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Abstract. In this note we prove that every definably connected, definably

compact abelian definable group G in an o-minimal expansion of a real closed

field with dim(G) 6= 4 is definably homeomorphic to a torus of the same dimen-
sion. Moreover, in the semialgebraic case the result holds for all dimensions.

1. Introduction

Let M be an o-minimal expansion of a real closed field. Let H be a definable
group inM equipped with Pillay’s topology in [Pi:88]. So whenM is an expansion of
the real lineH is a real Lie group, and in general it is an “M -Lie group”. An example
of definable group is the n-torus Tn(M) over M , defined as the poly-interval [0, 1)n

inM with the sum operation modulo 1. WhenM is the real field Rfield this coincides
with the classical torus (R /Z)n. Let us recall that (R /Z)n is the only compact
abelian connected Lie group of dimension n up to Lie-isomorphisms.

In the rest of the paper we fix a definably connected, definably compact, definable
abelian group G in M of dimension n, endowed with Pillay’s topology. There are
three natural questions:

(1) Is G definably isomorphic to the n-torus Tn(M)?
(2) Is G definably homeomorphic to Tn(M)?
(3) Is G definably homotopy equivalent to Tn(M)?

The answer to question (1) is clearly no. For instance [0, 1) ⊂ R modulo 1 is Lie
isomorphic to SO(2,R) but the isomorphism is not semialgebraic (note, however,
that they are semialgebraically homeomorphic). Instead, we could ask if G is de-
finably isomorphic to a product of 1-dimensional definable subgroups. But it turns
out that this question still has a negative answer even for M = Rfield. Indeed it is
possible that dim(G) > 1, but G has no subgroups of dimension one definable in
Rfield [PeSte:99, Example 5.2].

On the other hand the homotopy problem (3) has a positive answer by [BeMaOt:08,
Theorem 3.4].

In this note we deal with the homeomorphism problem (2), giving a positive
solution when dim(G) 6= 4 (see Theorem 3.1). We also show that when G is
semialgebraic, namely M is a real closed field without additional structure, then
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the result holds in all dimensions (see Theorem 2.1). We point out that the one
dimensional case was already proved in [St:94].

The assumption that G is definably compact and definably connected is not very
restrictive. In fact by [PeSta:05, Thm.5.1, Thm.5.7] and [PeSte:99, Thm.1.2], the
study of the topology of definable abelian groups can be reduced to the definably
compact case. So as a corollary we obtain, with a small proviso, that a definably
connected abelian n-dimensional group is definably homeomorphic to a space of the
form Tm(M) ×Mk with m + k = n. The proviso is vacuous in the semialgebraic
case, while in the general case we require that m 6= 4, where m is n minus the
dimension of the maximal torsion free definable subgroup of G.

Suitable versions of problems (1),(2),(3) can be posed in the non-abelian case.
This can be done as follows. Given a definable group G, there is a canonical real Lie
group G/G00 associated to G (by [Pi:04] and [BOPP:05]). By [Ba:10] and [BeMa:10]
when G is definably compact and definably connected, the isomorphism type of
G/G00 determines G up to definable homotopy equivalence. One can ask whether
the isomorphism type of G/G00 determines G up to definable homeomorphism.
The results in [Ma:10] reduce the question to the abelian case, which is the one we
consider in this paper. Finally let us observe that by [Co:09t, Thm.3.8.8] (see also
[Co:09]) the study of the topology of a definable group reduces to the definably
compact case.

We shall make use of the “o-minimal Hauptvermutung” proved by M. Shiota in
[Sh:97, Chapter III] when M is an expansion of Rfield, and extended in [Sh:10, §2]
to the case when M is an o-minimal expansion of an arbitrary real closed field.

Fact 1.1. (o-minimal Hauptvermutung) Let K and L be finite simplicial complexes.
Let M be an o-minimal expansion of a real closed field. If there exists a definable,
in M , homeomorphism from |K| to |L|, then there is a PL-isomorphism from |K|
to |L|.

Here |K| denotes a geometrical realization, in M , of the simplicial complex K.
In this note all simplicial complexes are closed and finite, so that |K|(M) is always
definably compact. By a “PL map” we always mean “finitely PL map”, namely
the geometrical realization of a simplicial map between finite subdivisions of the
relevant complexes. In Section 2 we prove the semialgebraic case of the homeo-
morphism problem (2) using the Hauptvermutung in the weak form of [Sh:97]. In
Section 3 we assume dim(G) 6= 4 and we reduce the general o-minimal case to the
semialgebraic case. In this step we need the strong form of the Hauptvermutung
(as in [Sh:10]) and the following fact:

Fact 1.2. (Classification of Homotopy tori) Let X be a closed PL-manifold of
dimension n 6= 4 homotopy equivalent to the standard torus Tn(R) (considered as
a PL-manifold under a standard triangulation). Then there is a finite covering

f : X̃ → X such that X̃ is PL-homeomorphic to Tn(R).

When n ≥ 5 a proof of Fact 1.2 can be found in [HsSi:69, Theorem B] and
[Wa:69, Corollary]. (See also [Wa:99, Chapter 15A] for a complete development of
homotopy tori.) When n ≤ 3 it turns out that X is already PL-homeomorphic to a
standard torus. Indeed, for dim(X) = 1 or 2 this is well-known and for dim(X) = 3
we can use [KiSi:77, Theorem 5.4, pag 249] together with the positive solution of the
three dimensional Poincaré’s conjecture. Since our intended readership may not be
familiar with the notations in [KiSi:77] we add few lines of explanation. The cited
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theorem tells us that S∗(T3) = 0. Unraveling the notations this means that if M1

and M2 are PL-manifolds and fi : Mi → T3 is a homotopy equivalence for i = 1, 2,
then there is a PL-homeomorphism h : M1 →M2 such that f2 ◦ h is homotopic to
f1. In particular, taking M2 = T3 and f2 = id, we obtain that any PL-manifold
homotopy equivalent to T3 is PL-homeomorphic to T3. This statement (= Borel’s
conjecture for T3) is known to imply Poincaré’s conjecture in dimension 3 [F:96,
§1.4], which was not known when [KiSi:77] was written. The solution of the riddle
lies in a note hidden inside the proof of Theorem 5.3 in [KiSi:77] whose effect is
to modify the definition of S∗ in dimension 3: “in dimension 3 we supplement this
definition by supposing that M1 is Poincaré, i.e., contains no fake 3-discs”. Granted
the positive solution to the 3-dimensional Poincaré’s conjecture, the supplement is
vacuous.

2. Semialgebraic case

In this section suppose that M is a real closed field without additional structure.
So the definable sets in M coincide with the semialgebraic sets. We prove.

Theorem 2.1. G is semialgebraically homeomorphic to the n-standard torus Tn(M).

Proof. By Robson’s embedding theorem (see [vdD:98, Theorem 10.1.8]) we can
assume that the topology ofG (given by [Pi:88]) coincides with the topology induced
by the ambient space Mn. By the triangulation theorem we can then assume
that the underlying set dom(G) is the realization of a ∅-definable finite simplicial
complex K. A priori we cannot ensure that the group operation of G is ∅-definable,
but by model completeness of the theory of real closed fields there exist a possibly
different group operation on dom(G) = |K| which is ∅-definable and continuous
with respect to the topology of |K|. Since we are only interested in the definable
homeomorphism type of G we can assume the group operation is ∅-definable. We
can then consider the group G(R) obtained by interpreting the defining formulas in
Rfield. By [Pi:88, Remark 2.6], there is a (unique) Nash group structure on G(R).
In particular, G(R) is an abelian compact connected real Lie-group and therefore
there is a Lie-isomorphism f : G(R) → Tn(R). We will show that f is definable
in some o-minimal expansion of the real field. In fact it is enough to consider the
o-minimal structure Ran studied in [vdD:86]. We need the following:

Fact: Given an analytic function f defined on an open subset V of Rn, its
restriction to a definable (i.e. semialgebraic) compact subset K ⊂ V is definable in
Ran.

Indeed this is true (almost by definition of Ran) when K is a compact poly-
interval, and the general case follows by covering K by finitely many poly-intervals
contained in V . We then obtain:

Claim: The Lie-isomorphism f : G(R)→ Tn(R) is definable in Ran.
In fact there are semialgebraic charts making G(R) into a Nash group and for

each chart V , f |V is analytic. By shrinking the charts we can assume that f |V
extends to an analytic map on the closure of V . So by the above fact f is definable
in Ran.

In particular we have proved that there is a homeomorphism f : G(R)→ Tn(R)
definable in Ran. By the semialgebraic triangulation theorem and the o-minimal
Hauptvermutung of [Sh:97], there is a semialgebraic homeomorphism g : G(R) →
Tn(R). Moreover, by model completeness of the theory of real closed field, there is
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some g as above which is ∅-definable in Rfield. Interpreting the same formulas in M
we obtain a semialgebraic homeomorphism from G(M) to Tn(M) as desired. �

3. General o-minimal case

In this section we assume that M is an arbitrary o-minimal expansion of a real
closed field. We will prove:

Theorem 3.1. If n = dim(G) 6= 4, G is definably homeomorphic to the n-torus
Tn(M).

As above, we can assume that Pillay’s topology on G coincides with the topology
induced by the ambient space Mn, and by the triangulation theorem we can then
assume that dom(G) is the geometrical realization |K|(M) of a finite simplicial
complex K. We need:

Lemma 3.2. If n = dim(G) 6= 4, dom(G) = |K|(M) admits a semialgebraic
abelian group operation (possibly unrelated to the original one).

Theorem 3.1 follows at once from the Lemma and the semialgebraic case (The-
orem 2.1). So it remains to prove the lemma.

Proof of Lemma 3.2. Note that dom(G) = |K|(M) is at the same time a closed de-
finable manifold (with Pillay’s topology) and the realization, over M , of a finite sim-
plicial complex. By Shiota’s o-minimal Hauptvermutung in [Sh:10], it easily follows
(see Fact 3.3 below) that |K|(M) is a closed PL-manifold “over M”. This is equiva-
lent to say that the closed star of each vertex of K is PL-homeomorphic to the stan-
dard simplex of the correct dimension. By model completeness of the theory of real
closed fields, the same holds over R. Namely |K|(R) is a PL-manifold (but we have
no way of inheriting the definable group structure of |K|(M)). Moreover |K|(R) is
homotopy equivalent to the standard torus Tn(R). Indeed, by [BeMaOt:08, Theo-
rem 3.4] there exists a definable homotopy equivalence from dom(G) = |K|(M) to
Tn(M) and therefore by [BaOt:10, Theorem 3.1] there is a semialgebraic homotopy
equivalence from |K|(R) to Tn(R). Since n = dim(G) 6= 4, by Fact 1.2, |K|(R)
has a finite PL-cover which is PL-homeomorphic to Tn(R). Namely we have a
PL-covering f : Tn(R)→ |K|(R) with finite fibers. By model completeness we can
assume that f is defined without parameters. So we can go back to M and get a
semialgebraic (actually PL) covering

f : T(M)n → |K|(M) = dom(G).

But on dom(G) we have a definable group operation that can be lifted to Tn(M)
via f (by uniform lifting of paths). So we get a definable group operation ∗ on
Tn(M) making f into a definable covering homomorphism with a finite kernel
Γ < (Tn(M), ∗). Note that ∗ may not coincide with the natural group operation
on Tn(M) (the sum mod 1), so in particular it need not be semialgebraic. In any
case however (Tn(M), ∗) is an abelian group. Therefore there is k such that Γ is
contained in the k-torsion subgroup (Tn(M), ∗)[k] of (Tn(M), ∗). Our next goal is
to obtain a definable group homomorphism

h : G→ (T(M)n, ∗).
Write for simplicity Tn for Tn(M). Now G is definably isomorphic to (Tn, ∗)/Γ and
since Γ < (Tn, ∗)[k] there is a definable covering from (Tn, ∗)/Γ to (Tn, ∗)/(Tn, ∗)[k].
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The latter group is definably isomorphic to (Tn, ∗) because the k-torsion subgroup
of a definably compact definably connected abelian group H is the kernel of the
surjective homomorphism H → H sending x to kx (we need the fact that such
groups are divisible, as proved in [EdOt:04, Theorem 2.1]). Composing we obtain
a finite definable covering homomorphism h : G → (Tn, ∗). As already remarked
∗ may not be semialgebraic. However on Tn we also have a semialgebraic group
operation · (the sum mod 1). The idea is to use the covering map h (seen just
as a continuous map, not as a group homomorphism) to lift the semialgebraic
group operation · to a semialgebraic group operation on dom(G). The problem
however is that h is not semialgebraic. However by [EdJoPe:10, Corollary 2.2], each
definable cover of a semialgebraic group, is equivalent to a semialgebraic cover. So
there is a semialgebraic covering homomorphism h′ : G′ → (Tn, ·) and a definable
homeomorphism ψ : dom(G) → dom(G′) commuting with h and h′. But dom(G)
and dom(G′) are semialgebraic, so by the Hauptvermutung (combined with the
triangulation theorem) there is a semialgebraic homeomorphism φ : dom(G) →
dom(G′). Now take h′ ◦φ. This is a semialgebraic covering from dom(G) to (Tn, ·),
and it can be used to lift · to a semialgebraic group operation on dom(G). �

Let us prove the missing fact needed in the above proof.

Fact 3.3. Let K be a finite simplicial complex such that |K| is an n-dimensional
closed definable manifold. Then |K| is a PL-manifold, namely the star of each
vertex of K is PL-homeomorphic to the standard n-simplex.

Proof. In this proof simplicial complexes are assumed to be finite but not nec-
essarily closed. We will use without mention the well-known invariance of stars
in piecewise linear topology, i.e., the star of a vertex of a closed simplicial com-
plex is PL-isomorphic to the star of that vertex in any simplicial subdivision.
Let {(U1, f1), . . . , (Us, fs)} be a definable atlas of |K|. That is, each Ui is a de-
finable open subset of |K|, each fi is a definable homeomorphism from Ui to a
definable open subset Vi of Mn (with the usual property on transition maps)
and |K| =

⋃s
i=1 Ui. By shrinking of coverings, we can find definable open sub-

sets W1, . . . ,Ws of |K| such that |K| =
⋃s

i=1Wi and Wi ⊂ W i ⊂ Ui for each
i = 1, . . . , s. Moreover, by the triangulation theorem we can assume that each Vi
is the realization of an open finite simplicial complex and fi(Wi) the realization
of a subcomplex. Considering a barycentric subdivision if necessary, we can also
assume that the star in Vi of each vertex of fi(Wi) is a closed finite subcomplex. In
particular, since Vi is an open subset of Mn, it follows that the star of each vertex
in fi(Wi) is PL-isomorphic to a standard n-simplex.

Now, again by the triangulation theorem, there exist a definable homeomorphism
ψ : |L| → |K| compatible with the definable sets Ui, Wi and Wi. Since ψ−1(Wi)
and fi(Wi) are definable homeomorphic, by the o-minimal Hauptvermutung they
are PL-isomorphic. Now, given a vertex v of L, the star of v in L is contained
in some Wi and therefore is PL-isomorphic to the star of some vertex of fi(Wi).
Hence, the star of each vertex of L is PL-isomorphic to a standard n-simplex.

By the o-minimal Hauptvermutung, there exist a PL-isomorphism of |L| and
|K|. Hence we deduce that the star of each vertex of K is PL-isomorphic to the
star of a vertex of L, which in turn is PL-isomorphic to a standard n-simplex. �

We have thus completed the proof of the Lemma, and Theorem 3.1 follows.
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A possible attempt to deal with the case dim(G) = 4 is to replace G with G×T1.
So by Theorem 3.1 there is definable homeomorphism from G×T1 to T5. However
we do not know whether this implies that there is a definable homeomorphism
from G to T4. Finally let us observe that, even in dimension 4, we can always
assume dom(G) = |K|(M) (after a triangulation) and conclude that |K|(R) is
homotopy equivalent to T4(R) (reasoning as in the proof of Lemma 3.2). Moreover
by [FrQu:90, §11.5] a fourth dimensional PL-manifold homotopy equivalent to a
standard torus is homeomorphic to it (although not necessarily PL-homeomorphic).
So in any case we conclude that |K|(R) is homeomorphic to T4(R), but since a priori
the homeomorphism could be quite wild, there is no obvious way to obtain from
these data a definable homeomorphism from |K|(M) to T4(M).

Acknowledgements

We thank M. Mamino for many discussions regarding the topics of this paper,
and R. Benedetti, R. Frigerio, A. Ranicki, M. Shiota and C.T.C. Wall for their
comments concerning low dimensional topology and classification of manifolds. This
work was done while the first author was visiting the Department of Mathematics
of the University of Pisa in the period 6 January - 27 July 2010.

References

[Ba:10] E. Baro, On the o-minimal LS-category, to appear in Israel J. Math.
[BaOt:10] E. Baro and M. Otero, On o-minimal homotopy, Quart. J. Math. 61 (3) (2010), 275–289.

[BeMa:10] A. Berarducci and M. Mamino, On the homotopy type of definable groups in an o-

minimal structure, to appear in J. London Math. Soc.
[BeMaOt:08] A. Berarducci, M. Mamino and M. Otero, Higher homotopy of groups definable in

o-minimal structures, Israel J. Math. 180 (2010), 143-161.

[BOPP:05] A. Berarducci, M. Otero, Y. Peterzil and A. Pillay, A descending chain condition for
groups definable in o-minimal structures, Ann. Pure Appl. Logic 134 (2005), 303–313.

[Co:09t] A. Conversano, On the connections between definable groups in o-minimal structures

and real Lie groups: the non-compact case, PhD. Thesis, University of Siena, 2009.
[Co:09] A. Conversano, Lie-like decompositions of groups definable in o-minimal structures, 2009,

arXiv:0912.4753.

[vdD:86] L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nonde-
finability results, Bull. AMS 15 (1986), 189-193.

[vdD:98] L. van den Dries, Tame topology and o-minimal structures, London Mathematical Soci-
ety Lecture Note Series, 248, Cambridge University Press, 1998.

[EdJoPe:10] M. Edmundo, G. Jones and N. Peatfield, Invariance results for definable extensions

of groups, Arch. Math. Logic, DOI: 10.1007/s00153-010-0196-5, 2010.
[EdOt:04] M. Edmundo and M. Otero, Definably compact abelian groups, J. Math. Logic 4 (2)

(2004), 163-180.

[F:96] F.T. Farrell, Lectures on surgical methods in rigidity, Tata Institute of Fundamental Re-
search, Springer-Verlag, Berlin, 1996.

[FrQu:90] M.H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Mathematical Series

(39), Princeton University Press, Princeton, NJ, 1990.
[HsSi:69] W.C. Hsiang and J.L. Shaneson, Fake tori, the annulus conjecture, and the conjectures

of Kirby, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 687–691.

[KiSi:77] R.C. Kirby and L.C. Siebenmann, Foundational essays on topological manifolds, smooth-
ings, and triangulations, Annals of Mathematics Studies (88), Princeton University Press,

Princeton, N.J., University of Tokyo Press, Tokyo, 1977.

[Ma:10] M. Mamino, Splitting definably compact groups in o-minimal structures, 2010,
arXiv:1001.2229.

[PeSta:05] Y. Peterzil and S. Starchenko, On torsion-free groups in o-minimal structures, Illinois
J. Math., 49 (4) (2005), pp. 1299–1321.



TOPOLOGY OF DEFINABLE ABELIAN GROUPS IN O-MINIMAL STRUCTURES 7

[PeSte:99] Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of o-
minimal groups, J. London Math. Soc. 59 (2) (1999), 769–786.

[Pi:88] A. Pillay, On groups and fields definable in o-minimal structures, Journal of Pure and

Applied Algebra, vol. 53 (3) (1988), 239–255.
[Pi:04] A. Pillay, Type-definability, compact Lie groups, and o-minimality, J. Math. Logic 4 (2004),

147-162.

[Sh:97] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics, 150,
Birkhuser Boston, Inc., Boston, MA, 1997.

[Sh:10] M. Shiota, PL and differential topology in o-minimal structures, 2010, arXiv:1002.1508.
[St:94] A.W. Strzebonski, One dimensional groups definable in o-minimal structures, J. Pure

Appl. Algebra 96 (2) (1994), 203-214.

[Wa:69] C.T.C. Wall, On the homotopy tori and the annulus theorem, Bull. London Math. Soc.
1 (1969), 95–97.

[Wa:99] C.T.C. Wall, Surgery on compact manifolds, Mathematical Surveys and Monographs

(69), American Mathematical Society, Providence, RI, 1999.
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