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Abstract

Let R be an o-minimal structure over a real closed field R. Given a

simplicial complex K and some definable subsets S1, . . . , Sl of its realization

|K| in R we prove that there exist a subdivision K′ of K and a definable

triangulation φ′ : |K′| → |K| of |K| partitioning S1, . . . , Sl with φ′ definably

homotopic to id|K|. As an application of this result we obtain the semialge-

braic Hauptvermutung.
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1 Introduction

Let R be an o-minimal structure over a real closed field R. We are specially
interested in the non-Archimedean case, as for instance the field R(t)∧ of
Puiseux series in t over R. This field R(t)∧ being real closed is already
an o-minimal structure. Moreover, by a recent result of L. Lipshitz and Z.
Robinson in [6], R(t)∧ together with the functions f : [−t, t]n → R induced
by the formal power series in R[[ξ1, . . . , ξn]] is also o-minimal.

In the semialgebraic or more generally in the o-minimal context, a basic
tool to study definable sets is the Triangulation Theorem: given a definable
set S and some definable subsets S1, . . . , Sl of S, there exist a simplicial com-
plex K and a definable homeomorphism φ : |K| → S partitioning S1, . . . , Sl.
Further study of S may lead to consider new definable subsets S′1, . . . , S

′
l′

of S. In this situation, we would like to both preserve the already obtained
triangulation and partition the new sets. However, techniques as repeated
barycentric subdivisions are not available in this context because of the lack
of Lebesgue number. We solve this problem by proving the following.

∗Partially supported by GEOR MTM2005-02568
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Theorem 1.1. Let S be definable set and let S1, . . . , Sl be some defin-
able subsets of S. Let (K,φ) be a definable triangulation of S partitioning
S1, . . . , Sl. Then for any S′1, . . . , S

′
l′ definable subsets of S there exist a sub-

division K ′ of K and a definable triangulation φ′ : |K ′| → S partitioning
S1, . . . , Sl, S

′
1, . . . , S

′
l′ such that φ′ is definably homotopic to φ.

We apply the above result (in the semialgebraic case) to prove the semi-
algebraic Hauptvermutung.

Theorem 1.2 (Semialgebraic Hauptvermutung). Let R be a real closed
field. Let K and L be two closed simplicial complexes in R and let f :
|K| → |L| be a semialgebraic homeomorphism. Then f is semialgebraically
homotopic to a simplicial isomorphism g : |K ′| → |L′| between subdivisions
K ′ and L′ of K and L, respectively.

This result is proved for the real field by M.Shiota and M.Yokoi in [7]. In [2]
M. Coste proves a weaker version of the semialgebraic Hauptvermutung, but
strong enough to prove the unicity and strong effectiveness of semialgebraic
triangulations. Namely, he proves that under the hypotheses of Theorem
1.2 there exists a simplicial isomorphism g between two subdivisions of K
and L. However no relation between f and g is established.

In [8], A. Woerheide proves the existence of an o-minimal simplicial
homology theory. In the present paper we give an alternative proof to Wo-
erheide’s result by showing that the natural adaptation of the classical ap-
proach to the o-minimal context can be followed just replacing the Simplicial
Approximation Theorem by a corollary (see Corollary 4.4) to Theorem 1.1
(see Remark 4.6).

In [1] we give another application of the results of this paper identify-
ing the o-minimal and semialgebraic setting modulo definable homotopy.
Namely, we prove that any two semialgebraic functions which are definably
homotopic are also semialgebraically homotopic. This allows us to transfer
some results of semialgebraic homotopy to the o-minimal setting.

By definable we mean definable in the o-minimal structure R with pa-
rameters in R. All maps and functions are assumed to be continuous. Given
a definable set S and some definable subsets S1, . . . , Sl of S we say that
(K,φ) is a triangulation in Rp of S partitioning S1, . . . , Sl, and denoted by
(K,φ) ∈ ∆(S;S1, . . . , Sl), if K is a simplicial complex formed by a finite
number of (open) simplices in Rp and φ : |K| → S is a definable homeomor-
phism, with |K| ⊂ Rp, such that each Si is the union of the images by φ of
some simplices of K. Recall that given a definable set S the frontier of S is
the set ∂S = S \ S.

All the results mentioned above are based on the following notion and
theorem.
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Definition 1.3. Let K be a simplicial complex in Rm and S1, . . . , Sl defin-
able subsets of |K|. A triangulation (K ′, φ′) ∈ ∆(|K|;S1, . . . , Sl) is a nor-
mal triangulation of the complex K partitioning S1, . . . , Sl, denoted
by (K ′, φ′) ∈ ∆NT (|K|;S1, . . . , Sl), if it satisfies the following conditions:
(i) (K ′, φ′) ∈ ∆(|K|;S1, . . . , Sl, σ)σ∈K
(ii) K ′ is a subdivision of K, and
(iii) for every τ ∈ K ′ and σ ∈ K, if τ ⊂ σ then φ′(τ) ⊂ σ.

Note that the definition depends not only on |K| but also on K and that
the interesting case is when the subsets of |K| are nonempty (otherwise
(K, id) is a normal triangulation). It is easy to see that φ′(|L|) = |L| for any
subcomplex L of K. Also observe that condition (iii) cannot be deduced
from (i) and (ii) (we can easily find a counterexample by taking as simplicial
complex the standard 2-simplex and as homeomorphism a symmetry with
respect to an angle bisector).

Our aim is to prove the existence of normal triangulations.

Theorem 1.4 (Normal Triangulation Theorem). Let K be a simplicial
complex and let S1, . . . , Sl be definable subsets of |K|. Then there exists a
triangulation (K ′, φ′) ∈ ∆NT (|K|;S1, . . . , Sl).

The paper is organized as follows. Section 2 contains some definitions
and results from [4] that we will need in the following section. Section 3 is
devoted to prove the existence of independent triangulations (see Definition
3.1 and Theorem 3.2). The existence of independent triangulations allows
us to prove the Normal Triangulation Theorem in Section 4, where we also
prove Theorem 1.1 and give the applications described above. The reader
may skip Sections 2 and 3 at a first reading, only the statement of Theorem
3.2 is used later. We also present an Appendix with some examples which
motivate the properties introduced in this paper. For basic results on o-
minimality we refer to [4].

The results of this paper are part of the author’s Ph.D. dissertation.
Acknowledgements. The author would like to thanks Professor Margarita
Otero for all the helpful suggestions about both the style and the contents
of the present paper. He also thanks Professor J.F. Fernando for reading
and commenting on an early version.

2 Preliminaries

We will make extensively use of the following notions and results from Chap-
ter 8 of [4]. We include them here to both make this paper readable and be
able to change slightly the notation. In particular note that for a triangu-
lation (K,φ) of S we will use the classical notation φ : |K| → S instead of
the notation φ : S → |K| used in [4]. Recall that given a definable set S the
boundary of S is the set bd(S) = S \ int(S).
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We recall that a triangulated set is the pair (S, φ(K)), where S is a defin-
able set, (K,φ) ∈ ∆(S) and φ(K) = {φ(σ) : σ ∈ K}. Given a triangulated
set (S,P) and C,D ∈ P we call D a face of C if D ⊂ cl(C), a proper face
of C if D ⊂ cl(C) \ C and a vertex of C if it has dimension 0.

A multivalued function F on a triangulated set (S,P) is a finite collection
of functions, F = {fC,i : C ∈ P, 1 ≤ i ≤ k(C)}, k(C) ≥ 0, each function
fC,i : C → R definable and fC,1 < . . . < fC,k(C). We set

F |C = {fC,i : 1 ≤ i ≤ k(C)}, for C ∈ P,
PF = {Γ(f) : f ∈ F} ∪ {(fC,i, fC,i+1) : C ∈ P, 1 ≤ i < k(C)},
SF = the union of the sets in PF .

Such multivalued function F is called closed if for each pair C,D ∈ P
with D a proper face of C and each f ∈ F |C there is g ∈ F |D such that
g(y) = limx→y f(x) for all y ∈ D. Note that then each f ∈ F , say f ∈ F |C ,
extends continuously to a definable function cl(f) : cl(C)∩S → R such that
the restrictions of cl(f) to the faces of C in P belong to F .

We call a multivalued function F superfull if it is closed, k(C) ≥ 1 for
all C ∈ P, and it satisfies the following two conditions:
(A) for each pair C,D ∈ P with D a proper face of C and each g ∈ F |D we

have g = cl(f)|D for some f ∈ F |C , where cl(f) is the continuous extension
of f to cl(C) ∩ S, and
(B) if f1, f2 ∈ F |C , f1 6= f2, then there exists at least one vertex of C where
cl(f1) and cl(f2) take different values.

Note that our definition of superfull is stronger of that of full in [4]
(where only condition (A) is required –see Definition VIII.2.5–). In general,
we can convert a full multivalued function in a superfull one by taking the
first barycentric subdivision. However, the properties of triangulations we
want to consider are not preserved by taking barycentric subdivisions (see
Example 5.2 in Appendix).

Recall that given a definable S ⊂ Rm, (K,φ) ∈ ∆(S) and a definable
S′ ⊂ S ×R, a triangulation (L,ψ) ∈ ∆(S′) in Rn+1 is said to be a lifting of
(K,φ) if K = {πn(σ) : σ ∈ K} and the diagram

|L| ψ //

πn

��

S′

πm

��
|K|

φ
// S

commutes where πm and πn are the projections maps on the first m and n
coordinates, respectively.

For the proof of the following technical fact see VIII.2.6 in [4]. We will
show in Lemma 3.4 how to lift a triangulation via a superfull multivalued
function using this fact.
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Fact 2.1. Let (a0, . . . , an) be an n-simplex in Rp and rj , sj ∈ R, rj 6 sj,
for j = 0, . . . , n and rj < sj for some j. Write bj = (aj , rj), cj = (aj , sj) ∈
Rp+1. Then (b0, . . . , bj , cj , . . . , cn) is an (n + 1)-simplex in Rp+1 for any
0 6 j 6 n such that bj 6= cj. Moreover, the collection of all (n+1)-simplices
(b0, . . . , bj , cj , . . . , cn) with bj 6= cj and all their faces is a closed simplicial
complex.

3 Triangulations with the independence property

In order to prove the existence of normal triangulations, we now introduce
triangulations satisfying an independence property which may be of interest
by itself.

Definition 3.1. Let (K,φ) ∈ ∆(S), where S is a closed and bounded defin-
able set in Rm. We say that (K,φ) is an independent triangulation if
(i) for every n-simplex τ = (v0, . . . , vn) ∈ K we have that φ(v0), . . . , φ(vn) ∈
Rm are affinely independent, that is, they span an n-simplex
τφ := (φ(v0), . . . , φ(vn)) in Rm, and
(ii) if τ1 and τ2 are different simplices of K then τφ1 and τφ2 are disjoint.

Note that an independent triangulation induces in Rm –via the images by
φ of the vertices of K– a copy of K. The aim of this section is to prove the
following.

Theorem 3.2 (Independent Triangulation Theorem). Let S ⊂ Rm be
a closed and bounded definable set and let S1, . . . , Sl be definable subsets of
S. Then there exists an independent triangulation (K,φ) ∈ ∆(S;S1, . . . , Sl).

We will show that any closed and bounded definable set has an independent
triangulation by an induction argument and following closely the scheme
of the proof of the Triangulation Theorem in [4]. In the induction step we
will need the existence of triangulations with the following technical prop-
erty: a triangulation (K,φ) ∈ ∆(S;S1, . . . , Sl) of a closed and bounded
definable set S and some definable subsets S1, . . . , Sl of S is said to be
small with respect to S1, . . . , Sl if for every τ = (v0, . . . , vn) ∈ K with
φ(v0), . . . , φ(vn) ∈ Sj we have that φ(τ) ⊂ Sj . For examples of triangula-
tions without these properties see Example 5.1 in Appendix.

Without mention we will use the following fact: given a definable set S
and some definable subsets of S, a triangulation of S which partitions this
subsets also partitions their closures and their frontiers in S.

Remark 3.3. Let S be a closed and bounded definable set and let S1, . . . , Sl
be definable subsets of S. Let (K,φ) ∈ ∆(S;S1, . . . , Sl) and let (K̃, φ̃) ∈
∆(S;φ(σ))σ∈K small w.r.t. ∂φ(σ), σ ∈ K. Then,
(a) if τ ∈ K̃ and σ ∈ K are such that φ̃(τ) ⊂ φ(σ) then there exists a
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vertex v ∈ V ert(τ) with φ̃(v) ∈ φ(σ) (in particular if σ is not a vertex then
φ̃(τ) 6= φ(σ)), and
(b) (K̃, φ̃) ∈ ∆(S;S1, . . . , Sl) and is small w.r.t. S1, . . . , Sl.

Proof. (a) Let τ ∈ K̃ and σ ∈ K. Suppose that φ̃(τ) ⊂ φ(σ). Exclude the
trivial case of τ being a vertex and assume for all v ∈ V ert(τ) we have that
φ̃(v) /∈ φ(σ) , i.e., φ̃(v) ∈ ∂φ(σ). By smallness φ̃(τ) ⊂ ∂φ(σ) = ∂φ(σ), a
contradiction.
(b) It is clear that (K̃, φ̃) ∈ ∆(S;S1, . . . , Sl). To show smallness w.r.t.
S1, . . . , Sl, let τ = (v0, . . . , vn) ∈ K̃ and j ∈ {1, . . . , l} be such that φ̃(vi) ∈
Sj , for all i = 0, . . . , n. Let σ ∈ K be such that φ̃(τ) ⊂ φ(σ). By (a) there
exists a vertex vi0 ∈ V ert(τ) with φ̃(vi0) ∈ φ(σ). Hence, since (K,φ) also
partitions Sj , φ(σ) ⊂ Sj . Therefore φ̃(τ) ⊂ Sj .

The following lemma will be useful in the induction step. Its proof is an
adaptation –taking care of independence– of that of Lemma VIII.2.8 in [4].

Lemma 3.4. Let A ⊂ Rm+1 be a closed and bounded definable set and
let (K,φ) ∈ ∆(A) be an independent triangulation in Rp. Let F be a su-
perfull multivalued function on (A,φ(K)). Then (K,φ) can be lifted to an
independent triangulation (L,ψ) ∈ ∆(AF ;D)D∈φ(K)F in Rp+1.

Proof. The construction of (L,ψ) is that of Lemma VIII.2.8 in [4]. Un-
fortunately we will need to introduce the notation to check that (L,ψ) is
independent. We construct L and ψ above each C ∈ φ(K). Let C ∈ φ(K)
and let a0, . . . , an be the vertices of φ−1(C) listed in some prefixed or-
der on V ert(K). Let f < g be two successive members of F |C . Put
rj = cl(f)(φ(aj)), sj = cl(g)(φ(aj)), bj = (aj , rj), cj = (aj , sj). Let L(f, g)
be the complex in Rp+1 constructed in Fact 2.1 (since F satisfies condi-
tion (B) of superfullness we do not need to take a barycentric subdivision
as in [4]). Define the homeomorphism ψ−1

f,g : [cl(f), cl(g)] → |L(f, g)| by
ψ−1
f,g(x, tcl(f)(x) + (1− t)cl(g)(x)) = tΦb(x) + (1− t)Φc(x), 0 ≤ t ≤ 1, where

Φb(x) and Φc(x) are the points of (b0, . . . , bn) and (c0, . . . , cn) with the same
affine coordinates with respect to b0, . . . , bn and c0, . . . , cn as φ−1(x) has with
respect to a0, . . . , an. We also define for each f ∈ F |C the simplicial com-
plex L(f) in Rp+1 as the n-simplex (b0, . . . , bn) with bj = (aj , cl(f)(φ(aj))),
and all its faces. Then ψ−1

f : Γ(cl(f)) → |L(f)| is by definition the home-
omorphism given by ψ−1

f (x, cl(f)(x)) = Φb(x), where Φb(x) is defined as
before. Finally we consider the simplicial complex L which is the union of
all simplicial complexes L(f, g) and L(f) and the definable homeomorphism
ψ : |L| → AF such that ψ|L(f,g) = ψf,g and ψ|L(f) = ψf .

Let us show that the triangulation (L,ψ) is independent. Let C ∈
φ(K) and two successive functions f, g ∈ F |C . Consider the triangulation
(L(f, g), ψf,g) constructed at the beginning of the proof (and with the same
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notation). Given v ∈ V ert(L(f, g)) then either v = bj or v = cj for some
j. Hence either ψf,g(v) = ψf,g(bj) = (φ(aj), rj) or ψf,g(v) = ψf,g(cj) =
(φ(aj), sj). Denote (φ(aj), rj) by b̃j and (φ(aj), sj) by c̃j . Observe that
by independence of (K,φ) we have that φ(a0), . . . , φ(an) are affinely inde-
pendent and therefore, by Fact 2.1, (̃b0, . . . , b̃j , c̃j , . . . , c̃n) are also affinely
independent for any j such that cj 6= bj . Moreover, also by Fact 2.1, the
(n + 1)-simplices (̃b0, . . . , b̃j , c̃j , . . . , c̃n) with b̃j 6= c̃j and all their faces is a
closed simplicial complex which we will denote by L(f, g)ψf,g . In a similar
way, we construct a closed simplicial complex L(f)ψf for each f ∈ F |C ,
C ∈ φ(K). Since (K,φ) is independent, a routine argument shows that the
collection Lψ of all simplices of all closed simplicial complexes L(f, g)ψf,g

and L(f)ψf is a closed simplicial complex. To finish the proof it is enough
to observe, using the notation of Definition 3.1, that σψ is a simplex of Lψ

for every σ ∈ L.

From the proof of Lemma 3.4 we get the following.

Corollary 3.5. There is a lifting (L,ψ) as in the conclusion of Lemma 3.4
satisfying the following. For any τ ∈ L with ψ(τ) ⊂ D for some D ∈ φ(K)F ,
C = π(D) ∈ φ(K), and φ−1(C) = (a0, . . . , an), we have
(i) π(ψ(τ)) = C,
(ii) if D = (f, g)C for some successive f, g ∈ F |C , f < g, then τ is ei-
ther an (n + 1)-simplex (b0, . . . , bj , cj , . . . , cn), bj 6= cj, or is an n-simplex
(b0, . . . , bj−1, cj , . . . , cn), bj 6= cj, where bi = (ai, cl(f)(φ(ai))) and ci =
(aj , cl(g)(φ(ai))), i = 0, . . . , n, and
(iii) if D = Γ(f) for some f ∈ F |C , then τ is an n-simplex (b0, . . . , bn),
where bi = (ai, cl(f)(φ(ai))), i = 0, . . . , n. Moreover, ψ(τ) = Γ(f) = D.

We will also use next lemma in the induction step. We show how small-
ness allow us to modify a multivalued function satisfying (A) of superfullness
to achieve a superfull one.

Lemma 3.6. Let A be a closed and bounded definable set, let (K,φ) ∈ ∆(A)
and F be a closed multivalued function on the triangulated set (A,φ(K))
satisfying condition (A) of superfull. Let (K0, φ0) ∈ ∆(A;φ(σ))σ∈K small
w.r.t. ∂φ(σ), σ ∈ K. Then, the multivalued function F0 on (A,φ0(K0)),
obtained by the restrictions of the functions in F to the sets of φ0(K0), is
superfull.

Proof. Clearly the multivalued function F0 is closed and satisfies (A) of
superfullness. Let us check that F0 satisfies also (B) of superfullness. Let
C = φ0(τ), where τ ∈ K0, and let f1, f2 ∈ F0|C be two different functions.
By construction, there exist σ ∈ K and two different f̃1, f̃2 ∈ F |φ(σ) such
that C ⊂ φ(σ) and f̃i|C = fi, i = 1, 2. By Remark 3.3(a), there exists a
vertex φ0(v) of C such that φ0(v) ∈ φ(σ). Then cl(fi)(φ0(v)) = f̃i(φ0(v)),
i = 1, 2, so cl(f1) and cl(f2) take different values on φ0(v).
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We are now ready to prove the main result of this section.

Proof of Theorem 3.2. In fact, we will prove by induction on m a stronger
result: Given a closed and bounded definable set S ⊂ Rm and some definable
subsets S1, . . . , Sl of S, there exists a triangulation (K,φ) ∈ ∆(S;S1, . . . , Sl)
which is both independent and small w.r.t. S1, . . . , Sl.

The case m = 0 is trivial. Suppose that the theorem holds for a cer-
tain m and let us prove it for m + 1. Consider the definable sets T =
bd(S) ∪ bd(S1) ∪ · · · ∪ bd(Sl) (which has dimension less than m + 1) and
A = π(T ), where π denotes the projection on the first m coordinates. By
the proof of the Triangulation Theorem in [4] we can assume that:
(a) for every a ∈ A the fiber Ta = {x ∈ R : (a, x) ∈ T} is finite, and
(b) there exist a triangulation (K,φ) ∈ ∆(A;π(S1), . . . , π(Sl)) and a closed
multivalued function F on the triangulated set (A,φ(K)) satisfying condi-
tion (A) of superfullness and such that S, Si, Si and S are finite unions of
sets in φ(K)F .

Moreover, by our induction hypothesis we can assume in (b) that (K,φ)
is independent. Note that (a) is obtained in [4] by applying a certain linear
automorphism which preserves independence and smallness. In our case –
aiming for independence– we now first modify the multivalued function (see
M1 below) to obtain a superfull one and hence being able to apply our lift-
ing Lemma 3.4. Unfortunately, to be able to execute M1 we make essential
use of the smallness property of the induction hypothesis. A trivial second
modification (see M2 below) will allows us to prove smallness (see Example
5.3 in the Appendix for a justification of this modification).
M1. By induction hypothesis there exists an independent triangulation
(K1, φ1) ∈ ∆(A;φ(σ))σ∈K small w.r.t. ∂φ(σ), σ ∈ K. Let F1 be the multi-
valued function on (A,φ1(K1)) obtained by the restrictions of the functions
in F to the sets of φ1(K1). By Lemma 3.6 the multivalued function F1 is
superfull.
M2. Given C ∈ φ1(K1) and two successive functions f, g ∈ F1|C with f < g,
we consider the function f+g

2 on C. Let F2 be the multivalued function ob-
tained by adding to F1 the new functions f+g

2 for each pair of successive
functions f, g ∈ F1|C , C ∈ φ1(K1), f < g. The new multivalued function F2

on φ1(K1) is also superfull.
By Lemma 3.4, we can lift (K1, φ1) to an independent triangulation

(L0, ψ0) ∈ ∆(AF2 ;D)D∈φ1(K1)F2 . Finally, let L = {σ ∈ L0 : ψ0(σ) ⊂ S}.
Clearly (L,ψ) ∈ ∆(S;S1, . . . , Sl) is independent, where ψ = ψ0||L|.

It remains to prove that (L,ψ) is small w.r.t. S1, . . . , Sl. Let τ =
(v0, . . . , vn) ∈ L and i ∈ {1, . . . , l} be such that ψ(vr) ∈ Si for all r =
0, . . . , n. We show that ψ(τ) ⊂ Si. Let D ∈ φ1(K1)F2 be such that
ψ(τ) ⊂ D and denote by C = π(D) ∈ φ1(K1). Note that by Corollary
3.5(i), π(ψ(τ)) = π(D) = C ∈ φ1(K1). We first consider the case that D is
the graph of a function of F2. By Corollary 3.5(iii), we have that D = ψ(τ).
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Claim 1. For any C ∈ φ1(K1), f ∈ F2|C and i ∈ {1, . . . , l} if
(w, cl(f)(w)) ∈ Si for every vertex w of C then Γ(f) ⊂ Si.

Then D ⊂ Si modulo Claim 1. Now consider the case that D = (f, g)C
for two successive functions f, g ∈ F2|D, f < g, and suppose that D * Si.
Then D ⊂ Si

c. By definition of F2 we can assume that there exist two
successive functions f1, g1 ∈ F1|C , f1 < g1, such that f = f1 and g =
f1|C+g1|C

2 . Therefore D ⊂ D̃ := (f1, g1)C . Since D ⊂ Si
c then D̃ ⊂ Si

c. At
this point we claim that

Claim 2. The set
D̃cil = {(x, y) : x ∈ C \ C, cl(f1)(x) 6= cl(g1)(x), cl(f1)(x) < y < cl(g1)(x)}

is contained in Si
c.

Assume also that we have proved Claim 2. Then by Corollary 3.5(ii),
and following its notation, we have two cases: either τ is an n-simplex
(b0, . . . , bj−1, cj , . . . , cn) with bj 6= cj and φ−1

1 (C) = (a0, . . . , an), or τ is an
n-simplex (b0, . . . , bj , cj , . . . , cn−1) with bj 6= cj and φ−1

1 (C) = (a0, . . . , an−1).
In both cases, since bj 6= cj , we have that cl(f)(φ1(aj)) 6= cl(g)(φ1(aj)) and
therefore cl(f1)(φ1(aj)) 6= cl(g1)(φ1(aj)). Since

cl(g)(φ1(aj)) =
cl(f1)|C + cl(g1)|C

2
(φ1(aj)),

we deduce that cl(f1)(φ1(aj)) < cl(g)(φ1(aj)) < cl(g1)(φ1(aj)) and hence
ψ(cj) = (φ1(aj), cl(g)(φ1(aj))) ∈ D̃cil. By Claim 2, ψ(cj) /∈ Si, a contradic-
tion. We conclude that ψ(τ) ⊂ D ⊂ Si as required.

It remains to prove the two claims.
Proof of Claim 1. Let f ∈ F2|C , C ∈ φ1(K1) and i ∈ {1, . . . , l} be such
that (w, cl(f)(w)) ∈ Si for every vertex w of C. Suppose first that f ∈ F1|C
and Γ(f) * Si. Since F1 is the restrictions of the functions of F to the sets of
φ1(K1), there exists f̃ ∈ F | eC , C̃ ∈ φ(K), C ⊂ C̃, such that f̃ |C = f . Since
Γ(f) * Si, we have that Γ(f̃) * Si. Therefore Γ(f̃) ⊂ Si

c. Since (K1, φ1)
is small w.r.t. ∂φ(σ), σ ∈ K, by Remark 3.3(a) there exists one vertex w0

of C such that w0 ∈ C̃. Therefore (w0, cl(f)(w0)) = (w0, f̃(w0)) ∈ Γ(f̃)
does not lie in Si, a contradiction. Suppose now that f = f0+g0

2 , for two
successive functions f0, g0 ∈ F1|C , f0 < g0. Then Γ(f) ⊂ (f0, g0)C . Since
F1 is the restrictions of the functions of F to the sets of φ1(K1), there exist
f̃0, g̃0 ∈ F | eC , C̃ ∈ φ(K), C ⊂ C̃, such that f̃0|C = f0 and g̃0|C = g0.
Suppose Γ(f) * Si. Then (f0, g0)C * Si and therefore (f̃0, g̃0) eC * Si.
Hence (f̃0, g̃0) eC ⊂ Si

c. By Remark 3.3(a), there exists one vertex w0 of
C such that w0 ∈ C̃. Therefore (w0, cl(f)(w0)) = (w0,

cl(f0)+cl(g0)
2 (w0)) =

(w0,
ef0+eg0

2 (w0)) ∈ (f̃0, g̃0) eC does not lie in Si, a contradiction.
Proof of Claim 2. Suppose there is (x0, y0) ∈ D̃cil such that (x0, y0) ∈ Si.
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Since φ1(K1)F2 partitions Si, for all y ∈ (cl(f1)(x0), cl(g1)(x0)) we have that
(x0, y) ∈ Si. Moreover, we will show that (x0, y) ∈ bd(Si) for every y ∈
(cl(f1)(x0), cl(g1)(x0)). Fix y ∈ (cl(f1)(x0), cl(g1)(x0)). Since x0 ∈ C \ C,
by the Curve Selection Lemma, VI.1.5 in [4], there exists a definable curve
γ(t), t ∈ (0, 1), such that limt→1 γ(t) = x0 and γ(t) ∈ C, for all t ∈ (0, 1).
Consider the curve

γy(t) = (γ(t), f1(γ(t)) + (g1(γ(t))− f1(γ(t)))
(

y − f1(x0)
g1(x0)− f1(x0)

)
), t ∈ (0, 1).

Note that γy(t) ∈ D̃ for all t ∈ (0, 1) and limt→1 γy(t) = (x0, y). Therefore

(x0, y) ∈ D̃ ⊂ Si
c ⊂ int(Si)c = int(Si)c. We conclude that (x0, y) ∈ bd(Si).

We have shown that (x0, y) ∈ bd(Si) for all y ∈ (cl(f1)(x0), cl(g1)(x0)),
which is a contradiction because the fiber of T in x0 is finite (see (a) at the
beginning of the proof).

We have the following corollary to the proof of Theorem 3.2.

Corollary 3.7. Let S ⊂ Rm be a closed and bounded definable set and
let S1, . . . , Sl be definable subsets of S. Then there exists a triangulation
(K,φ) ∈ ∆(S;S1, . . . , Sl) which is both independent and small with respect
to S1, . . . , Sl.

4 Normal triangulations

We begin this section with a key lemma for the proof of the Normal Triangu-
lation Theorem. It can be easily proved making use of o-minimal homology.
However, we only use the Open Mapping Theorem which has been proved
(independently of o-minimal homology) by J. Johns in [5].

Lemma 4.1. Let σ ⊂ Rn be an n-simplex and let f : σ → σ be an injective
definable map. If f(∂σ) ⊂ ∂σ then f(σ) = σ (and hence f(∂σ) = ∂σ).

Proof. Since σ is closed and bounded, f(σ) is closed. By the Open Mapping
Theorem, f(σ) is open in Rn. This implies that σ ∩ f(σ), which is closed
in σ since σ ∩ f(σ) = σ ∩ f(σ), is also open in σ. On the other hand σ is
definably connected and, since f is injective, dim(f(σ)) = n, so f(σ) cannot
be included in ∂σ which has smaller dimension. Hence σ∩f(σ) = σ. Finally,
since f(σ) ⊂ int(f(σ)) ⊂ σ, we conclude that f(σ) = σ.

Remark 4.2. It is enough to prove the Normal Triangulation Theorem for
closed simplicial complexes. For let K be a simplicial complex and S1, . . . , Sl
some definable subsets of |K|. Let (K0, φ0) ∈ ∆NT (|K|;S1, . . . , Sl), where
K denotes the closed simplicial complex which is the collection of faces of
simplices of K. Then (K ′, φ′) ∈ ∆NT (|K|;S1, . . . , Sl), where K ′ = {σ ∈
K0 : σ ⊂ |K|} and φ′ = φ0||K′|.
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Proof of Theorem 1.4. By Remark 4.2 we can assume that K is closed. We
first apply Theorem 3.2 to get an independent triangulation (K0, φ0) ∈
∆(|K|;S1, . . . , Sl, σ)σ∈K . Now consider the collection of simplices K ′ =
{τφ0 : τ ∈ K0} (with the notation of Definition 3.1). By definition of inde-
pendent triangulation, K ′ is a closed simplicial complex. Moreover, the map
between the set of vertices gvert : V ert(K0) → V ert(K ′) : v 7→ φ0(v) induce
a simplicial isomorphism g : |K0| → |K ′|. Note that g(τ) = τφ0 for τ ∈ K0.
We also observe that given τ ∈ K0 if φ0(τ) ⊂ σ ∈ K then the images by
φ0 of the vertices of τ lie in σ and therefore g(τ) = τφ0 ⊂ σ. Hence, given
σ ∈ K take τ1, . . . , τm ∈ K0 be such that σ = φ0(τ1)∪̇ · · · ∪̇φ0(τm) and then
we get g(τ1)∪̇ · · · ∪̇g(τm) ⊂ σ.

Claim. g(τ1)∪̇ · · · ∪̇g(τm) = σ.

Once we have proved the Claim, we can assure that (a) K ′ is a subdivi-
sion of K, and (b) for every τ ∈ K0 and every σ ∈ K we have that φ0(τ) ⊂ σ
if and only if g(τ) ⊂ σ. Now we consider the following map

φ′ := φ0 ◦ g−1 : |K ′| → |K|.

Finally we are ready to show that (K ′, φ′) ∈ ∆NT (|K|;S1, . . . , Sl) as re-
quired. We have to check the three conditions of Definition 1.3. The fact
that g is a simplicial isomorphism and that the triangulation (K0, φ0) ∈
∆(S1, . . . , Sl, σ)σ∈K give us (i); by (a) above we get (ii), and to check
(iii), given a simplex τφ0 ∈ K ′ such that τφ0 ⊂ σ ∈ K we have that
φ′(τφ0) = φ0 ◦ g−1(τφ0) = φ0(τ) ⊂ σ by (b). It remains to prove the Claim.
Proof of the Claim. By induction on the dimension n of the simplex
σ ∈ K, the case n = 0 being trivial. Let σ ∈ K be an (n + 1)-simplex.
Let τ1, . . . , τm ∈ K0 be such that σ = φ0(τ1)∪̇ · · · ∪̇φ0(τm). We may assume
σ ⊂ Rn+1. Now consider the injective definable map (g ◦ φ−1

0 )|σ : σ →
σ. Applying the induction hypothesis to each simplex in ∂σ we get (g ◦
φ−1

0 )(∂σ) = ∂σ. Therefore by Lemma 4.1 we have that (g ◦ φ−1
0 )(σ) = σ,

i.e., σ = g(τ1)∪̇ · · · ∪̇g(τm).

In the rest of this section we will give applications of the Normal Trian-
gulation Theorem.

Proof of Theorem 1.1. By the Normal Triangulation Theorem there exists
(K ′, ψ) ∈ ∆NT (|K|;φ−1(S′1), . . . , φ

−1(S′l′)). Consider the following definable
map H : |K ′| × I → |K ′| : (x, s) 7→ (1 − s)x + sψ(x). The map H is well-
defined because, by normality of (K ′, ψ), we have that ψ(x) ∈ σ for each
x ∈ σ ∈ K. Also observe that H is clearly continuous. Therefore H is
a definable homotopy between ψ and id|K|. Finally, define φ′ = φ ◦ ψ.
Clearly (K ′, φ′) ∈ ∆(S;S1, . . . , Sl, S

′
1, . . . , S

′
l′) and φ′ is definably homotopic

to φ.
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Corollary 4.3. Let K be a simplicial complex and S1, . . . , Sl definable sub-
sets of |K|. Then there exists (K ′, φ′) ∈ ∆(|K|;S1, . . . , Sl, σ)σ∈K such that
K ′ is a subdivision of K and φ′ is definably homotopic to id|K|.

Proof. By applying Theorem 1.1 to |K|, (K, id|K|), S1, . . . , Sl and the sim-
plices of K.

Recall that given a definable function f : |K| → |L| between the realiza-
tions of two simplicial complexes K and L we say that f is compatible if for
every σ ∈ K there is τ ∈ L such that f(σ) ⊂ τ .

Corollary 4.4. Let K and L be two simplicial complexes and let f : |K| →
|L| be a definable map. Then there exist a subdivision K ′ of K and a de-
finable homeomorphism φ : |K ′| → |K| such that both φ and f ◦ φ are
compatible.

Proof. It is enough to observe that by the Normal Triangulation Theorem
there exists (K ′, φ) ∈ ∆NT (|K|, f−1(τ))τ∈L.

Theorem 4.5. Let R be a real closed field. Let X ⊂ Rn and Y ⊂ Rm be
two semialgebraic sets defined without parameters. Then any semialgebraic
map (homeomorphism) f : X → Y is semialgebraically homotopic to a
semialgebraic map (resp. homeomorphism) g : X → Y defined without
parameters.

Proof. We denote by Q the real algebraic numbers. We can assume that X
and Y are the realization of two simplicial complexes K and L respectively,
whose vertices lie in Q. Taking a subdivision, by Corollary 4.3 we can assume
that for each σ ∈ K there exists τσ ∈ L such that f(σ) ⊂ τσ. We denote f by
fc to stress the fact that c is a tuple of parameters in R such that f is defined
over. Consider the first order formula ψ(y) defined without parameters
which says that fy is a map (resp. homeomorphism) between |K| and |L|
and for each σ ∈ K, fy(σ) ⊂ τσ. By completeness of the theory of real closed
fields, since R satisfies ∃yψ(y), then Q satisfies ∃yψ(y). Therefore there
exists a tuple of parameters a in Q such that fa : |K| → |L| is a semialgebraic
map (resp. homeomorphism) and for each σ ∈ K, fa(σ) ⊂ τσ. Denote fa
by g. Finally the map H : |K| × I → |L| : (x, t) → (1 − t)fc(x) + tg(x), is
well-defined because for each σ ∈ K we have that both g(σ) and fc(σ) ⊂
are contained in τσ. Hence H is a semialgebraic homotopy between f and
g.

Proof of Theorem 1.2. We can assume that the vertices of K and L lie in Q
(the real algebraic numbers). By Theorem 4.5 we can also assume that f is
defined without parameters. We now show that, since f is defined without
parameters, the theorem follows from the real Semialgebraic Hauptvermu-
tung. Indeed, by Theorem 4.1 in [7] there exists a simplicial isomorphism
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g̃ : |K ′|(R) → |L′|(R) between the realizations in R of two subdivision K ′

and L′ of K and L respectively, such that g̃ is semialgebraically homotopic
to the map fR : |K|(R) → |L|(R) induced by f . Note that we can express
with a first order sentence ψ defined without parameters the existence of
some parameters and some points in K and L which are the vertices of
two simplicially isomorphic subdivisions of K and L and that the simplicial
isomorphism is semialgebraically homotopic to f . By completeness of the
theory of real closed fields, since R satisfies ψ, then Q also satisfies ψ.

We finish this section with another application of the Normal Triangu-
lation Theorem.

Remark 4.6. In both the semialgebraic and o-minimal setting it is pos-
sible to develop a homology theory over real closed fields as it was proved
by M. Knebusch–H. Delfs and A. Woerheide respectively (see e.g. [3] and
[8]). When adapting the classical development to the o-minimal setting, the
lack of the Simplicial Approximation Theorem lead us to the problem of
verifying the excision axiom in the singular case and to construct a well-
defined functor in the simplicial one. M. Knebusch and H. Delfs avoid this
problem developing their semialgebraic homology theory via cohomology of
sheaves. In his PhD dissertation A. Woerheide returns to the classical line
solving the problem of constructing a well-defined o-minimal simplicial ho-
mology functor applying the Triangulation Theorem and the Acyclic Models
Theorem. Then he uses this o-minimal simplicial homology theory to ver-
ify the excision axiom of the o-minimal singular homology. On the other
hand, our Normal Triangulation Theorem fills the gap left by the lack of the
Simplicial Approximation Theorem, which allows us to follow the classical
proof. Therefore it gives an alternative proof of the existence of a functor
for o-minimal simplicial homology. To see this consider a definable map
f : |K| → |L| between the realizations of two closed simplicial complexes
K and L. To define the group homomorphism f∗ : H∗(K) → H∗(L) we
proceed as follows. Let K ′ and φ be respectively the subdivision of K and
the definable homeomorphism given by Corollary 4.4. Since f ◦ φ and φ are
both compatible, then both satisfy the star condition. Hence they both have
a simplicial approximation and we can define (f ◦φ)∗ : H∗(K ′) → H∗(L) and
φ∗ : H∗(K ′) → H∗(K). We define the homomorphism f∗ : H∗(K) → H∗(L)
by f∗ = (f ◦φ)∗ ◦φ−1

∗ . It remains to prove that φ∗ is indeed an isomorphism,
but this is a classical result since, by Corollary 4.4, φ(σ′) ⊂ σ for each pair
σ′ ∈ K ′ and σ ∈ K with σ′ ⊂ σ, and therefore any simplicial approximation
to φ is a simplicial approximation to id : |K ′| → |K|. Using the classical
techniques it is easy to check that with these induced homomorphisms we
have a well-defined functor for o-minimal simplicial homology. A similar
approach allow us to define the o-minimal simplicial functor in the relative
case and, adapting the classical techniques, it is easy to verify the o-minimal
Eilenberg-Steenrod homology axioms.
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5 Appendix

All the following examples are in dimension 2.

Example 5.1. 1) Example of a triangulation (K,φ) of a closed and bounded
definable set S which is not independent because (i) fails.
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Observe that if we denote by S1 = φ((v0, v2)) then (K,φ) is small w.r.t. S1.
2) Example of a triangulation (K,φ) of a closed and bounded definable

set S which is not independent because it satisfies (i) but it does not satisfies
(ii).
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Example 5.2. This example shows that the independence property of tri-
angulations is not preserved by taking barycentric subdivisions.
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Example 5.3. Let S be the closed and bounded 2-dimensional definable
set of Figure 1, where the union of the curves in its interior is the subset
S1. If we follow the proof of the Independence Triangulation Theorem and
we make the modification M1 but we do not make the modification M2 (see
Figure 2) then we will obtain a triangulation which is not small w.r.t. S1.
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Figure 1 Figure 2
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