- 1) (2 points) State and prove the Strong Hilbert's Nullstellensatz; in your proof say how the Weak Nullstellensatz is used.
- 2) (3 points) Answer the following questions. Explain your answers.
 - a) Let $A = \mathbf{R}[[X, Y]]$ and let M a module, finitely generated over A. Consider the ideal $\mathfrak{m} = (X, Y)$ of A. If $M/\mathfrak{m}M$ is an \mathbf{R} -vector space of dimension 3, what is the cardinal of a minimal number of generators of M as an A-module?
 - b) Give an exmaple of a ring that is Noetherian but not Artinian; give an example of an Artinian ring.
 - c) Describe $\operatorname{Spec}\mathbf{Z}_{(5)}$.
- 3) (2 points) Let \mathbf{k} be a field. Consider the ring homomorphism

and let B be the image of Φ inside $\mathbf{k}[T]$.

- a) Give a set of generators for the kernel of Φ .
- b) Is B a normal ring? If not, find the normalization of B.
- 4) (3 points) Let $A = \mathbb{C}[X, Y, Z]$ and let $J = (X^2 Y^2 Z^2, X Y, X Z) \cap (X^2, Y, Z) \cap (X 1, Y, Z)$ be an ideal of A.
 - a) Find a set of generators for J.
 - b) Find a shortest primary decomposition of J, giving a set of generators for each one of the primary components of the decomposition. Is the shortest primary decomposition found unique?
 - c) Compute the Krull dimension of A/J.