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Two related problems: C1,1 extension and C1,1 convex extensions of 1-jets

Problem (C1,1 convex extension of 1-jets)

Given E a subset of a Hilbert space X, and a 1-jet (f ,G) on E (meaning a
pair of functions f : E → R and G : E → X), how can we tell whether there
is a C1,1 convex function F : X → R which extends this jet (meaning that
F(x) = f (x) and ∇F(x) = G(x) for all x ∈ E)?

Problem (C1,1 extension of 1-jets)

Given E a subset of a Hilbert space X, and a 1-jet (f ,G) on E, how can we
tell whether there is a C1,1 function F : X → R which extends (f ,G)?
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Previous solutions to the C1,1 extension problem for 1-jets

The C1,1 version of the classical Whitney extension theorem theorem tells
us that there exists a function F ∈ C1,1(Rn) with F = f on C and ∇F = G
on E if and only there exists a constant M > 0 such that

|f (x)− f (y)−〈G(y), x− y〉| ≤ M|x− y|2, and |G(x)−G(y)| ≤ M|x− y|
for all x, y ∈ E.

We can trivially extend (f ,G) to the closure E of E so that the inequalities
hold on C with the same constant M. The function F can be explicitly
defined by

F(x) =

{
f (x) if x ∈ C∑

Q∈Q (f (xQ) + 〈G(xQ), x− xQ〉)ϕQ(x) if x ∈ Rn \ C,

where Q is a family of Whitney cubes that cover the complement of the
closure C of C, {ϕQ}Q∈Q is the usual Whitney partition of unity associated
to Q, and xQ is a point of C which minimizes the distance of C to the cube
Q.
Recall also that Lip(∇F) ≤ k(n)M, where k(n) is a constant depending
only on n (but with limn→∞ k(n) =∞).
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Previous solutions to the C1,1 extension problem for 1-jets

In 1973 J.C. Wells improved this result and extended it to Hilbert spaces.

Theorem (Wells, 1973)
Let E be an arbitrary subset of a Hilbert space X, and f : E → R,
G : E → X. There exists F ∈ C1,1(X) such that F|E = f and (∇F)|E = G if
and only if there exists M > 0 so that

f (y) ≤ f (x) +
1
2
〈G(x) + G(y), y− x〉+

M
4
‖x− y‖2 − 1

4M
‖G(x)− G(y)‖2

(W1,1)
for all x, y ∈ E.
In such case one can find F with Lip(F) ≤ M.

We will say jet (f ,G) on E ⊂ X satisfies condition (W1,1) if it satisfies the
inequality of the theorem.

It can be checked that (W1,1) is absolutely equivalent to the condition in the
C1,1 version of Whitney’s extension theorem, which we will denote (W̃1,1).
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Previous solutions to the C1,1 extension problem for 1-jets

Well’s proof was quite complicated, and didn’t provide any explicit
formula for the extension when E is infinite.

In 2009 Erwan Le Gruyer showed, by very different means, another
version of Well’s result.
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Previous solutions to the C1,1 extension problem for 1-jets

Theorem (Erwan Le Gruyer, 2009)
Given a Hilbert space X, a subset E of X, and functions f : E → R,
G : E → X, a necessary and sufficient condition for the 1-jet (f ,G) to have
a C1,1 extension (F,∇F) to the whole space X is that

Γ(f ,G,E) := sup
x,y∈E

(√
A2

x,y + B2
x,y + |Ax,y|

)
<∞, (2.1)

where

Ax,y =
2(f (x)− f (y)) + 〈G(x) + G(y), y− x〉

‖x− y‖2 and

Bx,y =
‖G(x)− G(y)‖
‖x− y‖

for all x, y ∈ E, x 6= y.

Moreover, Γ(F,∇F,X) = Γ(f ,G,E) = ‖(f ,G)‖E, where

‖(f ,G)‖E := inf{Lip(∇H) : H ∈ C1,1(X) and (H,∇H) = (f ,G) on E}

is the trace seminorm of the jet (f ,G) on E.
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Previous solutions to the C1,1 extension problem for 1-jets

The number Γ(f ,G,E) is the smallest M > 0 for which (f ,G) satisfies
Well’s condition (W1,1) with constant M > 0.

In particular Le Gruyer’s condition is also absolutely equivalent to the
condition in the C1,1 version of Whitney’s extension theorem.

Le Gruyer’s theorem didn’t provide any explicit formula for the extension
either (it uses Zorn’s lemma).
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Previous solutions to the C1,1 extension problem for 1-jets

What about the convex case?

Theorem (Azagra-Mudarra, 2016)
Let E be a subset of Rn, and f : E → R, G : E → Rn be functions. There
exists a convex function F ∈ C1,ω(Rn) if and only if there exists M > 0
such that, for all x, y ∈ E,

f (x)− f (y)− 〈G(y), x− y〉 ≥ 1
2M
|G(x)− G(y)|2.

Moreover, supx 6=y
|∇F(x)−∇F(y)|

|x−y| ≤ k(n)M.

Here, as in Whitney’s theorem, k(n) only depends on n, but goes to∞ as
n→∞ (not surprising, as Whitney’s extension techniques were used in the
proof, which was constructive).
We say that (f ,G) satisfies condition (CW1,1) if it satisfies the inequality
of the theorem for some M > 0.
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A constructive optimal solution to these C1,1 extension problems.

A constructive optimal solution to these C1,1 extension problems.
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A constructive optimal solution to these C1,1 extension problems.

Theorem (Azagra-Le Gruyer-Mudarra, 2017)

Let (f ,G) be a 1-jet defined on an arbitrary subset E of a Hilbert space X.
There exists F ∈ C1,1

conv(X) such that (F,∇F) extends (f ,G) if and only if

f (x) ≥ f (y) + 〈G(y), x− y〉+
1

2M
|G(x)− G(y)|2 for all x, y ∈ E,

where

M = M(G,E) := sup
x,y∈E, x 6=y

|G(x)− G(y)|
|x− y|

.

The function

F(x) = conv
(

inf
y∈E
{f (y) + 〈G(y), x− y〉+ M

2 |x− y|2}
)

defines such an extension, with the property that Lip(∇F) ≤ M.
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A constructive optimal solution to these C1,1 extension problems.

Recall that

conv(g)(x) = sup{h(x) : h is convex and continuous, h ≤ g}.

Other useful expressions for conv(g) are given by

conv(g)(x) = inf


n+1∑
j=1

λjg(xj) : λj ≥ 0,
n+1∑
j=1

λj = 1, x =

n+1∑
j=1

λjxj, n ∈ N


(or with n fixed as the dimension of Rn in the case X = Rn), and by the
Fenchel biconjugate of g, that is,

conv(g) = g∗∗,

where
h∗(x) := sup

v∈Rn
{〈v, x〉 − h(v)}.
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A constructive optimal solution to these C1,1 extension problems.

Corollary (Wells 1973, Le Gruyer 2009, Azagra-Le Gruyer-Mudarra 2017)
Let E be an arbitrary subset of a Hilbert space X, and f : E → R,
G : E → X. There exists F ∈ C1,1(X) such that F|E = f and (∇F)|E = G if
and only if there exists M > 0 so that

f (y) ≤ f (x)+
1
2
〈G(x)+G(y), y−x〉+M

4
|x−y|2− 1

4M
|G(x)−G(y)|2 (W1,1)

for all x, y ∈ E. Moreover,

F = conv(g)− M
2 | · |

2, where

g(x) = inf
y∈E
{f (y) + 〈G(y), x− y〉+ M

2 |x− y|2}+ M
2 |x|

2, x ∈ X,

defines such an extension, with the additional property that Lip(∇F) ≤ M.
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A constructive optimal solution to these C1,1 extension problems.

Key to the proof of the Corollary: it’s well known that F : X → R is of
class C1,1, with Lip(∇F) ≤ M, if and only if F + M

2 | · |
2 is convex and

F − M
2 | · |

2 is concave. This result generalizes to jets:

Lemma

Given an arbitrary subset E of a Hilbert space X and a 1-jet (f ,G) defined
on E, we have:

(f ,G) satisfies (W1,1) on E, with constant M > 0, if and only if the 1-jet
(f̃ , G̃) defined by f̃ = f + M

2 | · |
2, G̃ = G + MI, satisfies (CW1,1) on E with

constant 2M.

(Proof: See “Further details” below.)
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A constructive optimal solution to these C1,1 extension problems.

Necessity of (W1,1)

Proposition

(i) If (f ,G) satisfies (W1,1) on E with constant M, then G is M-Lipschitz
on E.

(ii) If F is a function of class C1,1(X) with Lip(∇F) ≤ M, then (F,∇F)
satisfies (W1,1) on E = X with constant M.

Shown by Wells (or see “Further details” below).
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A constructive optimal solution to these C1,1 extension problems.

Proof of the Corollary: (f ,G) satisfies (W1,1) with constant M if and only
if (̃f , G̃) := (f + M

2 | · |
2, g + MI) satisfies (CW1,1) with constant 2M. Then,

by the C1,1 convex extension theorem for jets,

F̃ = conv(g̃), g̃(x) = inf
y∈E
{f̃ (y) + 〈G̃(y), x− y〉+ M|x− y|2}, x ∈ X,

is convex and of class C1,1 with (F̃,∇F̃) = (f̃ , G̃) on E, and
Lip(∇F̃) ≤ 2M. By an easy calculation,

g̃(x) = inf
y∈E
{f (y) + 〈G(y), x− y〉+ M

2 |x− y|2}+ M
2 |x|

2, x ∈ X.

Now, by the necessity of (CW1,1), (F̃,∇F̃) satisfies condition (CW1,1)
with constant 2M on X. Thus, if

F(x) = F̃(x)− M
2
|x|2, x ∈ X

then (again by the preceding lemma) (F,∇F) satisfies (W1,1) with constant
M on X. Hence, by the previous proposition, F is of class C1,1(X), with
Lip(∇F) ≤ M. From the definition of f̃ , G̃, F̃ and F it is immediate that
F = f and ∇F = G on E.
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A constructive optimal solution to these C1,1 extension problems.

Sketch of the proof of the C1,1
conv(X) extension result for 1-jets

Necessity: we’ll see later.
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A constructive optimal solution to these C1,1 extension problems.

Sketch of the proof of the C1,1
conv(X) extension result for 1-jets

Sufficiency: 1. Define m(x) = supy∈E{f (y) + 〈G(y), x− y}, the minimal
convex extension of (f ,G). This function is not necessarily differentiable.
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A constructive optimal solution to these C1,1 extension problems.

2. Use condition (CW1,1) to check that, for all y, z ∈ E, x ∈ X,
f (z) + 〈G(z), x− z〉 ≤ f (y) + 〈G(y), x− y〉+ M

2 |x− y|2.
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A constructive optimal solution to these C1,1 extension problems.

2. Use condition (CW1,1) to check that, for all y, z ∈ E, x ∈ X,
f (z) + 〈G(z), x− z〉 ≤ f (y) + 〈G(y), x− y〉+ M

2 |x− y|2. Hence (taking
infz∈E on the left and then infy∈E on the right)
m(x) ≤ infy∈E{f (y) + 〈G(y), x− y〉+ M

2 |x− y|2} =: g(x) for all x ∈ X.
Besides f ≤ m ≤ g ≤ f on E, and in particular m = f = g on E.
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A constructive optimal solution to these C1,1 extension problems.

2. Use condition (CW1,1) to check that, for all y, z ∈ E, x ∈ X,
f (z) + 〈G(z), x− z〉 ≤ f (y) + 〈G(y), x− y〉+ M

2 |x− y|2. Hence (taking
infz∈E on the left and then infy∈E on the right)
m(x) ≤ infy∈E{f (y) + 〈G(y), x− y〉+ M

2 |x− y|2} =: g(x) for all x ∈ X.
Besides f ≤ m ≤ g ≤ f on E, and in particular m = f = g on E. Since m is
convex, m ≤ F := conv(g) ≤ g. Therefore F = f on E.
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A constructive optimal solution to these C1,1 extension problems.
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A constructive optimal solution to these C1,1 extension problems.

Sketch of the proof of the C1,1
conv(X) extension result for 1-jets

Sufficiency:
1. Define m(x) = supy∈E{f (y) + 〈G(y), x− y}, the minimal convex
extension of (f ,G). This function is not necessarily differentiable.
2. Use condition (CW1,1) to check that, for all y, z ∈ E, x ∈ X,

f (z) + 〈G(z), x− z〉 ≤ f (y) + 〈G(y), x− y〉+
M
2
|x− y|2.

Hence (taking infz∈E on the left and then infy∈E on the right)

m(x) ≤ inf
y∈E
{f (y) + 〈G(y), x− y〉+

M
2
|x− y|2} =: g(x)

for all x ∈ X. Besides f ≤ m ≤ g ≤ f on E, and in particular m = f = g on
E. Since m is convex, m ≤ F := conv(g) ≤ g. Therefore F = f on E.
3. Check that g(x + h) + g(x− h)− 2g(x) ≤ M|h|2. This inequality is
preserved when we take F = conv(g). Since F is convex, this implies
F ∈ C1,1(X). 4. Also check that∇F(x) = G(x) for every x ∈ E.
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A constructive optimal solution to these C1,1 extension problems.
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A constructive optimal solution to these C1,1 extension problems.

Some details: Step 2: we’ll see later. Step 3:

Lemma

We have g(x + h) + g(x− h)− 2g(x) ≤ M|h|2 for all x, h ∈ X.

Proof: Given x, h ∈ X and ε > 0, by definition of g, we can pick y ∈ E with

g(x) ≥ f (y) + 〈G(y), x− y〉+ M
2 |x− y|2 − ε.

We then have

g(x + h) + g(x− h)− 2g(x) ≤ f (y) + 〈G(y), x + h− y〉+ M
2 |x + h− y|2

+ f (y) + 〈G(y), x− h− y〉+ M
2 |x− h− y|2

− 2
(
f (y) + 〈G(y), x− y〉+ M

2 |x− y|2
)

+ 2ε

= M
2

(
|x + h− y|2 + |x− h− y|2 − 2|x− y|2

)
+ 2ε

= M|h|2 + 2ε.
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A constructive optimal solution to these C1,1 extension problems.

Some details: Step 3.
C1,1 smoothness of F: let’s first recall some known facts.

Proposition

For a continuous convex function f : X → R, the following statements are
equivalent.

(i) There exists M > 0 such that

f (x + h) + f (x− h)− 2f (x) ≤ M|h|2 for all x, h ∈ X.

(ii) f is differentiable on X with Lip(∇f ) ≤ M.
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A constructive optimal solution to these C1,1 extension problems.

Some details: Step 3.
C1,1 smoothness of F.

Proposition (Azagra-Le Gruyer-Mudarra)
Let X be a Banach space. Suppose that a function g : X → R has a convex
continuous minorant, and satisfies

g(x + h) + g(x− h)− 2g(x) ≤ M|h|2 for all x, h ∈ X.

Then H := conv(g) is a continuous convex function satisfying the same
property. Hence H is of class C1,1(X), with Lip(∇ψ) ≤ M.

In particular, for a function ϕ ∈ C1,1(X), we have that conv(ϕ) ∈ C1,1(X),
with Lip(∇conv(ϕ)) ≤ Lip(∇ϕ).
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A constructive optimal solution to these C1,1 extension problems.

Some details: Proof of the C1,1 smoothness of this convex envelope:
Given x, h ∈ X and ε > 0, we can find n ∈ N, x1, . . . , xn ∈ X and
λ1, . . . , λn > 0 such that

H(x) ≥
n∑

i=1

λig(xi)− ε,
n∑

i=1

λi = 1 and
n∑

i=1

λixi = x.

Since x± h =
∑n

i=1 λi(xi ± h), we have H(x± h) ≤
∑n

i=1 λig(xi ± h).
Therefore

H(x+h)+H(x−h)−2H(x) ≤
n∑

i=1

λi (g(xi + h) + g(xi − h)− 2g(xi))+2ε,

and by the assumption on g we have

g(xi + h) + g(xi − h)− 2g(xi) ≤ M|h|2 i = 1, . . . , n.

Thus
H(x + h) + H(x− h)− 2H(x) ≤ M|h|2 + 2ε, (3.1)

and since ε is arbitrary we get the inequality of the statement.
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A constructive optimal solution to these C1,1 extension problems.

Some details: Step 4.

Also note that m ≤ F on X and F = m on E, where m is convex and F is
differentiable on X. This implies that m is differentiable on E with
∇m(x) = ∇F(x) for all x ∈ E.

It is clear, by definition of m, that G(x) ∈ ∂m(x) (the subdifferential of m at
x) for every x ∈ E, and these observations show that∇F = G on E.
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Application 1: Kirszbraun’s extension theorem via an explicit formula.

Application 1: Kirszbraun’s extension theorem via an explicit formula.
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Application 1: Kirszbraun’s extension theorem via an explicit formula.

Corollary (Kirszbraun’s Theorem via an explicit formula)
Let X,Y be two Hilbert spaces, E a subset of X and G : E → Y a Lipschitz
mapping. There exists G̃ : X → Y with G̃ = G on E and Lip(G̃) = Lip(G).
In fact, if M = Lip(G), then the function

G̃(x) := ∇Y(conv(g))(x, 0), x ∈ X, where

g(x, y) = inf
z∈E

{
〈G(z), y〉Y + M

2 ‖x− z‖2
X
}

+ M
2 ‖x‖

2
X+M‖y‖2

Y , (x, y) ∈ X×Y,

and ∇Y := PY ◦ ∇, defines such an extension.

Daniel Azagra C1,1 and C1,1
loc convex extensions of jets Fitting Smooth Functions to Data 32 / 77



Application 1: Kirszbraun’s extension theorem via an explicit formula.

Proof of this version of Kirszbraun’s theorem:
Define the 1-jet (f ∗,G∗) on E × {0} ⊂ X × Y by f ∗(x, 0) = 0 and
G∗(x, 0) = (0,G(x)). It’s easy to see that (f ∗,G∗) satisfies condition
(W1,1) on E × {0} with constant M. Therefore the function F

F = conv(g)− M
2 ‖ · ‖

2, where

g(x, y) = inf
z∈E
{f ∗(z, 0) + 〈G∗(z, 0), (x− z, y)〉+ M

2 ‖(x− z, y)‖2}+ M
2 ‖(x, y)‖2

is of class C1,1(X × Y) with (F,∇F) = (f ∗,G∗) on E × {0} and
Lip(∇F) ≤ M. In particular, the mapping
X 3 x 7→ G̃(x) := ∇YF(x, 0) ∈ Y is M-Lipschitz and extends G. Finally,
the expressions defining G̃ and g can be simplified as

G̃(x) = ∇Y
(
conv(g)− M

2 ‖ · ‖
2) (x, 0) = ∇Y(conv(g))(x, 0)

and

g(x, y) = inf
z∈E

{
〈G(z), y〉Y + M

2 ‖x− z‖2
X
}

+ M
2 ‖x‖

2
X + M‖y‖2

Y .
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

New results: C1,1
loc (Rn) convex extensions of 1-jets.
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

Theorem (Reformulation of Azagra-LeGruyer-Mudarra’s 2017 theorem)
Let E be an arbitrary nonempty subset of Rn. Let f : E → R, G : E → Rn

be given functions. Assume that

f (z) + 〈G(z), x− z〉 ≤ f (y) + 〈G(y), x− y〉+
M
2
|x− y|2

for every y, z ∈ E and every x ∈ Rn. Then the formula

F = conv
(

x 7→ inf
y∈E

{
f (y) + 〈G(y), x− y〉+

M
2
|x− y|2

})
defines a C1,1 convex extension of f to Rn which satisfies∇F = G on E
and Lip(∇F) ≤ M.

Geometrically speaking, the epigraph of F is the closed convex envelope in
Rn+1 of the union of the family of paraboloids {Py : y ∈ E}, where
Py = {(x, t) ∈ Rn × R : t = f (y) + 〈G(y), x− y〉+ M

2 |x− y|2, x ∈ Rn},
which must lie above the putative tangent hyperplanes.
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

Lemma

The following conditions are equivalent:
1 f (y)− f (z)− 〈G(z), y− z〉 ≥ 1

2M |G(y)− G(z)|2 for every y, z ∈ E;
2 f (z) + 〈G(z), x− z〉 ≤ f (y) + 〈G(y), x− y〉+ M

2 |x− y|2 for every
y, z ∈ E, x ∈ X.

Proof of (1) =⇒ (2): Given y, z ∈ E, x ∈ X, condition (CW1,1) implies

f (y) + 〈G(y), x− y〉+ M
2 |x− y|2

≥ f (z) + 〈G(z), y− z〉+ 1
2M |G(y)− G(z)|2 + 〈G(y), x− y〉+ M

2 |x− y|2 =

f (z) + 〈G(z), x− z〉+ 1
2M |G(y)− G(z)|2 + 〈G(z)− G(y), y− x〉+ M

2 |x− y|2

= f (z) + 〈G(z), x− z〉+ 1
2M |G(y)− G(z) + 2M(y− x)|2

≥ f (z) + 〈G(z), x− z〉.
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

Lemma

The following conditions are equivalent:
1 f (y)− f (z)− 〈G(z), y− z〉 ≥ 1

2M |G(y)− G(z)|2 for every y, z ∈ E;
2 f (z) + 〈G(z), x− z〉 ≤ f (y) + 〈G(y), x− y〉+ M

2 |x− y|2 for every
y, z ∈ E, x ∈ X.

Proof of (2) =⇒ (1): Minimize the function
ψ(x) := f (y) + 〈G(y), x− y〉+ M

2 |x− y|2 − (f (z) + 〈G(z), x− z〉) in order
to find x := y + 1

M (G(z)− G(y)). Use inequality (2) for this x, and
simplify the expression to obtain (1).

Daniel Azagra C1,1 and C1,1
loc convex extensions of jets Fitting Smooth Functions to Data 37 / 77



New results: C1,1
loc (R

n) convex extensions of 1-jets.

Now we will be looking for analogues of this result for the much more
complicated case of C1,1

loc convex extensions of 1-jets.

If the given jet (f ,G) has the property that

span{G(y)− G(z) : y, z ∈ E} = Rn

(which is rather generic), then our result is easier to understand and use.

In this talk we will focus on this case and ignore the general situation
where span{G(y)− G(z) : y, z ∈ E} does not necessarily coincide with all
of Rn, which is more difficult to handle.
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

Theorem (2019)

Assume that span{G(x)− G(y) : x, y ∈ E} = Rn. Then there exists a
convex function F ∈ C1,1

loc (Rn) such that (F,∇F) = (f ,G) on E if and only
if for each y ∈ E there exists a (not necessarily convex) C1,1

loc function
ϕy : Rn → [0,∞) such that:

ϕy(y) = 0,∇ϕy(y) = 0;

sup
{
|∇ϕy(x)−∇ϕy(z)|

|x− z|
: x, z ∈ B(0,R), x 6= z, y ∈ E ∩ B(0,R)

}
<∞

for every R > 0, and

f (z) + 〈G(z), x− z〉 ≤ f (y) + 〈G(y), x− y〉+ ϕy(x) ∀y, z ∈ E ∀x ∈ Rn.

Whenever these conditions are satisfied, we can take (for any a > 0)

F = conv
(

x 7→ inf
y∈E

{
f (y) + 〈G(y), x− y〉+ ϕy(x) + a|x− y|2

})
.
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

A sketch of the proof of the Theorem.
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

A sketch of the proof of the Theorem.
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

A sketch of the proof of the Theorem.
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

But we must be careful: in dimensions n ≥ 2, the convex envelope of a
C1,1

loc function may not be differentiable!

For instance, conv
(

(x, y) 7→
√

x2 + exp(−y2)
)

= |x|.

In order for these ideas to work we need that g, or at least a linear
perturbation of g, be coercive, and overcome some technical difficulties
(which we cannot explain in this talk).

Back to the theorem’s statement:
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

Theorem (2019)
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

The above result is quite general and may be very useful in some
situations, as it gives us a lot of freedom in choosing a suitable family of
functions {ϕy}y∈E, but of course they do not tell us how to find such a
family, which may be inconvenient in other situations. In order to decide
whether or not such functions exist and, if they do, how to build them, we
need to know something about the global behavior of at least one convex
extension ψ of f satisfying ψ(x) ≥ f (y) + 〈G(y), x− y〉 for all x ∈ Rn and
y ∈ E. The most natural (and minimal) of such extensions is given by

m(x) := sup
y∈E
{f (y) + 〈G(y), x− y〉}.

The following Corollary gives us a practical condition for the existence of
convex extensions F of the jet (f ,G).
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

Corollary (2019)
Let E be an arbitrary nonempty subset of Rn. Let f : E → R, G : E → Rn

be functions such that

span{G(x)− G(y) : x, y ∈ E} = Rn.

Then there exists a convex function F ∈ C1,1
loc (Rn) such that F|E = f and

(∇F)|E = G if and only if for each k ∈ N there exists a number Ak ≥ 2
such that

m(x) ≤ f (y)+ 〈G(y), x− y〉+ Ak

2
|x− y|2 ∀y ∈ E∩B(0, k) ∀x ∈ B(0, 4k).

Equivalently,

f (z) + 〈G(z), x− z〉 ≤ f (y) + 〈G(y), x− y〉+
Ak

2
|x− y|2

for every z ∈ E, every y ∈ E ∩ B(0, k), and every x ∈ B(0, 4k).
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New results: C1,1
loc (R

n) convex extensions of 1-jets.

A sketch of the proof of the Corollary.
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New results: C1,1
loc (R

n) convex extensions of 1-jets.
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Application 2: Lusin properties of convex functions

Application 2: Lusin properties of convex functions
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Application 2: Lusin properties of convex functions

Let A and C be two classes of functions contained in the class of all
functions from Rn (or an open subset of Rn) into R. If for a given f ∈ A
and every ε > 0 we can find a function g ∈ C such that

Ln ({x : f (x) 6= g(x)}) < ε, (6.1)

we will say that f has the Lusin property of class C. Here Ln denotes
Lebesgue’s outer measure in Rn. If every function f ∈ A satisfies this
property, we will also say that the A has the Lusin property of class C.

This terminology comes from the well known Lusin’s theorem (1912): for
every Lebesgue-measurable function f : Rn → R and every ε > 0 there
exists a continuous function g : Rn → R such that
Ln ({x : f (x) 6= g(x)}) < ε. That is, measurable functions have the Lusin
property of class C(Rn).

Several authors have shown that one can take g of class Ck if f has some
weaker regularity properties of order k:
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Application 2: Lusin properties of convex functions

H. Federer (1944): almost everywhere differentiable functions (and in
particular locally Lipschitz functions) have the Lusin property of class
C1.
H. Whitney (1951) improved this result by showing that a function
f : Rn → R has approximate partial derivatives of first order a.e. if
and only if f has the Lusin property of class C1.
Calderon and Zygmund (1961) proved analogous results for
A = Wk,p(Rn) (the class of Sobolev functions) and C = Ck(Rn).
Other authors, including Liu, Bagby, Michael-Ziemer,
Bojarski-Hajłasz-Strzelecki, and Bourgain-Korobkov-Kristensen have
improved Calderon and Zygmund’s result in several directions, by
obtaining additional estimates for f − g in the Sobolev norms, as well
as the Bessel capacities or the Hausdorff contents of the exceptional
sets where f 6= g.
Generalizing Whitney’s result, and Liu and Tai independently
established that a function f : Rn → R has the Lusin property of class
Ck if and only if f is approximately differentiable of order k almost
everywhere.
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Application 2: Lusin properties of convex functions

The Whitney extension technique, or other techniques also related to
Whitney cubes and associated partitions of unity, play a key role in the
proofs of all of these results.

For the special class of convex functions f : Rn → R:
G. Alberti (1994) and S.A. Imonkulov (1992) independently showed that
every convex function has the Lusin property of class C2. However, given a
convex function f and ε > 0, the function g ∈ C2(Rn) satisfying
Ln ({x : f (x) 6= g(x)}) < ε that they obtained is not convex. This fact is
rather disappointing and may thwart the applicability of their result.
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Application 2: Lusin properties of convex functions

Our C1,1
loc convex extension results allow us to show:

Theorem (Azagra-Hajłasz 2019)
Let f : Rn → R be a convex function. Then f has the Lusin property of class
C1,1 loc

conv (Rn) (meaning that for every ε > 0 there exists g : Rn → R convex
and of class C1,1

loc with Ln ({x ∈ Rn : f (x) 6= g(x)}) < ε) if and only if:

either f is essentially coercive (in the sense that
lim|x|→∞ f (x)− `(x) =∞ for some linear function `),

or else f is already of class C1,1
loc , in which case taking g = f is the

only possible choice.
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Application 2: Lusin properties of convex functions

Sketch of the proof of the Theorem.

Consider a convex function f : Rn → R, and assume w.l.o.g. that f is
coercive. By Alexandroff’s theorem we know that, for almost every
x ∈ Diff(f ) there exists an n× n matrix∇2f (x) such that

lim
y→x

f (y)− f (x)− 〈∇f (x), y− x〉 − 1
2〈∇

2f (x)(y− x), y− x〉
|y− x|2

= 0 (A2).

Let ε ∈ (0, 1) be given. Since (A2) holds for almost every x ∈ Rn, there
exists a closed subset set A = Aε of Rn such that

A ⊆ {x ∈ Rn : (A2) holds at x},

and
Ln (Rn \ A) ≤ ε/8.

In particular∇f (x) exists for every x ∈ A, and by convexity the restriction
of∇f to A is continuous.
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Application 2: Lusin properties of convex functions

We set B0 = ∅, and for each k ∈ N, we define

Bk := B(0, k), and Ak := A ∩ (Bk \ Bk−1).

We have that

A =

∞⋃
k=1

Ak.

We also consider the sets

Ej := {y ∈ A : f (x)−f (y)−〈∇f (y), x−y〉 ≤ j|x−y|2 ∀x ∈ Rn s.t. |x−y| ≤ 1
j
},

for which we have

A =

∞⋃
j=1

Ej,

and
Ej ⊂ Ej+1 for all j ∈ N.
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Application 2: Lusin properties of convex functions

Lemma

For each j ∈ N, the set Ej is closed, and in particular it is measurable.

Proof. Since A is closed, it is enough to see that Ej is closed in A. Let
(yk)k∈N ⊂ Ej be such that limk→∞ yk = y ∈ A, and let us check that y ∈ Ej.
Given x ∈ Rn with |x− y| < 1/j, since limk→∞ yk = y there exists k0 large
enough so that |x− yk| < 1/j for all k ≥ k0. As yk ∈ Ej, this implies that

f (x)− f (y)− 〈∇f (yk), x− yk〉 ≤ j|x− yk|2

for all k ≥ k0. Since the restriction of∇f to A is continuous (f being
convex and differentiable on A), by taking limits as k→∞ we obtain

f (x)− f (y)− 〈∇f (y), x− y〉 ≤ j|x− y|2.

We have shown that this inequality holds for every y in the open ball of
center x and radius 1/j. By continuity, y ∈ Ej.
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Application 2: Lusin properties of convex functions

Now, for each k ∈ N, since the sequence {Ej}j∈N is increasing and
Ak =

⋃∞
j=1 (Ej ∩ Ak), we can find jk ∈ N such that

Ln(Ak \ Ejk) ≤
ε

2k+3 ,

and define, for each k ∈ N,

Ck := Ejk ∩ Ak,

and

C :=

∞⋃
k=1

Ck.

We may obviously assume that

jk ≤ jk+1 for all k ∈ N. (6.2)

We then have that

Ln(A \ C) ≤
∞∑

k=1

Ln(Ak \ Ck) ≤
ε

8
. (6.3)

Daniel Azagra C1,1 and C1,1
loc convex extensions of jets Fitting Smooth Functions to Data 57 / 77



Application 2: Lusin properties of convex functions

Lemma

For each k ∈ N there exists a number βk ≥ 2 such that:

f (x)− f (y)−〈∇f (y), x− y〉 ≤ βk|x− y|2 for all y ∈ C∩Bk and all x ∈ B4k.

Proof. Take y ∈ Ck, and note that since (jk) is increasing we have
C ∩ Bk ⊆ Ejk ∩ Bk ⊂ B4k. If x ∈ Rn is such that |x− y| ≤ 1/j, the
inequality we seek obviously holds with βk = jk, because of the definition
of Ejk . On the other hand, if |x− y| > 1/jk and x ∈ B4k, then, since f is
Lipschitz on the ball B4k, we have

f (x)− f (y)−〈∇f (y), x−y〉 ≤ 2 Lip
(

f|B4k

)
|x−y| ≤ 2 Lip

(
f|B4k

)
jk|x−y|2.

In any case the Lemma is satisfied with
βk = max

{
2, jk, 2jk Lip

(
f|B4k

)}
.
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Application 2: Lusin properties of convex functions

Since f is convex we have, for all z ∈ C, x ∈ Rn, that

f (z) + 〈∇f (z), x− z〉 ≤ f (x),

hence m(x) ≤ f (x) for all x ∈ Rn, which combined with the preceding
lemma shows that the jet (f (y),∇f (y)), y ∈ C, satisfies the condition of our
result for C1,1

loc convex extension:

Theorem (2019)
Let C be an arbitrary nonempty subset of Rn. Let f : C→ R, G : C→ Rn

be functions such that span{G(x)− G(y) : x, y ∈ E} = Rn. Then there
exists a convex function F ∈ C1,1

loc (Rn) such that F|C = f and (∇F)|C = G if
and only if for each k ∈ N there exists a number Ak ≥ 2 such that

m(x) ≤ f (y) + 〈G(y), x− y〉+
Ak

2
|x− y|2 ∀y ∈ E ∩ Bk ∀x ∈ B4k.

(We omit the proof that span{∇f (y)−∇f (z) : y, z ∈ C} = Rn.)
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Application 2: Lusin properties of convex functions

End of the proof: We have thus checked that the 1-jet (f (y),∇f (y)), y ∈ C,
satisfies all the conditions of the preceding Theorem, and therefore there
exists a locally C1,1 convex function F : Rn → R such that F = f on C,
and also∇F = ∇f on C. In particular we have that

Ln ({x ∈ Rn ; f (x) 6= F(x) or∇f (x) 6= ∇F(x)}) ≤ Ln (Rn \ C) ≤ ε.
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Application 2: Lusin properties of convex functions

For the other part of the theorem, see "Further details" below.
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Application 2: Lusin properties of convex functions

Thank you for your attention!
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Further details

Further details
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Further details

Details: Necessity of (W1,1).
Proof: (i) Given x, y ∈ E, we have

f (y) ≤ f (x) +
1
2
〈G(x) + G(y), y− x〉+

M
4
‖x− y‖2 − 1

4M
‖G(x)− G(y)‖2

f (x) ≤ f (y) +
1
2
〈G(y) + G(x), x− y〉+

M
4
‖x− y‖2 − 1

4M
‖G(x)− G(y)‖2.

By combining both inequalities we easily get ‖G(x)− G(y)‖ ≤ M‖x− y‖.

(ii) Fix x, y ∈ X and z = 1
2(x + y) + 1

2M (∇F(y)−∇F(x)).
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Further details

Details: Necessity of (W1,1).
Using Taylor’s theorem we obtain

F(z) ≤ F(x) + 〈∇F(x), 1
2(y− x)〉+ 1

2M (∇F(y)−∇F(x))〉

+M
2

∥∥ 1
2(y− x) + 1

2M (∇F(y)−∇F(x))
∥∥2

and

F(z) ≥ F(y) + 〈∇F(y), 1
2(x− y)〉+ 1

2M (∇F(y)−∇F(x))〉

−M
2

∥∥1
2(x− y) + 1

2M (∇F(y)−∇F(x))
∥∥2
.
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Further details

Details: Necessity of (W1,1).
Then we get

F(y) ≤ F(x) + 〈∇F(x), 1
2(y− x)〉+ 1

2M (∇F(y)−∇F(x))〉

+ M
2

∥∥1
2(y− x)〉+ 1

2M (∇F(y)−∇F(x))
∥∥2

− 〈∇F(y), 1
2(x− y)〉 − 1

2M (∇F(y)−∇F(x))〉

+ M
2

∥∥1
2(x− y) + 1

2M (∇F(y)−∇F(x))
∥∥2

= F(x) +
1
2
〈∇F(x) +∇F(y), y− x〉+

+ M
4 ‖x− y‖2 − 1

4M‖∇F(x)−∇F(y)‖2.
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Further details

Details: Relationship between (CW1,1) and (W1,1).

Lemma

(f ,G) satisfies (W1,1) on E, with constant M > 0, if and only if (f̃ , G̃),
defined by f̃ (x) = f (x) + M

2 ‖x‖
2, G̃(x) = G(x) + Mx, x ∈ E, satisfies

property (CW1,1) on E, with constant 2M.
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Further details

Details: Relationship between (CW1,1) and (W1,1).
Proof: Suppose first that (f ,G) satisfies (W1,1) on E with constant M > 0.
We have, for all x, y ∈ E,

f̃ (x)− f̃ (y)− 〈G̃(y), x− y〉 − 1
4M
‖G̃(x)− G̃(y)‖2

= f (x)− f (y) +
M
2
‖x‖2 − M

2
‖y‖2 − 〈G(y) + My, x− y〉

− 1
4M
‖G(x)− G(y) + M(x− y)‖2

≥ 1
2
〈G(x) + G(y), x− y〉 − M

4
‖x− y‖2 +

1
4M
‖G(x)− G(y)‖2

+ f (x)− f (y) +
M
2
‖x‖2 − M

2
‖y‖2 − 〈G(y) + My, x− y〉

− 1
4M
‖G(x)− G(y) + M(x− y)‖2

=
M
2
‖x‖2 +

M
2
‖y‖2 −M〈x, y〉 − M

2
‖x− y‖2 = 0.
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Further details

Details: Relationship between (CW1,1) and (W1,1).
Conversely, if (f̃ , G̃) satisfies (CW1,1) on E with constant 2M, we have

f (x) +
1
2
〈G(x) + G(y), y− x〉+

M
4
‖x− y‖2 − 1

4M
‖G(x)− G(y)‖2 − f (y)

= f̃ (x)− M
2
‖x‖2 +

1
2
〈G̃(x) + G̃(y)−M(x + y), y− x〉+

M
4
‖x− y‖2

− 1
4M
‖G̃(x)− G̃(y)−M(x− y)‖2 − f̃ (y) +

M
2
‖y‖2

= f̃ (x)− f̃ (y) +
1
2
〈G̃(x) + G̃(y), y− x〉+

M
4
‖x− y‖2

− 1
4M
‖G̃(x)− G̃(y)−M(x− y)‖2

≥ 〈G̃(y), x− y〉+
1

4M
‖G̃(x)− G̃(y)‖2 +

1
2
〈G̃(x) + ˜G(y), y− x〉

+
M
4
‖x− y‖2 − 1

4M
‖G̃(x)− G̃(y)−M(x− y)‖2 = 0.
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Further details

Details: Absolute equivalence of (W1,1) and the classical Whitney C1,1

extension condition.
Let E be a subset of a Hilbert space X and (f ,G) : E → R× X be a 1-jet.
Given M > 0, we will say that (f ,G) satisfies the condition (W1,1

M ) on E if
the inequality

f (y) ≤ f (x) +
1
2
〈G(x) + G(y), y− x〉+ M

4
‖x− y‖2 − 1

4M
‖G(x)−G(y)‖2,

holds for every x, y ∈ E. Also, given M1,M2 > 0, we will say that (f ,G)

satisfies the condition (W̃1,1
M1,M2

) on E provided that the inequalities

|f (y)− f (x)−〈G(x), y− x〉| ≤ M1‖x− y‖2, ‖G(x)−G(y)‖ ≤ M2‖x− y‖,

are satisfied for every x, y ∈ E.
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Further details

Details: Absolute equivalence of (W1,1) and the classical Whitney C1,1

extension condition.

Claim

(W1,1
M ) =⇒ (W̃1,1

M
2 ,M

)

First, we have that, for all x, y ∈ E,

f (y) ≤ f (x) +
1
2
〈G(x) + G(y), y− x〉+

M
4
‖x− y‖2 − 1

4M
‖G(x)− G(y)‖2

and

f (x) ≤ f (y) +
1
2
〈G(y) + G(x), x− y〉+ M

4
‖y− x‖2 − 1

4M
‖G(y)−G(x)‖2.
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Further details

Details: Absolute equivalence of (W1,1) and the classical Whitney C1,1

extension condition.
By summing both inequalities we get ‖G(x)− G(y)‖ ≤ M‖x− y‖. On the
other hand, by using (W1,1

M ), we can write

f (y)− f (x)− 〈G(x), y− x〉 ≤ 1
2
〈G(x) + G(y), y− x〉 − 〈G(x), y− x〉

+
M
4
‖x− y‖2 − 1

4M
‖G(x)− G(y)‖2

=
1
2
〈G(y)− G(x), y− x〉+

M
4
‖x− y‖2 − 1

4M
‖G(x)− G(y)‖2

=
M
2
‖x− y‖2 − M

4

(
‖x− y‖2 +

1
M2 ‖G(x)− G(y)‖2 − 2〈 1

M
(G(y)− G(x)), y− x〉

)
=

M
2
‖x− y‖2 − M

4

∥∥∥ 1
M

(G(x)− G(y))− (y− x)
∥∥∥2
≤ M

2
‖x− y‖2.
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Further details

Details: Absolute equivalence of (W1,1) and the classical Whitney C1,1

extension condition.
Also, we have

f (x)− f (y)− 〈G(x), x− y〉 ≤ 1
2
〈G(x) + G(y), x− y〉 − 〈G(x), x− y〉

+
M
4
‖x− y‖2 − 1

4M
‖G(x)− G(y)‖2

=
1
2
〈G(y)− G(x), x− y〉+

M
4
‖x− y‖2 − 1

4M
‖G(x)− G(y)‖2

=
M
2
‖x− y‖2 − M

4

(
‖x− y‖2 +

1
M2 ‖G(x)− G(y)‖2 − 2〈 1

M
(G(y)− G(x)), x− y〉

)
=

M
2
‖x− y‖2 − M

4

∥∥∥ 1
M

(G(x)− G(y))− (x− y)
∥∥∥2
≤ M

2
‖x− y‖2.

This leads us to

|f (y)− f (x)− 〈G(x), y− x〉| ≤ M
2
‖x− y‖2,

which proves the first claim.
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Further details

Details: Absolute equivalence of (W1,1) and the classical Whitney C1,1

extension condition.
Claim

(W̃1,1
M1,M2

) =⇒ (W1,1
M ), where M = (3 +

√
10) max{M1,M2}.

Using that f (y)− f (x)− 〈G(x), y− x〉 ≤ M1‖x− y‖2, we can write

f (y)− f (x)− 1
2
〈G(x) + G(y), y− x〉 − M

4
‖x− y‖2 +

1
4M
‖G(x)− G(y)‖2

≤ 〈G(x), y− x〉+ M1‖x− y‖2 − 1
2
〈G(x) + G(y), y− x〉 − M

4
‖x− y‖2 +

1
4M
‖G(x)− G(y)‖2

=
1
2
〈G(x)− G(y), y− x〉+

(
M1 −

M
4

)
‖x− y‖2 +

1
4M
‖G(x)− G(y)‖2

≤ 1
2

ab +

(
M1 −

M
4

)
a2 +

1
4M

b2,

where a = ‖x− y‖ and b = ‖G(x)− G(y)‖. Since G is M2-Lipschitz, we
have the inequality b ≤ M2a.

Daniel Azagra C1,1 and C1,1
loc convex extensions of jets Fitting Smooth Functions to Data 74 / 77



Further details

Details: Absolute equivalence of (W1,1) and the classical Whitney C1,1

extension condition.
So, the last term in the above chain of inequalities is smaller than or equal
to

(1
2 M2 + (M1 − M

4 ) + 1
4M M2

2)a2 ≤ (1
2 K + (K − M

4 ) + 1
4M K2)a2,

where K = max{M1,M2}. Now, the last term is smaller than or equal to 0
if and only if −M2 + 6MK + K2 ≤ 0. But, in fact, for M = (3 +

√
10)K

the term −M2 + 6MK + K2 is equal to 0. This proves the second Claim.
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Further details

Details: The other part of the Azagra-Hajłasz theorem on Lusin properties
of convex functions follows from:

Theorem (2013)
For every convex function f : Rn → R, there exist a unique linear subspace
Xf of Rn, a unique vector vf ∈ X⊥f , and a unique essentially coercive
function cf : Xf → R such that f can be written in the form

f (x) = cf (PXf (x)) + 〈vf , x〉 for all x ∈ Rn.

Proposition (Azagra-Hajłasz 2019)
Let P : Rn → X be the orthogonal projection onto a linear subspace X of
Rn of dimension k, with 1 ≤ k ≤ n− 1, let c : X → R be a convex function,
and define f (x) = c(P(x)). Then f is the only convex function g : Rn → R
such that Ln ({x ∈ Rn : f (x) 6= g(x)}) <∞.
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Further details

Proof of the Proposition. Let g : Rn → R be a convex function such that
Ln(A) <∞, where A := {x ∈ Rn : f (x) 6= g(x)}. By Fubini’s theorem, for
Hk-almost every point x ∈ X, we have that forHn−k−1-almost every
direction v ∈ X⊥, |v| = 1, the line L(x, v) := {x + tv : t ∈ R} must
intersect A in a set of finite 1-dimensional measure. This implies that for all
such x ∈ X, v ∈ X⊥, the set L(x, v) ∩ (Rn \ A) contains sequences

x±j := x + t±x,jv ∈ Rn \ A, j ∈ N

with limj→±∞ t±x,j = ±∞. Since f = f ◦ P, this means that

f (x) = f (x + t±x,jv) = g(x + t±x,jv),

and because t 7→ g(x + tv) is convex we see that

f (x + tv) = f (x) = g(x + tv)

for all t ∈ R and every such x, v. By continuity of f and g this implies that

f (x + tv) = g(x + tv)

for all x ∈ X, v ∈ X⊥, and this shows that f = g on Rn.
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