Throughout this exercise sheet A will denote a ring and \mathbf{k} will denote a field.

- 1) Let A be an integral domain and let K be its field of fractions. Let $f \in A$ such that $f \neq 0$ and $f \notin U(A)$. Prove that A[1/f] is not finitely generated as a module over A.
- **2)** Consider the ideal I = (X, Y) of $A = \mathbf{k}[X, Y]$. Prove that I is not a free A-module.
- 3) Let $A = \mathbf{k}[X, Y, Z]$ and let $M \subset A^4$ be the A-module consisting of the elements (f_1, f_2, f_3, f_4) of A^4 such that $f_1XY + f_2XZ + f_3YZ + f_4Z^2 = 0$.
 - a) Prove that $\{v_1 = (Z, -Y, 0, 0), v_2 = (0, Y, -X, 0), v_3 = (0, -Z, 0, X), v_4 = (0, 0, -Z, Y)\}$ is a family of generators for M but not a basis of M.
 - b) Prove that the module of relations among v_1, v_2, v_3 and v_4 is free of rank 1.
- 4) Let (A, \mathfrak{m}) be a local ring, let $\mathbf{k} = A/\mathfrak{m}$, let M be a finite A-module and let $s_1, \ldots, s_n \in M$. Let $\overline{s}_1, \ldots, \overline{s}_n \in \overline{M} = M/\mathfrak{m}M$ be the classes of s_1, \ldots, s_n .
 - a) Prove that $\overline{s}_1, \ldots, \overline{s}_n$ span the **k**-vector space \overline{M} if and only if s_1, \ldots, s_n generate M.
 - b) Prove that $\{\overline{s}_1, \ldots, \overline{s}_n\}$ is a basis of the **k**-vector space \overline{M} if and only if $\{s_1, \ldots, s_n\}$ is an irredundant family of generators for M.
- **5)** Let A be the ring of Exercise 1.22.b), let $\mathfrak{m} = (X, Y) \subset A$ and let $f = f_1 + f'$ and $g = g_1 + g'$, where $f_1, g_1 \in \mathbf{k}[X, Y]$ are homogeneous linear forms, linearly independent over \mathbf{k} and $f', g' \in \mathbf{k}[X, Y]$ are polynomials of order > 1. Prove that f and g generate \mathfrak{m} .
- 6) Prove that A^n and A^m are isomorphic as A-modules if and only n = m, when
 - a) A is a local ring;
 - b) A is an arbitrary ring.
- 7) Let $A = \{g/h | g, h \in \mathbf{R}[X, Y] \text{ and } h(1, 0) \neq 0\}$. Prove that the elements (X, Y) and (Y, X) of A^2 generate A^2 as an A-module.
- 8) Let A be a UFD, let $x, y \in A$ be elements with no common factors and let $\varphi : A \oplus A \longrightarrow A$ be the homomorphism given by $\varphi((1,0)) = x$ and $\varphi((0,1)) = y$.
 - a) Compute the image of φ and prove that the kernel of φ is generated by (-y, x).
 - b) Let I = (x, y). Conclude that the following short exact sequence of A-modules

$$0 \longrightarrow A \xrightarrow{\begin{pmatrix} -y \\ x \end{pmatrix}} A \oplus A \xrightarrow{(x \quad y)} I \longrightarrow 0$$

is exact (this exact sequence is called the *Koszul complex* of x and y).

c) Let $A = \mathbf{k}[X, Y]$ and let x = X and y = Y; conclude that the following sequence

$$0 \longrightarrow A \xrightarrow{\begin{pmatrix} -Y \\ X \end{pmatrix}} A \oplus A \xrightarrow{(X Y)} A \xrightarrow{\pi} \mathbf{k} \longrightarrow 0$$

is exact.

d) Let $A = \mathbb{C}[X, Y]$ and let $I = (X^3 - Y, X^2 - 1) \subset \mathbb{C}[X, Y]$; prove that A/I fits in a exact sequence like this:

$$0 \longrightarrow A \longrightarrow A \oplus A \longrightarrow A \longrightarrow A/I \longrightarrow 0$$

- 9) Let $A = \mathbf{k}[X, Y, Z]$ and let $\mathfrak{m} = (X, Y, Z)$. Let us consider the surjective homomorphism $\alpha : A^3 \longrightarrow \mathfrak{m}$ given by $(f, g, h) \mapsto fX + gY + hZ$.
 - a) Prove that the kernel of α is generated by three elements $u, v, w \in A^3$.
 - b) Let $\beta : A^3 \longrightarrow \ker \alpha$ be the surjective homomorphism given by $(f', g', h') \mapsto f'u + g'v + h'w$. Find the kernel of β .
 - c) Conclude the existence of an exact sequence

$$0 \longrightarrow A \longrightarrow A^3 \xrightarrow{\beta} A^3 \xrightarrow{\alpha} A \longrightarrow \mathbf{k} \longrightarrow 0,$$

(the Koszul complex of X, Y and Z).

10) Let $A = \mathbf{k}[X, Y, Z]$.

- a) Prove that the kernel of the homomorphism $A^3 \to A$ given by $(f, g, h) \mapsto (Z^2 X^2 Y)f + (X^3 YZ)g + (Y^2 XZ)h$ is free and that $\{(X, Y, Z), (Y, Z, X^2)\}$ is a basis for it.
- b) Use part a) to build a free resolution (that is, an exact sequence of free A-modules) of the ring of polynomial functions on the curve C of part d) of Exercise 1.8.

11) Let

$$0 \longrightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \longrightarrow 0$$

be a short exact sequence of A-modules. Prove that there exists an isomorphism $M \simeq L \oplus N$ under which α is given by $l \mapsto (l, 0)$ and β by $(l, n) \mapsto n$, if either

- a) there exists a section of β , that is, a homomorphism $s: N \longrightarrow M$ such that $\beta \circ s = \operatorname{id}_N$; or
- b) there exists a retraction of α , that is, a homomorphism $r: M \longrightarrow L$ such that $r \circ \alpha = \operatorname{id}_L$.
- **12)** Let A be a ring.
 - a) Let $0 \longrightarrow L \longrightarrow M \longrightarrow 0$ be a short exact sequence of modules over A. Prove that if L and N are finite over A, so is M.
 - b) Let $M_1, M_2 \subset M$ be two submodules. Prove that if $M_1 + M_2$ and $M_1 \cap M_2$ are finite modules over A, so are M_1 and M_2 .
- **13)** Let M be an A-module. We define the dual module of M as the set consisting of all A-module homomorphisms from M to A.
 - a) Prove that the dual module of M has a natural structure of A-module.
 - b) If $M = \bigoplus_{l \in \Lambda} M_l$, express the dual module of M in terms of the dual modules of M_l .
- 14) Find the dual module of Q as a Z-module.
- **15)** Find the dual module of $\mathbf{k}[X, Y]/(XY 1)$ as a module over $\mathbf{k}[X]$. Deduce that $\mathbf{k}[X, Y]/(XY 1)$ is not a free $\mathbf{k}[X]$ -module.