COMMUTATIVE ALGEBRA. 2008-09. Exercise sheet 1

Throughout this exercise sheet A will denote a ring and \mathbf{k} will denote a field.

- 1) Compute a system of generators for the ideal $(X, Y^2) \cap (X^2, Y)$ of $\mathbf{k}[X, Y]$.
- 2) Compute a system of generators for the ideal consisting of the polynomials of $\mathbf{k}[X, Y]$ vanishing at the following subsets of \mathbf{A}_k^2 :

a) $\{(0,0), (1,0)\};$ b) $\{(0,0), (1,0), (0,1)\};$ c) $\{(0,0), (1,0), (0,1), (1,1)\}.$

- **3)** We say that two ideals I and J of A are strongly coprime if I + J = A.
 - a) Prove that if I and J are strongly coprime then $IJ = I \cap J$ and $A/IJ \cong (A/I) \times (A/J)$.
 - b) Prove that if I and J are strongly coprime then so are I^n and J^n for all $n \ge 1$.
- 4) Let A and B be rings.
 - a) Let $f : A \longrightarrow B$ be a ring homomorphism. Prove that if \mathfrak{p} is a prime ideal of B then $f^{-1}(\mathfrak{p})$ is a prime ideal of A. In particular, if A is a subring of B and \mathfrak{p} is a prime ideal of B then $A \cap \mathfrak{p}$ is a prime ideal of A.
 - b) Let *I* be an ideal of *A* and let $\pi : A \longrightarrow A/I$ be the canonical projection onto the quotient of *A* by *I*. Prove that prime ideals \mathfrak{q} of A/I are in one-to-one correspondence with the prime ideals \mathfrak{p} of *A* containing *I*; this correspondence is given by $\mathfrak{q} = \pi(\mathfrak{p})$ and $\mathfrak{p} = \pi^{-1}(\mathfrak{q})$.
- 5) Prove or give a counterexample:
 - a) The intersection of two prime ideals is a prime ideal.
 - b) The sum of two prime ideals is a prime ideal.
 - c) The inverse image of a maximal ideal by a ring homomorphism is a maximal ideal.
 - d) Let I be an ideal of A; the inverse image of a maximal ideal of A/I by the canonical projection $\pi: A \longrightarrow A/I$ is a maximal ideal of A.
- 6) Compute the ideal I consisting of all the polynomials of $\mathbf{R}[X, Y]$ that vanish when evaluated at (1+i, 1). Is I a maximal ideal of $\mathbf{R}[X, Y]$?
- 7) Let $\mathbf{k} \subset K$ be an algebraic field extension. Let $a = (a_1, \ldots, a_n) \in K^n$. Consider the evaluation homomorphism $e_a : \mathbf{k}[X_1, \ldots, X_n] \longrightarrow K$ defined by $f \mapsto f(a_1, \ldots, a_n)$. Determine the kernel and the image of e_a and deduce that the intersection $(X_1 a_1, \ldots, X_n a_n) \cap \mathbf{k}[X_1, \ldots, X_n]$ is a maximal ideal of $\mathbf{k}[X_1, \ldots, X_n]$.
- 8) Let I be the ideal of $\mathbf{k}[X, Y, Z]$ consisting of those polynomials f such that $f(T^3, T^4, T^5) = 0$ in $\mathbf{k}[T]$.
 - a) Give a family of generators of I.
 - b) Decide if I is a prime or a maximal ideal.
 - c) Show that I cannot be generated by two elements.
 - d) Prove that if **k** is an infinite field (for example, if $\mathbf{k} = \mathbf{R}$ or **C**), then *I* is the ideal of the curve *C* of $\mathbf{A}^3_{\mathbf{k}}$ parametrized by $x = t^3$, $y = t^4$ and $z = t^5$. Thus, this is an example of an affine algebraic subvariety whose ideal cannot be generated by as many polynomials as its codimension.
- 9) Let I = (X 4Z 3, Y + 2Z + 1) be an ideal of k[X, Y, Z].
 - a) Prove that $I \cap \mathbf{k}[X, Y] = (X + 2Y 1) \subset \mathbf{k}[X, Y]$.
 - b) Prove that I is a prime ideal of $\mathbf{k}[X, Y]$ but not a maximal ideal; find a maximal ideal containing I.
- **10)** Let I be an ideal of A.
 - a) Prove that the set $\sqrt{I} = \{a \in A | \exists n \in \mathbb{N} \text{ such that } a^n \in I\}$ is an ideal of A (the radical of I).
 - b) Prove that \sqrt{I} is the intersection of all prime ideals of A containing I.
 - c) Prove that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- 11) Let A be a UFD and let $f = f_1^{n_1} \dots f_r^{n_r}$ be the unique (up to multiplication by units) factorization of $f \in A$ into irreducible elements.

- a) Show that $\sqrt{(f)} = (f_1 \dots f_r)$.
- b) This is for students that know the basics about plane affine algebraic curves: Let **k** be an algebraically closed field (for example, let $\mathbf{k} = \mathbf{C}$), let $A = \mathbf{C}[X, Y]$ and consider the curve $C = V(f) = \{(x, y) \in \mathbf{A}_{\mathbf{k}}^2 | f(x, y) = 0\}$. Prove that the ideal $I(C) = \{g \in \mathbf{k}[X, Y] | g(x, y) = 0 \text{ for all } (x, y) \in C\}$ satisfies $I = \sqrt{(f)}$ (hint: use Study's lemma). This result is the *Nullstellensatz* (that we will see in Section 5 of this course) for the particular case of plane curves.
- 12) Use Zorn's lemma to prove that any prime ideal \mathfrak{p} contains a minimal prime ideal.
- 13) Let $S \subset A$ be a multiplicative set and let I be an ideal of A such that S and I are disjoint. Prove that there is a prime ideal \mathfrak{p} containing I such that S and \mathfrak{p} are disjoint.
- 14) Let Σ be the set consisting of all the ideals I of A such that each element of I is either 0 or a zero divisor. Prove that Σ has maximal elements and that each maximal element of Σ is a prime ideal. Conclude that the subset of A consisting of 0 and the zero divisors of A is a union of prime ideals.
- **15)** Let Σ be the set of multiplicative sets of A not containing 0. Prove that S is a maximal element of Σ if and only if $A \setminus S$ is a minimal prime ideal of A.
- **16)** Let $X \subset \mathbf{A}_{\mathbf{k}}^{n}$ be an algebraic variety such that I(X) is generated by f_{1}, \ldots, f_{r} and let $f \in \mathbf{k}[X_{1}, \ldots, X_{n}]$. Prove that $f_{1}, \ldots, f_{r}, X_{n+1}f - 1$ generate the ideal of the set $Y = \{(a_{1}, \ldots, a_{n}, a_{n+1}) \in \mathbf{A}_{\mathbf{k}}^{n+1} | (a_{1}, \ldots, a_{n}) \in X, a_{n+1}f(a_{1}, \ldots, a_{n}) = 1\}.$
- 17) Find the nilpotent elements and the minimal prime ideals of the following rings:
 - a) $\mathbf{k}[X,Y]/(XY,Y^2);$ b) $\mathbf{Z}_{300};$
 - c) $\mathbf{k}[X,Y]/(f)$, where $f = cf_1^{n_1} \cdots f_s^{n_s}$, $(c \in \mathbf{k}, f_1, \dots, f_s$ irreducible elements of $\mathbf{k}[X,Y]$) is the unique factorization of f into irreducible elements.
- 18) Let A be a reduced ring having finitely many minimal prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. Prove that there is an injective homomorphism $\varphi: A \longrightarrow A/\mathfrak{p}_1 \times \cdots \times A/\mathfrak{p}_n$ whose image has non zero intersection which each A/\mathfrak{p}_i . As a corollary, describe the injective homomorphism $\mathbf{k}[X,Y]/(XY) \hookrightarrow \mathbf{k}[X] \times \mathbf{k}[Y]$.
- **19)** Prove that the ideal $J = (X + Y X^2 + XY Y^2, X(X + Y 1)) \subset \mathbf{k}[X, Y]$ is not equal to the ideal I consisting of those polynomials vanishing at the subset $\{(0,0), (1,0), (0,1)\}$ of $\mathbf{A}^2_{\mathbf{k}}$, despite of the fact that $V(J) = \{(0,0), (1,0), (0,1)\}$.
- **20)** Let $A[[X]] = \{\sum_{n=0}^{\infty} a_n X^n | a_n \in A\}$ (the set of *formal power series* with coefficients in A).
 - a) Prove that A[[X]] is a ring with respect to the obvious addition and multiplication.
 - b) Prove that a formal power series $\sum_{n=0}^{\infty} a_n X^n$ is a unit of A[[X]] if and only if a_0 is a unit of A. Compute the inverse of 1 + X in $\mathbf{k}[[X]]$.
 - c) Find all the ideals of $\mathbf{k}[[X]]$.
- **21)** Let $A[[X_1, \ldots, X_n]]$ be the set of expressions of the form $\sum_{n=0}^{\infty} f_n$, where f_n is a degree *n* homogeneous polynomial in the variables X_1, \ldots, X_n with coefficients in *A*.
 - a) Prove that $A[[X_1, \ldots, X_n]]$ is a ring with respect to the obvious addition and multiplication.
 - b) Prove that $\sum_{n=0}^{\infty} f_n$ is a unit of $A[[X_1, \ldots, X_n]]$ if and only if f_0 is a unit of A.
 - c) Conclude that $\mathbf{k}[[X_1, \ldots, X_n]]$ only possesses one maximal ideal, that is, conclude that $\mathbf{k}[[X_1, \ldots, X_n]]$ is a local ring.
- 22) Prove that the following rings are local and find their maximal ideal:
 - a) $\{f/g | f, g \in \mathbf{k}[X] \text{ and } g(1) \neq 0\}.$
 - b) $\{f/g | f, g \in \mathbf{k}[X, Y] \text{ and } g(0, 0) \neq 0\}.$
 - c) $\mathbf{k}\{X\}$, the ring of power series over $\mathbf{k} = \mathbf{R}$ or \mathbf{C} with radius of convergence > 0.
 - d) The ring of continuous function germs at the origin $0 \in \mathbf{R}^n$. To define this ring we consider the quotient of the set $\{(U,h)| U \text{ is an open neighborhood of } 0 \text{ and } h : U \longrightarrow \mathbf{R} \text{ is a continuous function}\}$ by the following equivalence relation: (U,h) is equivalent to (U',h') if and only if there exists an open neighborhood W of 0 contained in $U \cap U'$ such that $h|_W = h'|_W$. Then the ring of continuous function germs at 0 is the quotient set by this equivalent relation with addition and multiplication defined in the obvious way.