-x\rangle+M_{1}\|x-y\|^{2}-\frac{1}{2}\langle G(x)+G(y), y-x\rangle-\frac{M}{4}\|x-y\|^{2}+\frac{1}{4 M} \\
& =\frac{1}{2}\langle G(x)-G(y), y-x\rangle+\left(M_{1}-\frac{M}{4}\right)\|x-y\|^{2}+\frac{1}{4 M}\|G(x)-G(y)\|^{2} \\
& \leq \frac{1}{2} a b+\left(M_{1}-\frac{M}{4}\right) a^{2}+\frac{1}{4 M} b^{2},
\end{aligned}
$$

where $a=\|x-y\|$ and $b=\|G(x)-G(y)\|$. Since G is M_{2}-Lipschitz, we have the inequality $b \leq M_{2} a$.

Details: Absolute equivalence of $\left(W^{1,1}\right)$ and the classical Whitney $C^{1,1}$ extension condition.
So, the last term in the above chain of inequalities is smaller than or equal to

$$
\left(\frac{1}{2} M_{2}+\left(M_{1}-\frac{M}{4}\right)+\frac{1}{4 M} M_{2}^{2}\right) a^{2} \leq\left(\frac{1}{2} K+\left(K-\frac{M}{4}\right)+\frac{1}{4 M} K^{2}\right) a^{2}
$$

where $K=\max \left\{M_{1}, M_{2}\right\}$. Now, the last term is smaller than or equal to 0 if and only if $-M^{2}+6 M K+K^{2} \leq 0$. But, in fact, for $M=(3+\sqrt{10}) K$ the term $-M^{2}+6 M K+K^{2}$ is equal to 0 . This proves the second Claim.

